Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling
Abstract
:1. Introduction
2. Results
2.1. Physiochemical Parameters
2.2. Antiparasitic Properties of the Aqueous Extract of A. indica
2.3. LC-Q Exactive HF Orbitrap Mass Spectrometry Analysis of the Aqueous Extract of A. indica
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant collection
4.3. Extraction
4.4. Source of Marine Leech Z. arugamensis
4.5. Antiparasitic Bioassay
4.6. Liquid Chromatography
4.7. Data Acquisition
4.8. Data Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Venmathi Maran, B.A.; Seng, L.T.; Ohtsuka, S.; Nagasawa, K. Records of Caligus (Crustacea: Copepoda: Caligidae) from marine fish cultured in floating cages in Malaysia with a redescription of the male of Caligus longipedis Bassett-Smith, 1898. Zool. Stud. 2009, 48, 797–807. [Google Scholar]
- Leong, T.S.; Wong, S.Y. A comparative study of the parasite fauna of wild and cultured grouper (Epinephelus malabaricus Bloch et Schneider) in Malaysia. Aquaculture 1988, 68, 203–207. [Google Scholar] [CrossRef]
- Kua, B.C.; Azmi, M.A.; Hamid, N.K.A. Life cycle of the marine leech (Zeylanicobdella arugamensis) isolated from sea bass (Lates calcarifer) under laboratory conditions. Aquaculture 2010, 302, 153–157. [Google Scholar] [CrossRef]
- Cruz-Lacierda, E.R.; Toledo, J.D.; Tan-Fermin, J.D.; Burreson, E.M. Marine leech (Zeylanicobdella arugamensis) infestation in cultured orange-spotted grouper, Epinephelus coioides. Aquaculture 2000, 185, 191–196. [Google Scholar] [CrossRef]
- Murwantoko, M.; Negoro, S.L.C.; Isnansetyo, A. Short communication: Identification of marine leech and assessment of its prevalence and intensity on cultured hybrid groupers (Epinephelus sp.). Biodiversitas J. Biol. Divers. 2018, 19. [Google Scholar] [CrossRef]
- Azmey, S.; Taruna, M.; Taha, H.; Arai, T. Prevalence and infestation intensity of a piscicolid leech, Zeylanicobdella arugamensis on cultured hybrid grouper in Brunei Darussalam. Vet. Parasitol. Reg. Stud. Reports 2020, 20, 100398. [Google Scholar] [CrossRef]
- Kua, B.C.; Abdullah, S.Z.; Abtholuddin, M.F.; Mohd, N.F.; Mansor, N.N. Marine leech isolated from cage-cultured sea bass (Lates calcarifer) fingerlings: A parasite or vector? Malay. Fish. J. 2009. Available online: https://ci.nii.ac.jp/naid/10027229044/ (accessed on 10 March 2021).
- Burreson, E.M. Phylum Annelida: Hirudinea as vectors and disease agents. In Fish Diseases and Disorders. Volume 1: Protozoan and Metazoan Infections; CABI: Wallingford, UK, 2006; Volume 1, pp. 566–591. ISBN 0851990150. [Google Scholar]
- Leal, J.F.; Neves, M.G.P.M.S.; Santos, E.B.H.; Esteves, V.I. Use of formalin in intensive aquaculture: Properties, application and effects on fish and water quality. Rev. Aquac. 2018, 10, 281–295. [Google Scholar] [CrossRef]
- Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012, 17, 12771–12791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruľová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogaľová, Z.; Poráčová, J.; Camele, I.; De Feo, V. Thymol chemotype Origanum vulgare L. essential oil as a potential selective bio-based herbicide on monocot plant species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic activity of origanum vulgare L. on Hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules 2017, 22, 1435. [Google Scholar] [CrossRef] [Green Version]
- Camele, I.; Elshafie, H.S.; Caputo, L.; De Feo, V. Anti-quorum sensing and antimicrobial effect of Mediterranean plant essential oils against phytopathogenic bacteria. Front. Microbiol. 2019, 10, 2619. [Google Scholar] [CrossRef] [PubMed]
- Estevam, E.B.B.; De Deus, I.P.B.; Da Silva, V.P.; Da Silva, E.A.J.; Alves, C.C.F.; Alves, J.M.; Cazal, C.M.; Magalhães, L.G.; Pagotti, M.C.; Esperandim, V.R.; et al. In vitro antiparasitic activity and chemical composition of the essential oil from Protium ovatum leaves (Burceraceae). An. Acad. Bras. Cienc. 2017, 89, 3005–3013. [Google Scholar] [CrossRef] [Green Version]
- Biswas, K.; Chattopadhyay, I.; Banerjee, R.K.; Bandyopadhyay, U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr. Sci. 2002, 82, 1336–1345. [Google Scholar]
- Girish, K.; Shankara, B.S. Neem–A green treasure. Electron. J. Biol. 2008, 4, 102–111. [Google Scholar]
- Aslam, F.; Ur-Rehman, K.; Asghar, M.; Sarwar, M. Antibacterial activity of various phytoconstituents of neem. Pakistan J. Agric. Sci. 2009, 46, 209–213. [Google Scholar]
- Kavitha, M.; Raja, M.; Kamaraj, C.; Karthik Raja, R.; Balasubramaniam, V.; Balasubramani, G.; Perumal, P. In vitro antimicrobial activity of Azadirachta indica (leaves) against fish pathogenic bacteria isolated from naturally infected Dawkinsia filamentosa (blackspot barb). Med. Aromat. Plants 2017, 6, 2–7. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Vijayakumar, S.; Gopinath, S.; Mukherjee, A.; Chandrasekaran, N.; Thomas, J. In vivo and in vitro antimicrobial activity of Azadirachta indica (Lin) against Citrobacter freundii isolated from naturally infected Tilapia (Oreochromis mossambicus). Aquaculture 2015, 437, 252–255. [Google Scholar] [CrossRef]
- Ngum, W.L.; Hortense, G.; Barthélémy, N.; Estella, T.; Ntungwen, F.C. Activity, in vivo acute toxicity studies of the seed oil of Azadirachta indica (neem oil) in Wistar rats. Toxicology 2019, 5, 31–38. [Google Scholar] [CrossRef]
- Khoa, T.N.D.; Mazelan, S.; Muda, S.; Shaharom-Harrison, F. Use of neem oil (Azadirachta indica) to control caligid copepod infestation on Asian seabass (Lates calcarifer). Aquac. Res. 2019, 50, 1885–1892. [Google Scholar] [CrossRef]
- Williams, L.A.D.; Mansingh, A. The insecticidal and acaricidal actions of compounds from Azadirachta indica (A. Juss.) and their use in tropical pest management. Integr. Pest Manag. Rev. 1996, 1, 133–145. [Google Scholar] [CrossRef]
- De Silva, P.H.D.H.; Fernando, C.H. Three marine leeches (Piscicolidae, Hirudinea) from the Malay Peninsula. Spol. Zeyl. 1965, 30, 227–232. [Google Scholar]
- Kua, B.C.; Choong, F.C.; Leaw, Y.Y. Effect of salinity and temperature on marine leech, Zeylanicobdella arugamensis (De Silva) under laboratory conditions. J. Fish Dis. 2014, 37, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Nagaraj, G.; Chua, F.H.C.; Wang, Y.G. The use of chemicals in aquaculture in Malaysia and Singapore. In Use of Chemicals in Aquaculture in Asia: Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia, 20-22 May 1996, Tigbauan, Iloilo, Philippines; Arthur, J.R., Lavilla-Pitogo, C.R., Subasinghe, R.P., Eds.; Aquaculture Department, Southeast Asian Fisheries Development Center: Tigbauan, Philippines, 2000; pp. 127–141. [Google Scholar]
- Pitten, F.A.; Kramer, A.; Herrmann, K.; Bremer, J.; Koch, S. Formaldehyde neurotoxicity in animal experiments. Pathol. Res. Pract. 2000, 196, 193–198. [Google Scholar] [CrossRef]
- Woo, P.T.K.; Kurt, B. (Eds.) Fish Parasites: Pathobiology and Protection, 1st ed.; CABI: Wallingford, UK, 2012; p. 384. [Google Scholar] [CrossRef]
- Beveridge, M.C.M.; Brummett, R.E. Aquaculture and the environment. In Freshwater Fisheries Ecology; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 794–803. ISBN 9781118394380. [Google Scholar]
- Egidius, E.; Møster, B. Effect of Neguvon® and Nuvan® treatment on crabs (Cancer pagurus, C. maenas), lobster (Homarus gammarus) and blue mussel (Mytilus edulis). Aquaculture 1987, 60, 165–168. [Google Scholar] [CrossRef]
- Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res. 2003, 90, S55–S62. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, A.C.; Zica, É.d.O.P.; Ayres, V.F.d.S.; Guimarães, A.C.; Takeara, R. Plant-derived compounds as an alternative treatment against parasites in fish farming: A review. In Natural Remedies in the Fight Against Parasites; InTech: London, UK, 2017. [Google Scholar]
- Shah, M.D.; Venmathi Maran, B.A.; Iqbal, M.; Ching, F.F.; Mohamad Lal, M.T.; Binti Othman, R.; Shapawi, R. Antiparasitic activity of the medicinal plant Dillenia suffruticosa against the marine leech Zeylanicobdella arugamensis (Hirudinea) and its phytochemical composition. Aquac. Res. 2020, 51, 215–221. [Google Scholar] [CrossRef]
- Shah, M.D.; Venmathi Maran, B.A.; Haron, F.K.; Ransangan, J.; Ching, F.F.; Shaleh, S.R.M.; Shapawi, R.; Yong, Y.S.; Ohtsuka, S. Antiparasitic potential of Nephrolepis biserrata methanol extract against the parasitic leech Zeylanicobdella arugamensis (Hirudinea) and LC-QTOF analysis. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.D.; Tani, K.; Yong, Y.S.; Ching, F.F.; Shaleh, S.R.M.; Vairappan, C.S.; Venmathi Maran, B.A. Antiparasitic potential of chromatographic fractions of Nephrolepis biserrata and liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis. Molecules 2021, 26, 499. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, Z.; Bahmani, M.; Mohsenzadeghan, A.; Gholami Ahangaran, M.; Abbasi, J.; Alighazi, N. Evaluating the anti-leech (Limnatis nilotica) activity of methanolic extract of Allium sativum L. compared with levamisole and metronidazole. Comp. Clin. Path. 2012, 21, 1219–1222. [Google Scholar] [CrossRef]
- Ekanem, A.P.; Andi Brisibe, E. Effects of ethanol extract of Artemisia annua L. against monogenean parasites of Heterobranchus longifilis. Parasitol. Res. 2010, 106, 1135–1139. [Google Scholar] [CrossRef]
- Sambandam, B.; Thiyagarajan, D.; Ayyaswamy, A.; Raman, P. Extraction and isolation of flavonoid quercetin from the leaves of Trigonella foenum-graecum and their anti-oxidant activity. Int. J. Pharm. Pharm. Sci. 2016, 8, 120–124. [Google Scholar]
- Makita, C.; Chimuka, L.; Steenkamp, P.; Cukrowska, E.; Madala, E. Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. South African J. Bot. 2016, 105, 116–122. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, X.; Miao, Z.; Hassan, H.; Song, Y.; Fan, M. Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. Chem. Cent. J. 2016, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, K.; Li, X.-J.; Gou, A.-N.; Huang, Y.-N.; Bu, Q.; Gao, H. Antioxidant and cytoprotective activities of flavonoid glycosides-rich extract from the leaves of Zanthoxylum bungeanum. J. Food Nutr. Res. 2014, 2, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Ghaffari, T.; Kafil, H.S.; Asnaashari, S.; Farajnia, S.; Delazar, A.; Baek, S.C.; Hamishehkar, H.; Kim, K.H. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Pinus eldarica grown in Northwestern Iran. Molecules 2019, 24, 3203. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, S.; Kono, Y.; Kawarada, A.; Ota, Y.; Nakayama, M. Nicotinamide as a plant growth regulator isolated from rice hulls. Agric. Biol. Chem. 1975, 39, 859–861. [Google Scholar] [CrossRef]
- Mead, J.R.; McNair, N. Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol. Lett. 2006, 259, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS ONE 2011, 6, e14666. [Google Scholar] [CrossRef]
- Dodson, H.C.; Lyda, T.A.; Chambers, J.W.; Morris, M.T.; Christensen, K.A.; Morris, J.C. Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Exp. Parasitol. 2011, 127, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Mamani-matsuda, M.; Malvy, D.; Thiolat, D.; Coves, S.; Courtois, P.; Vincendeau, P.; Mossalayi, M.D.; Andre, S. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob. Agents Chemother. 2004, 48, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Bolaños, V.; Díaz-Martínez, A.; Soto, J.; Marchat, L.A.; Sanchez-Monroy, V.; Ramírez-Moreno, E. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions. Mol. Biochem. Parasitol. 2015, 204, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.R.; Kim, H.S.; Choi, S.J.; Kim, J.K.; Gim, M.C.; Kim, Y.-J.; Shin, D.-H. Erucamide from radish leaves has an inhibitory effect against Acetylcholinesterase and prevents memory deficit induced by Trimethyltin. J. Med. Food 2018, 21, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory kinetics and mechanism of Kaempferol on α-glucosidase. Food Chem. 2016, 190, 207–215. [Google Scholar] [CrossRef]
- Liao, W.; Chen, L.; Ma, X.; Jiao, R.; Li, X.; Wang, Y. Protective effects of Kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem. 2016, 114, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Yeon, M.J.; Lee, M.H.; Kim, D.H.; Yang, J.Y.; Woo, H.J.; Kwon, H.J.; Moon, C.; Kim, S.H.; Kim, J.B. Anti-inflammatory effects of Kaempferol on Helicobacter pylori-induced inflammation. Biosci. Biotechnol. Biochem. 2019, 83, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjee, T.K. Kaempferol–A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J. Funct. Foods 2017, 30, 203–219. [Google Scholar] [CrossRef]
No. | Water Parameters | Concentrations | ||||
---|---|---|---|---|---|---|
Groups | Normal Control | Positive Control (Formalin 0.25%) (v/v) | Azadirachta indica (mg/mL) | |||
(25) | (50) | (100) | ||||
1 | Temperature (°C) | 24.6 | 25.3 | 24.7 | 24.9 | 25.1 |
2 | pH | 7.80 | 7.24 | 5.56 | 5.4 | 4.03 |
3 | Salinity (ppt) | 30.0 | 30.9 | 31 | 30.9 | 30.9 |
4 | Dissolved oxygen (mg/L) | 7.0 | 6.5 | 6.8 | 7.1 | 7.0 |
No | Group | Mortality Time (min) Mean ± S. D | Mortality (%) |
---|---|---|---|
1 | Normal control | 720.00 ± 00 | 0 |
2 | Positive control (Formalin 0.25%) (v/v) | 3.77 ± 0.25 # | 100 |
3 | A. indica (25 mg/mL) | 42.65 ± 9.20 #,$ | 100 |
4 | A. indica (50 mg/mL | 11.69 ± 1.11 #,$,%, | 100 |
5 | A. indica (100 mg/mL) | 6.45 ± 0.45 #,$,%,* | 100 |
No | Identified Compounds | Class | Retention Time | Formula |
---|---|---|---|---|
1 | Glutamic acid | Amino acid | 0.623 | C5H9NO4 |
2 | Arginine | Amino acid | 0.687 | C6H14N4O2 |
3 | Histidine | Amino acid | 0.689 | C6H9N3O2 |
4 | γ-Aminobutyric acid | Amino acid | 0.734 | C4H9NO2 |
5 | Valine | Amino acid | 0.752 | C5H11NO2 |
6 | Tyrosine | Amino acid | 0.845 | C9H11NO3 |
7 | N3, N4-Dimethylarginine | Amino acid | 0.854 | C8H18N4O2 |
8 | Leucine | Amino acid | 0.896 | C6H13NO2 |
9 | Phenylalanine | Amino acid | 1.202 | C9H11NO2 |
10 | 1-Aminocyclohexanecarboxylic acid | Amino acid | 1.203 | C7H13NO2 |
11 | 4-Methoxybenzaldehyde | Aromatic | 3.504 | C8H8O2 |
12 | Scopoletin | Aromatic | 4.351 | C10H8O4 |
13 | 2-Methylcyclohexan-1,3-dione | Cyclic ketone | 1.502 | C7H10O2 |
14 | Jasmone | Cyclic ketone | 7.041 | C11H16O |
15 | 3-Hexenoic acid | Fatty acyl | 1.873 | C6H10O2 |
16 | 9S,13R-12-Oxophytodienoic acid | Fatty acyl | 7.369 | C18H28O3 |
17 | Decanamide | Fatty acyl | 8.086 | C10H21NO |
18 | Myricetin 3-O-galactoside | Flavonoid | 4.717 | C21H20O13 |
19 | Trifolin | Flavonoid | 5.412 | C21H20O11 |
20 | Isorhamnetin | Flavonoid | 5.54 | C16H12O7 |
21 | Quercetin | Flavonoid | 5.032 | C15H10O7 |
22 | Kaempferol | Flavonoid | 5.303 | C15H10O6 |
23 | Pyroglutamic acid | Heterocyclic | 0.827 | C5H7NO3 |
24 | β,β-Dimethyl-γ-methylene-γ-butyrolactone | Heterocyclic | 1.612 | C7H10O2 |
25 | Pipecolic acid | Heterocyclic | 1.049 | C6H11NO2 |
26 | 6-Methyl-2-pyridinemethanol | Heterocyclic | 1.084 | C7H9NO |
27 | Indole-3-acrylic acid | Heterocyclic aromatic | 1.935 | C11H9NO2 |
28 | 2,4-Quinolinediol | Heterocyclic aromatic | 3.241 | C9H7NO2 |
29 | Valylproline | Peptide | 1.464 | C10H18N2O3 |
30 | Prolylleucine | Peptide | 1.531 | C11H20N2O3 |
31 | p-Coumaric acid | Phenolic | 3.205 | C9H8O3 |
32 | Ferulic acid | Phenolic | 3.705 | C10H10O4 |
33 | Phloretin | Phenolic | 5.399 | C15H14O5 |
34 | Guanine | Purine | 0.787 | C5H5N5O |
35 | Adenine | Purine | 0.804 | C5H5N5 |
36 | 1-Methyladenine | Purine | 0.83 | C6H7N5 |
37 | 2′-Deoxyadenosine | Purine | 1.192 | C10H13N5O3 |
38 | 2′-O-Methyladenosine | Purine | 1.608 | C11H15N5O4 |
39 | Pulegone | Terpenoid | 3.61 | C10H16O |
40 | Caryophyllene oxide | Terpenoid | 6.354 | C15H24O |
41 | Nicotinic acid | Vitamin B3 | 0.836 | C6H5NO2 |
42 | Nicotinamide | Vitamin B3 | 0.894 | C6H6N2O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venmathi Maran, B.A.; Josmeh, D.; Tan, J.K.; Yong, Y.S.; Shah, M.D. Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling. Molecules 2021, 26, 1908. https://doi.org/10.3390/molecules26071908
Venmathi Maran BA, Josmeh D, Tan JK, Yong YS, Shah MD. Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling. Molecules. 2021; 26(7):1908. https://doi.org/10.3390/molecules26071908
Chicago/Turabian StyleVenmathi Maran, Balu Alagar, Dawglas Josmeh, Jen Kit Tan, Yoong Soon Yong, and Muhammad Dawood Shah. 2021. "Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling" Molecules 26, no. 7: 1908. https://doi.org/10.3390/molecules26071908
APA StyleVenmathi Maran, B. A., Josmeh, D., Tan, J. K., Yong, Y. S., & Shah, M. D. (2021). Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling. Molecules, 26(7), 1908. https://doi.org/10.3390/molecules26071908