Ultrasound as a Promising Tool for the Green Extraction of Specialized Metabolites from Some Culinary Spices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of Spice Extracts
2.2. Specialized Metabolites and Antioxidant Capacity of Spice Extracts
2.3. Antimicrobial Activity of Spice Extracts
Growth of Pathogenic Strains
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Spice Extracts
3.3. Determination of Physicochemical Properties of Spice Extracts
3.4. Determination of Specialized Metabolites Content and Antioxidant Capacity of Spice Extracts
3.5. Determination of Antimicrobial Activity of Spice Extracts
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shahidi, F.; Hossain, A. Bioactives in spices, and spice oleoresins: Phytochemicals and their beneficial effects in food preservation and health promotion. J. Food Bioact. 2018, 3, 8–75. [Google Scholar] [CrossRef] [Green Version]
- Reiter, J.; Hübbers, A.M.; Albrecht, F.; Leichert, L.I.O.; Slusarenko, A.J. Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. Int. J. Med. Microbiol. 2020, 310, 151359. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, J.; Erba, O.; Egigu, M.C. In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. Heliyon 2020, 6, e05027. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Leong, S.Y.; Khelfa, A.; Greiner, R.; Chemat, F. Extraction Methods of Essential Oils from Herbs and Spices; John Wiley & Sons: Chichester, UK, 2017; pp. 21–55. [Google Scholar]
- Hashemi, S.M.B.; Nikmaram, N.; Esteghlal, S.; Khaneghah, A.M.; Niakousari, M.; Barba, F.J.; Roohinejad, S.; Koubaa, M. Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innov. Food Sci. Emerg. Technol. 2017, 41, 172–178. [Google Scholar] [CrossRef]
- Pujol, M.C. La resistencia a los antimicrobianos, un problema mundial. Rev. Cuba. Med. Gen. Integr. 2002, 18, 165–168. [Google Scholar]
- FAO. FAO/WHO Expert Meeting on Foodborne Antimicrobial Resistance: Role of Environment, Crops and Biocides 2018. Available online: https://www.who.int/foodsafety/areas_work/antimicrobial-resistance/FAO_WHO_AMR_Summary_Report_June2018.pdf (accessed on 1 February 2021).
- Archawakulathep, A.; Thi, K.C.T.; Meunsene, D.; Handijatno, D.; Hassim, H.; Rovira, H.R.G.; Myint, K.S.; Baldrias, L.R.; Sothy, M.; Aung, M.; et al. Perspectives on antimicrobial resistance in livestock and livestock products in ASEAN countries. Thai J. Vet. Med. 2014, 44, 5–13. [Google Scholar]
- Roberts, D.; Greenwood, M. Practical Food Microbiology; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hennekinne, J.-A.; de Buyser, M.-L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [Green Version]
- Chaibenjawong, P.; Foster, S.J. Desiccationtolerance in Staphylococcus aureus. Arch. Microbiol. 2011, 193, 125–135. [Google Scholar] [CrossRef]
- Josipović, R.; Markov, K.; Frece, J.; Stanzer, D.; Cvitković, A.; Mrvcić, J. The use of spices in the production of traditional cheeses. Mljekarstvo 2016, 66, 12–25. [Google Scholar]
- Parthasarathy, V.A.; Chempakam, B.; Zachariah, T.J. Chemistry of Spices; Cabi: Oxfordshire, UK, 2008; pp. 1–445. [Google Scholar]
- Zhang, L.; Virgous, C.; Si, H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem. 2019, 69, 19–30. [Google Scholar] [CrossRef]
- Fu, C.; Tian, H.; Li, Q.; Cai, T.; Du, W. Ultrasound-assisted extraction of xyloglucan from apple pomace. Ultrason. Sonochem. 2006, 13, 511–516. [Google Scholar] [CrossRef]
- Grassino, A.N.; Barba, F.J.; Brnčić, M.; Lorenzo, J.M.; Lucini, L.; Brnčić, S.R. Analytical tools used for the identification and quantification of pectin extracted from plant food matrices, wastes and by-products: A review. Food Chem. 2018, 266, 47–55. [Google Scholar] [CrossRef]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Brnčić, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, A.Y.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Rojas, R.; Ascacio-Valdés, J.A.; Martínez-Ávila, G.C.G. Effect of ultrasound treatment on the extraction of antioxidants from Ardisia compressa Kunth fruits and identification of phytochemicals by HPLC-ESI-MS. Heliyon 2019, 5, e03058. [Google Scholar] [CrossRef] [Green Version]
- Alcántara, C.; Žugčić, T.; Abdelkebir, R.; García-Pérez, J.V.; Jambrak, A.R.; Lorenzo, J.M.; Collado, M.C.; Granato, D.; Barba, F.J. Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules 2020, 25, 1718. [Google Scholar] [CrossRef] [Green Version]
- Žlabur, J.Š.; Žutić, I.; Radman, S.; Pleša, M.; Brnčić, M.; Barba, F.J.; Rocchetti, G.; Lucini, L.; Lorenzo, J.M.; Domínguez, R.; et al. Effect of Different Green Extraction Methods and Solvents on Bioactive Components of Chamomile (Matricaria chamomilla L.) Flowers. Molecules 2020, 25, 810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herceg, Z.; Brncic, M.; Jambrak, A.R.; Brncic, S.R.; Badanjak, M.; Sokolic, I. Possibility of application high intensity ultrasound in milk industry. Mljekarstvo 2009, 59, 65–69. [Google Scholar]
- Zinoviadou, K.G.; Galanakis, C.M.; Brnčić, M.; Grimi, N.; Boussetta, N.; Mota, M.J.; Saraiva, J.A.; Patras, A.; Tiwari, B.; Barba, F.J. Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Res. Int. 2015, 77, 743–752. [Google Scholar] [CrossRef]
- Berk, Z. (Ed.) Extraction. In Food Process Engineering and Technology, 1st ed.; Academic Press: London, UK, 2009; pp. 259–277. [Google Scholar]
- Aadil, R.M.; Zeng, X.-A.; Han, Z.; Sun, D.-W. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013, 141, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Brnčić, M.; Žlabur, J.Š. Impact of Ultrasound on Food Constituents. In Effect of Emerging Processing Methods on the Food Quality: Advantages and Challenges; Springer: Cham, Switzerland, 2019; pp. 69–94. [Google Scholar]
- Gielen, B.; Jordens, J.; Janssen, J.; Pfeiffer, H.; Wevers, M.; Thomassen, L.; Braeken, L.; van Gerven, T. Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique. Ultrason. Sonochem. 2015, 25, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, A.; Farid, M.; Silva, F.V. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Sci. Technol. Int. 2017, 23, 265–276. [Google Scholar] [CrossRef]
- Zou, Y.; Jiang, A. Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Sci. Technol. 2016, 36, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Grijalva, B.; García-Zebadúa, J.C.; Ruíz-Pérez, V.M.; Téllez-Medina, D.I.; García-Pinilla, S.; Guzmán-Gerónimo, R.I.; Mora-Escobedo, R. Biofunctionality, colorimetric coefficients and microbiological stability of blackberry (Rubus fructicosus var. Himalaya) juice under microwave/ultrasound processing. Rev. Mex. Ing. Quim. 2018, 17, 13–28. [Google Scholar]
- Adekunte, A.; Tiwari, B.; Cullen, P.; Scannell, A.; O’Donnell, C. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Dias, D.D.R.C.; Barros, Z.M.P.; de Carvalho, C.B.O.; Honorato, F.A.; Guerra, N.B.; Azoubel, P.M. Effect of sonication on soursop juice quality. LWT 2015, 62, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem. 2013, 20, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Žlabur, J.Š.; Voća, S.; Dobricević, N.; Pliestić, S.; Galić, A.; Boricević, A.; Borić, N. Ultrasound-assisted extraction of bio-active compounds from lemon balm and peppermint leaves. Int. Agrophys. 2016, 30, 95–104. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef]
- Pétrier, C.; Combet, E.; Mason, T. Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrason. Sonochem. 2007, 14, 117–121. [Google Scholar] [CrossRef]
- Žlabur, J.Š.; Dobričević, N.; Brnčić, M.; Barba, F.J.; Lorenzo, J.M.; Franco, D.; Atanasov, A.G.; Voća, S.; Brnčić, S.R. Evaluation of the Behavior of Phenolic Compounds and Steviol Glycosides of Sonicated Strawberry Juice Sweetened with Stevia (Stevia rebaudiana Bertoni). Molecules 2019, 24, 1202. [Google Scholar] [CrossRef] [Green Version]
- Ashokkumar, M.; Lee, J.; Zisu, B.; Bhaskarcharya, R.; Palmer, M.; Kentish, S. Hot topic: Sonication increases the heat stability of whey proteins. J. Dairy Sci. 2009, 92, 5353–5356. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; Tramelli, L.; de Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and anti-oxidant activity of grapemarc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Tan, M.C.; Tan, C.P.; Ho, C.W. Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int. Food Res. J. 2013, 20, 3117–3123. [Google Scholar]
- Dent, M.; Dragovic-Uzelac, V.; Garofulic, I.E.; Bosiljkov, T.; Ježek, D.; Brncic, M. Comparison of conventional and ultra-sound-assisted extraction techniques on mass fraction of phenolic compounds from sage (Salvia officinalis L.). Chem. Biochem. Eng. Q. 2015, 29, 475–484. [Google Scholar] [CrossRef]
- Dvorackova, E.; Snoblova, M.; Chromcova, L.; Hrdlicka, P. Effects of extraction methods on the phenolic compounds contents and antioxidant capacities of cinnamon extracts. Food Sci. Biotechnol. 2015, 24, 1201–1207. [Google Scholar] [CrossRef]
- Lourenço, T.; Mendonça, E.; Nalevaiko, P.; Melo, R.; Silva, P.; Rossi, D. Antimicrobial effect of turmeric (Curcuma longa) on chicken breast meat contamination. Braz. J. Poult. Sci. 2013, 15, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Bader, A.; Fattah, A.A.A. Antimicrobial activity of raw and nano tumeric powder extracts. Middle East J. Appl. Sci. 2016, 6, 787–796. [Google Scholar]
- Tagoe, D.; Gbadago, F. A Comparison of the antimicrobial effectiveness of aqueous extracts of garlic, ginger and lime and two conventional antibiotics on Escherichia coli, Salmonella spp., Shigella spp. and Bacillus cereus. Int. J. Microbiol. 2009, 8, 1–6. [Google Scholar]
- Nas, F.; Ahmad, A.M. In vitro antibacterial activity of different extracts of Zingiber Officinale against bacterial isolates responsible for food spoilage. SOA Arch. Pharm. Pharmacol. 2018, 1, 1–5. [Google Scholar]
- Hindi, N.K.K.; Al-Mahdi, Z.K.A.; Chabuck, Z.A.G. Antibacterial activity of the aquatic extractof fresh, dry powder ginger, apple vinegar extract of fresh ginger and crud oil of ginger (Zingiber officinale) against different types of bacteria in Hilla City, Iraq. Int. J. Pharm. Pharm. Sci. 2014, 6, 414–417. [Google Scholar]
- Pankaj, S.; Al-Tamimi, B.; Al-Nassri, N.; Al-Mamari, R. Effect of temperature on antibiotic properties of garlic (Allium sativum L.) and ginger (Zingiber officinale Rosc.). Afr. J. Biotechnol. 2012, 11, 16192–16195. [Google Scholar] [CrossRef] [Green Version]
- Yetgin, A.; Canli, K.; Altuner, E.M. Comparison of antimicrobial activity of Allium sativum cloves from China and Taşköprü, Turkey. Adv. Pharmacol. Sci. 2018, 2018, 9302840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathialagan, R.; Mansor, N.; Shamsuddin, M.R.; Uemura, Y.; Majeed, Z. Optimisation of ultrasonic-assisted extraction (UAE) of allicin from garlic (Allium sativum L.). Chem. Eng. Trans. 2017, 56, 1747–1752. [Google Scholar]
- Jolly, D.; Menon, V. Antibacterial effect of garlic and ginger extracts on Escherichia coli and Listeria monocytogenes. Int. J. Appl. Pure Sci. Agric. 2015, 1, 111–118. [Google Scholar]
- Hefnawy, Y.A.; Moustafa, S.I.; Marth, E.H. Sensitivity of Listeria monocytogenes to Selected Spices. J. Food Prot. 1993, 56, 876–878. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 1995. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2002. [Google Scholar]
- Shukla, S.; Mehta, A.; Mehta, P.; Bajpai, V.K. Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Exp. Toxicol. Pathol. 2012, 64, 807–811. [Google Scholar] [CrossRef]
- Holm, G. Chlorophyll Mutations in Barley. Acta Agric. Scand. 1954, 4, 457–471. [Google Scholar] [CrossRef]
- Von Wettstein, D. Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res. 1957, 12, 427–506. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kim, S.; Ruengwilysup, C.; Fung, D.Y.C. Antibacterial effect of water-soluble tea extracts on foodborne pathogens in laboratory medium and in a food model. J. Food Prot. 2004, 67, 2608–2612. [Google Scholar] [CrossRef] [PubMed]
- SAS. Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
Interactions | Density | TSS | EC | TA | pH |
---|---|---|---|---|---|
Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | |
SS × ET | 0.1424 | 0.3778 | 0.5696 | 0.2018 | 0.0160 |
SS × T | 0.0697 | 0.1059 | ≤0.0001 | 0.1872 | 0.1906 |
ET × T | 0.9916 | 0.9923 | 0.9891 | 0.7009 | 0.6942 |
SS × ET × T | ≤0.0001 | ≤0.0001 | ≤0.0001 | 0.0480 | ≤0.0001 |
Interactions | L | a | b | c | h |
---|---|---|---|---|---|
Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | |
SS × ET | 0.7951 | ≤0.0001 | 0.0085 | 0.0014 | 0.9417 |
SS × T | 0.5841 | 0.3869 | 0.9641 | 0.8755 | 0.7618 |
ET × T | 0.0250 | 0.0045 | ≤0.0001 | ≤0.0001 | 0.0794 |
SS × ET × T | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 |
Sample ID | VIT_C | TPC | TFC | TNFC | TCA | ANT_CAP |
---|---|---|---|---|---|---|
p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | |
Classic extraction | ||||||
ASc1 | 8.61 ef ± 0.68 | 43.67 l ± 1.24 | 10.54 k ± 1.64 | 33.11 i ± 0.6 | ND | ND |
ASc2 | 6.62 g ± 0.01 | 41.67 lm ± 1.17 | 6.45 l ± 0.96 | 35.24 h ± 0.8 | ND | ND |
ASc3 | 4.42 i ± 0.33 | 23.52 o ± 1.91 | 1.84 n ± 0.56 | 23.19 l ± 0.42 | ND | ND |
ZOc1 | 6.62 g ± 0.01 | 146.02 c ± 1.15 | 94.58 b ± 0.98 | 51.44 d ± 0.96 | 0.57 j ± 0.01 | 2.30 a ± 0.87 |
ZOc2 | 5.29 hi ± 0.88 | 166.80 b ± 0.50 | 110.58 a ± 1.07 | 56.16 c ± 0.51 | 0.71 i ± 0.01 | 2.27 a ± 0.52 |
ZOc3 | 5.96 gh ± 0.01 | 125.86 e ± 0.60 | 63.84 ef ± 1.01 | 62.02 b ± 0.65 | 0.91 h ± 0.1 | 2.28 a ± 0.14 |
CLc1 | 10.81 d ± 0.77 | 67.57 j ± 0.50 | 48.81 i ± 1.11 | 23.76 l ± 0.61 | 1.1 g ± 0.3 | 2.17 cd ± 0.04 |
CLc2 | 12.35 c ± 0.38 | 77.86 i ± 0.64 | 49.54 h ± 0.43 | 28.32 k ± 0.83 | 1.73 d ± 0.1 | 2.30 a ± 0.27 |
CLc3 | 8.84 ef ± 0.33 | 57.24 k ± 0.40 | 32.88 j ± 0.15 | 24.37 l ± 0.28 | 4.17 c ± 0.1 | 2.29 a ± 0.67 |
Ultrasonic-Assisted Extraction | ||||||
ASu1 | 8.26 ef ± 0.33 | 39.12 m ± 0.74 | 5.32 lm ± 0.68 | 33.61 hi ± 0.48 | ND | ND |
ASu2 | 8.07 f ± 0.01 | 34.48 n ± 0.80 | 3.41 mn ± 1.04 | 30.95 j ± 0.62 | ND | ND |
ASu3 | 5.76 gh ± 0.01 | 23.65 o ± 0.99 | 4.87 lm ± 1.06 | 18.79 m ± 0.16 | ND | ND |
ZOu1 | 6.53 g ± 0.33 | 115.51 f ± 0.45 | 66.57 de ± 0.46 | 48.94 e ± 0.56 | 1.15 f ± 0.01 | 2.10 d ± 0.69 |
ZOu2 | 8.84 ef ± 0.33 | 138.93 d ± 1.96 | 75.82 c ± 1.99 | 63.10 b ± 0.11 | 1.23 e ± 0.02 | 1.98 e ± 0.12 |
ZOu3 | 9.03 e ± 0.67 | 177.32 a ± 0.67 | 92.53 b ± 0.61 | 84.88 a ± 1.14 | 1.15 f ± 0.06 | 2.18 bc ± 0.27 |
CLu1 | 14.41 b ± 0.33 | 97.93 h ±1.15 | 55.26 g ± 1.64 | 42.66 g ± 0.77 | 11.53 b ± 0.1 | 2.25 ab ± 0.87 |
CLu2 | 17.10 a ± 0.33 | 108.79 g ± 0.43 | 62.07 f ± 0.47 | 46,73 f ± 0,79 | 13.45 a ± 0.1 | 2.09 d ± 0.42 |
CLu3 | 14.79 b ± 0.58 | 128.67 e ± 1.11 | 67.17 d ± 0.22 | 63.50 b ± 2.32 | 13.45 a ± 0.1 | 2.18 bc ± 0.03 |
Interactions | VIT_C | TPC | TFC | TNFC | TCA | ANT_CAP |
---|---|---|---|---|---|---|
Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | |
SS × ET | 0.0003 | ≤0.0001 | 0.0002 | ≤0.0001 | ≤0.0001 | ≤0.0001 |
SS × T | 0.0286 | 0.1924 | 0.5473 | 0.0012 | 0.9039 | 0.6133 |
ET × T | 0.4959 | 0.3617 | 0.3613 | 0.4410 | 0.9548 | 0.9858 |
SS × ET × T | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 |
Extraction Method | Spice Species | Solvent and Volume (mL) | Time (min) | Temperature (°C) | Ultrasonic Bath | Sample ID |
---|---|---|---|---|---|---|
CLAS | Garlic | dH2O, 250 | 30 | 21.7 | - | ASc1 |
CLAS | Garlic | dH2O, 250 | 30 | 40 | - | ASc2 |
CLAS | Garlic | dH2O, 250 | 30 | 70 | - | ASc3 |
CLAS | Ginger | dH2O, 250 | 30 | 21.7 | - | ZOc1 |
CLAS | Ginger | dH2O, 250 | 30 | 40 | - | ZOc2 |
CLAS | Ginger | dH2O, 250 | 30 | 70 | - | ZOc3 |
CLAS | Turmeric | dH2O, 250 | 30 | 21.7 | - | CLc1 |
CLAS | Turmeric | dH2O, 250 | 30 | 40 | - | CLc2 |
CLAS | Turmeric | dH2O, 250 | 30 | 70 | - | CLc3 |
UAE | Garlic | dH2O, 250 | 30 | 21.7 | 35 kHz 140 W | ASu1 |
UAE | Garlic | dH2O, 250 | 30 | 40 | 35 kHz 140 W | ASu2 |
UAE | Garlic | dH2O, 250 | 30 | 70 | 35 kHz 140 W | ASu3 |
UAE | Ginger | dH2O, 250 | 30 | 21.7 | 35 kHz 140 W | ZOu1 |
UAE | Ginger | dH2O, 250 | 30 | 40 | 35 kHz 140 W | ZOu2 |
UAE | Ginger | dH2O, 250 | 30 | 70 | 35 kHz 140 W | ZOu3 |
UAE | Turmeric | dH2O, 250 | 30 | 21.7 | 35 kHz 140 W | CLu1 |
UAE | Turmeric | dH2O, 250 | 30 | 40 | 35 kHz 140 W | CLu2 |
UAE | Turmeric | dH2O, 250 | 30 | 70 | 35 kHz 140 W | CLu3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šic Žlabur, J.; Brajer, M.; Voća, S.; Galić, A.; Radman, S.; Rimac-Brnčić, S.; Xia, Q.; Zhu, Z.; Grimi, N.; Barba, F.J.; et al. Ultrasound as a Promising Tool for the Green Extraction of Specialized Metabolites from Some Culinary Spices. Molecules 2021, 26, 1866. https://doi.org/10.3390/molecules26071866
Šic Žlabur J, Brajer M, Voća S, Galić A, Radman S, Rimac-Brnčić S, Xia Q, Zhu Z, Grimi N, Barba FJ, et al. Ultrasound as a Promising Tool for the Green Extraction of Specialized Metabolites from Some Culinary Spices. Molecules. 2021; 26(7):1866. https://doi.org/10.3390/molecules26071866
Chicago/Turabian StyleŠic Žlabur, Jana, Marko Brajer, Sandra Voća, Ante Galić, Sanja Radman, Suzana Rimac-Brnčić, Qiang Xia, Zhenzhou Zhu, Nabil Grimi, Francisco J. Barba, and et al. 2021. "Ultrasound as a Promising Tool for the Green Extraction of Specialized Metabolites from Some Culinary Spices" Molecules 26, no. 7: 1866. https://doi.org/10.3390/molecules26071866
APA StyleŠic Žlabur, J., Brajer, M., Voća, S., Galić, A., Radman, S., Rimac-Brnčić, S., Xia, Q., Zhu, Z., Grimi, N., Barba, F. J., & Hulak, N. (2021). Ultrasound as a Promising Tool for the Green Extraction of Specialized Metabolites from Some Culinary Spices. Molecules, 26(7), 1866. https://doi.org/10.3390/molecules26071866