Highly Oxygenated Triterpenoids and Diterpenoids from Fructus Rubi (Rubus chingii Hu) and Their NF-kappa B Inhibitory Effects
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures and Agents
3.2. Plant Material
3.3. Extraction and Isolation
3.4. NF-κB Inhibitory Assay
3.5. Anti-Fungal Susceptibility Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lu, L.-D.; Boufford, D.E. Flora of China; Wu, Z.-Y., Raven, P.H., Eds.; Science Press & Missouri Botanical Garden Press: Beijing, China; St. Louis, MO, USA, 2003; Volume 9, pp. 195–285. [Google Scholar]
- Sheng, J.-Y.; Wang, S.-Q.; Liu, K.-H.; Zhu, B.; Zhang, Q.-Y.; Qin, L.-P.; Wu, J.-J. Rubus chingii Hu: An overview of botany, traditional uses, phytochemistry, and pharmacology. Chin. J. Nat. Med. 2020, 18, 401–416. [Google Scholar] [CrossRef]
- Ohtani, K.; Yang, C.-R.; Miyajima, C.; Zhou, J.; Tanaka, O. Labdane-type diterpene glycosides from fruits of Rubus foliolosus. Chem. Pharm. Bull. 1991, 39, 2443–2445. [Google Scholar] [CrossRef] [Green Version]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China part I; Chinese Medical Science and Technology Press: Beijing, China, 2020; pp. 399–400. [Google Scholar]
- Yu, G.-H.; Luo, Z.-Q.; Wang, W.-B.; Li, Y.-H.; Zhou, Y.-T.; Shi, Y.-Y. Rubus chingii Hu: A review of the phytochemistry and pharmacology. Front. Pharmacol. 2019, 10, 799. [Google Scholar] [CrossRef]
- Zeng, H.-J.; Liu, Z.; Wang, Y.-P.; Yang, D.; Yang, R.; Qu, L.-B. Studies on the anti-aging activity of a glycoprotein isolated from Fupenzi (Rubus chingii Hu.) and its regulation on klotho gene expression in mice kidney. Int. J. Biol. Macromol. 2018, 119, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-T.; Yang, L.; Jiang, J.-G. Bioactive comparison of main components from unripe fruits of Rubus chingii Hu and identification of the effective component. Food Funct. 2015, 6, 2205–2214. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.-J.; Xu, L.-L.; Jia, Y.-N.; Xue, Z.-H.; Zhang, M.; Phisalaphong, M.; Chen, H.-X. Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and anti-oxidant activities. LWT-Food Sci. Technol. 2020, 134, 110007. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.-Q.; Guo, Q.-W.; Gao, X.-D.; Ma, Q.-Q.; Xue, Z.-H.; Ferri, N.; Zhang, M.; Chen, H.-X. Identification of ellagitannins in the unripe fruit of Rubus chingii Hu and evaluation of its potential anti-diabetic activity. J. Agric. Food Chem. 2019, 67, 7025–7039. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.-R.; Chen, S.-X.; Wang, W.-X.; Zou, Y.-K.; Nuryyeva, S.; Houk, K.N.; Xiong, J.; Hu, J.-F. Amentotaxins C-V, structurally diverse diterpenoids from the leaves and twigs of the vulnerable conifer Amentotaxus argotaenia and their cytotoxic effects. J. Nat. Prod. 2020, 83, 2129–2144. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zang, Y.; Xiao, D.-A.; Li, N.; Li, J.-M.; Jin, Z.-X.; Chen, D.-L.; Xiong, J.; Li, J.; Hu, J.-F. Stewartiacids A-N, C-23 carboxylated triterpenoids from Chinese stewartia and their inhibitory effects against ATP-citrate lyase and NF-κB. RSC Adv. 2020, 10, 3343–3356. [Google Scholar] [CrossRef]
- Huang, T.; Ying, S.-H.; Li, J.-Y.; Chen, H.-W.; Zhang, Y.; Wang, W.-X.; Li, J.; Xiong, J.; Hu, J.-F. Phytochemical and biological studies on rare and endangered plants endemic to China. Part XV. Structurally diverse diterpenoids and sesquiterpenoids from the vulnerable conifer Pseudotsuga sinensis. Phytochemistry 2020, 169, 112184. [Google Scholar] [CrossRef]
- Hattori, M.; Kuo, K.-P.; Shu, Y.-Z.; Tezuka, Y.; Kikuchi, T.; Namba, T. A triterpene from the fruits of Rubus chingii. Phytochemistry 1988, 27, 3975–3976. [Google Scholar] [CrossRef]
- Wiemann, J.; Deckelmann, A.M.; Csuk, R. A remarkably simple and convergent partial synthesis of pomolic acid. Tetrahedron Lett. 2016, 57, 3952–3953. [Google Scholar] [CrossRef]
- Sashida, Y.; Ogawa, K.; Mori, N.; Yamanouchi, T. Triterpenoids from the fruit galls of Actinidia polygama. Phytochemistry 1992, 31, 2801–2804. [Google Scholar] [CrossRef]
- Xu, H.-X.; Zeng, F.-Q.; Wan, M.; Sim, K.-Y. Anti-HIV triterpene acids from Geum japonicum. J. Nat. Prod. 1996, 59, 643–645. [Google Scholar] [CrossRef]
- Zhou, X.-H.; Kasai, R.; Ohtani, K.; Tanaka, O.; Nie, R.-L.; Yang, C.-R.; Zhou, J.; Yamasaki, K. Oleanane and ursane glucosides from Rubus species. Phytochemistry 1992, 31, 3642–3644. [Google Scholar]
- Kashiwada, Y.; Wang, H.-K.; Nagao, T.; Kitanaka, S.; Yasuda, I.; Fujioka, T.; Yamagishi, T.; Cosentino, L.M.; Kozuka, M.; Okabe, H.; et al. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod. 1998, 61, 1090–1095. [Google Scholar] [CrossRef]
- D’Abrosca, B.; Fiorentino, A.; Monaco, P.; Pacifico, S. Radical-scavenging activities of new hydroxylated ursane triterpenes from cv. Annurca apples. Chem. Biodivers. 2005, 2, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Shen, Y.; Li, L.-Z.; Jiao, W.-H.; Gao, P.-Y.; Song, S.-J.; Chen, W.-S.; Lin, H.-W. Anti-inflammatory triterpenes from the leaves of Rosa laevigata. J. Nat. Prod. 2011, 74, 732–738. [Google Scholar] [CrossRef]
- Ullah, F.; Hussain, H.; Hussain, J.; Bukhari, I.A.; Khan, M.T.H.; Choudhary, M.I.; Gilani, A.H.; Ahmad, V.U. Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum. Phytother. Res. 2007, 21, 1076–1081. [Google Scholar] [CrossRef]
- Joo, H.; Lee, H.-J.; Shin, E.-A.; Kim, H.; Seo, K.-H.; Baek, N.-I.; Kim, B.; Kim, S.-H. c-Jun N-terminal kinase-dependent endoplasmic reticulum stress pathway is critically involved in arjunic acid induced apoptosis in non-small cell lung cancer cells. Phytother. Res. 2016, 30, 596–603. [Google Scholar] [CrossRef]
- Yeo, H.; Park, S.-Y.; Kim, J. A-ring contracted triterpenoid from Rosa multiflora. Phytochemistry 1998, 48, 1399–1401. [Google Scholar] [CrossRef]
- Wu, P.-L.; Lin, F.-W.; Wu, T.-S.; Kuoh, C.-S.; Lee, K.-H.; Lee, S.-J. Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis. Chem. Pharm. Bull. 2004, 52, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasamori, H.; Reddy, K.S.; Kirkup, M.P.; Shabanowitz, J.; Lynn, D.G.; Hecht, S.M.; Woode, K.A.; Bryan, R.F.; Campbell, J.; Lynn, W.S.; et al. New cytotoxic principles from Datisca glomerata. J. Chem. Soc. Perkin Trans. 1983, 7, 1333–1347. [Google Scholar] [CrossRef]
- Monte, F.J.Q.; Papa, S.M.A.; Kintzinger, J.P.; Braz-Filho, R. Total assignment of 1H and 13C NMR spectra of two isomeric cucurbitane triterpenoids. Magn. Reson. Chem. 2000, 38, 809–812. [Google Scholar] [CrossRef]
- Seger, C.; Sturm, S.; Mair, M.-E.; Ellmerer, E.P.; Stuppner, H. Spectral assignments and reference data. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae). Magn. Reson. Chem. 2005, 43, 489–491. [Google Scholar] [CrossRef]
- Lavie, D.; Shvo, Y.; Gottlieb, O.R.; Glotter, E. The constituents of Ecballium elaterium L. XVI. Stereochemical problems in the cucurbitacins. J. Org. Chem. 1963, 28, 1790–1795. [Google Scholar] [CrossRef]
- Zhang, M.; Ou, Y.-W.; Chen, X.-X.; Cao, Y.; Kuang, Y.; Gong, Z.-Q.; Peng, S.; Chen, Y.-J. Two ent-kaurane diterpenoids from Rubus corchorifolius L.f. Helv. Chim. Acta 2011, 94, 1820–1824. [Google Scholar] [CrossRef]
- Tinto, W.F.; Blyden, G.; Reynolds, W.F.; McLean, S. Diterpene and anthraquinone constituents of Glycydendron amazonicum. J. Nat. Prod. 1991, 54, 1127–1130. [Google Scholar] [CrossRef]
- Arciniegas, A.; Pérez-Castorena, A.-L.; Nieto-Camacho, A.; Villaseñor, J.L.; de Vivar, A.R. Terpenoids from Melampodium perfoliatum. J. Nat. Prod. 2016, 79, 2780–2787. [Google Scholar] [CrossRef]
- Ding, G.; Fei, J.-D.; Wang, J.; Xie, Y.; Li, R.-T.; Gong, N.-B.; Lv, Y.; Yu, C.-Y.; Zou, Z.-M. Fimbriatols A-J, highly oxidized ent-kaurane diterpenoids from traditional Chinese plant Flickingeria fimbriata (B1.) Hawkes. Sci. Rep. 2016, 6, 30560. [Google Scholar] [CrossRef] [Green Version]
- Dellagereca, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Polyoxygenated oleanane triterpenes from Hydrocotyle ranunculoides. Phytochemistry 1994, 35, 201–204. [Google Scholar]
- Chacón-Morales, P.A.; Santiago-Dugarte, C.; Amaro-Luis, J.M. Unexpected reduction-allylic of hemisynthetic diosphenols from longipinene derivatives. Phytochem. Lett. 2020, 39, 105–110. [Google Scholar] [CrossRef]
- Munkombwe, N.M.; Maswabi, T.; Hughes, N.A. Diosphenols from Spirostachys africana. Phytochemistry 1997, 45, 1217–1220. [Google Scholar] [CrossRef]
- Ren, Y.-L.; VanSchoiack, A.; Chai, H.-B.; Goetz, M.; Kinghorn, A.D. Cytotoxic barrigenol-like triterpenoids from an extract of Cyrilla racemiflora housed in a repository. J. Nat. Prod. 2015, 78, 2440–2446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.-J.; Pan, Q.-M.; Zhang, Y.-L.; Liao, H.-B.; Yang, Y.-Q.; Hou, Y.; Liang, D. Coumarinolignoids and taraxerane triterpenoids from Sapium discolor and their inhibitory potential on microglial nitric oxide production. J. Nat. Prod. 2018, 81, 2251–2258. [Google Scholar] [CrossRef]
- Gustafson, K.R.; Munro, M.H.G.; Blunt, J.W.; Cardellina II, J.H.; McMahon, J.B.; Gulakowski, R.J.; Cragg, G.M.; Cox, P.A.; Brinen, L.S.; Clardy, J.; et al. HIV inhibitory natural products. 3. diterpenes from Homalanthus acuminatus and Chrysobalanus icaco. Tetrahedron 1991, 47, 4547–4554. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.-Z.; Onad, M.; Konda, Y.; Iguchi, M.; Harigaya, Y. ent-Kauranoid diterpenes from Artemisia sacrorum. J. Nat. Prod. 1990, 53, 657–661. [Google Scholar] [CrossRef]
- Chen, Q.; Mao, Q.Q.; Bao, M.; Mou, Y.X.; Fang, C.Y.; Zhao, M.; Jiang, W.; Yu, X.; Wang, C.J.; Dai, L.H.; et al. Spongian diterpenes including one with a rearranged skeleton from the marine sponge Spongai officinalis. J. Nat. Prod. 2019, 82, 1714–1718. [Google Scholar] [CrossRef]
- Moffitt, W.; Woodward, R.B.; Moscowitz, A.; Klyne, W.; Djerassi, C. Structure and the optical rotatory dispersion of saturated ketones. J. Am. Chem. Soc. 1961, 83, 4013–4018. [Google Scholar] [CrossRef]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell 2017, 168, 37–57. [Google Scholar] [CrossRef] [Green Version]
- Sunwoo, J.B.; Chen, Z.; Dong, G.; Yeh, N.; Bancroft, C.C.; Sausville, E.; Adams, J.; Elliott, P.; van Waes, C. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell suivival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. 2001, 7, 1419–1428. [Google Scholar]
- He, J.-M.; Chen, S.-C.; Li, R.-P.; Yuan, L.-X.; Bao, J.-M.; Guo, M.-L. Suppresion of nuclear factor-kappa B and mitogen-activated protein kinase signalling pathways by goshonoside-F5 extracted from Rubi Fructus. Int. Immunopharmacol. 2015, 24, 182–190. [Google Scholar] [CrossRef]
- Han, B.; Chen, J.; Yu, Y.-Q.; Cao, Y.-B.; Jiang, Y.-Y. Anti-fungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans. Microbiol. Immunol. 2016, 60, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Pu, D.B.; Li, X.N.; Lin, J.; Zhang, R.H.; Luo, T.; Wang, Y.; Gao, J.B.; Zeb, M.A.; Zhang, X.J.; Li, X.L.; et al. Triterpenoids from Ganoderma gibbosum: A class of sensitizers of FLC-resistant Candida albicans to fluconazole. J. Nat. Prod. 2019, 82, 2067–2077. [Google Scholar] [CrossRef]
- Peng, Y.-M.; Zheng, J.-B.; Zhou, Y.-B.; Li, J. Characterization of a novel curcumin analog P1 as potent inhibitor of the NF-κB signaling pathway with distinct mechanisms. Acta Pharmacol. Sin. 2013, 34, 939–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. M27-A3 Reference Method for Broth Dilution Anti-fungal Susceptibility Testing of Yeats. In Approved Standard, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- He, Y.-Q.; Jin, S.-S.; Ma, Z.-Y.; Zhao, J.; Yang, Q.; Zhang, Q.; Zhao, Y.-J.; Yao, B.-H. The anti-oxidant compounds isolated from the fruits of Chinese wild raspberry Rubus chingii Hu. Nat. Prod. Res. 2020, 34, 872–875. [Google Scholar] [CrossRef]
- Deng, Y.H.; Tianasoa-Ramamonjy, M.; Snyder, J.K. Remangilone D, a new bisnoroleanane triterpene, and a new flavone from Physena madagascariensis. Z. Naturforsch. B 2001, 56, 1079–1083. [Google Scholar] [CrossRef]
- Deng, Y.H.; Jiang, T.-Y.; Sheng, S.J.; Tianasoa-Ramamonjy, M.; Snyder, J.K. Remangilones A-C, new cytotoxic triterpenes from Physena madagascariensis. J. Nat. Prod. 1999, 62, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.Q.; Takaishi, Y.; Momota, H.; Ohmoto, Y.; Taki, T.; Tori, M.; Takaoka, S.; Jia, Y.F.; Li, D. Immunosuppressive terpenoids from extracts of Tripterygium wilfordii. Tetrahedron 2001, 57, 8413–8424. [Google Scholar] [CrossRef]
- Tian, Y.-N.; Li, B.-L.; Hu, J.-J.; Xie, J.-D.; Xiao, W.-J.; Nie, L.-H.; Wu, J.-W. Rosanortriterpenes A-B, two new nortriterpenes from the fruits of Rosa laevigata var. leiocapus. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.X.; Lin, X.H.; He, W.N.; Song, W.; Ye, M.; Yang, W.Z.; Guo, D.A. Two new oxidation products obtained from the biotransformation of asiatic acis by the fungus Fusarium avenaceum AS 3.4594. J. Asian Nat. Prod. Res. 2012, 14, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Nhiem, N.X.; Yen, P.H.; Nguyen, T.T.N.; Quang, T.H.; Kiem, P.V.; Minh, C.V.; Tai, B.H.; Cuong, N.X.; Song, S.B.; Kim, Y.H. Inhibition of nuclear transcription factor-kappa B and activation of peroxisome proliferator-activated receptors in HepG2 cells by cucurbatane-type triterpene glycosides from Momordica charantia. J. Med. Food 2012, 15, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | 1 | 2 | 3 | 21 | No. | 1 | 2 | 3 | 21 |
---|---|---|---|---|---|---|---|---|---|
1 | 129.5 | 51.2 | 130.0 | 53.0 | 16 | 26.6 | 26.6 | 29.4 | 81.2 |
2 | 145.8 | 71.2 | 146.0 | 210.2 | 17 | 48.7 | 49.0 | 46.7 | 66.3 |
3 | 200.5 | 215.4 | 202.4 | 82.8 | 18 | 55.2 | 55.1 | 45.3 | 29.6 |
4 | 51.6 | 56.4 | 45.5 | 45.6 | 19 | 73.5 | 73.6 | 82.4 | 16.6 |
5 | 55.8 | 60.2 | 55.2 | 54.0 | 20 | 43.1 | 43.1 | 36.1 | 18.4 |
6 | 19.9 | 20.9 | 20.2 | 20.4 | 21 | 27.3 | 27.3 | 28.6 | |
7 | 34.6 | 34.4 | 33.7 | 41.5 | 22 | 38.9 | 38.9 | 34.0 | |
8 | 41.7 | 41.2 | 41.3 | 45.1 | 23 | 65.9 | 20.1 | 22.2 | |
9 | 44.6 | 48.5 | 44.7 | 55.6 | 24 | 22.0 | 66.0 | 28.0 | |
10 | 39.4 | 39.0 | 39.7 | 45.2 | 25 | 20.5 | 17.6 | 20.0 | |
11 | 24.9 | 24.8 | 24.3 | 18.8 | 26 | 17.8 | 17.3 | 18.0 | |
12 | 129.0 | 128.9 | 124.5 | 26.1 | 27 | 24.8 | 25.0 | 25.1 | |
13 | 140.4 | 140.2 | 145.0 | 44.6 | 28 | 182.2 | 182.2 | 182.3 | |
14 | 42.9 | 42.7 | 43.0 | 36.8 | 29 | 27.0 | 27.1 | 28.1 | |
15 | 29.5 | 29.6 | 29.5 | 52.9 | 30 | 16.6 | 16.6 | 25.1 |
No. | 1 | 2 | 3 |
---|---|---|---|
1α | 6.29 s | 1.17 dd (12.7, 12.5) | 6.27 s |
1β | 2.31 dd (12.5, 6.6) | ||
2 | 4.62 dd (12.7, 6.6) | ||
5 | 1.70 dd (overlapped) | 1.22 dd (overlapped) | 1.61 m |
6a | 1.66 m | 1.63 m | 1.60 m |
6b | 1.62 m | 1.58 m | 1.58 m |
7a | 1.76 m | 1.55 m | 1.76 m |
7b | 1.63 m | 1.35 m | 1.58 m |
9 | 2.00 dd (11.3, 6.3) | 1.78 m | 2.05 dd (10.7, 6.6) |
11a | 2.27 ddd (17.3, 11.3, 3.5) | 2.06 m | 2.33 m |
11b | 2.14 ddd (17.3, 6.3, 3.7) | 1.35 m | 2.19 m |
12 | 5.37 dd (3.7, 3.5) | 5.30 dd (3.8, 3.3) | 5.37 dd (3.8, 3.1) |
15α | 1.03 ddd (14.1, 4.2, 2.5) | 0.99 m | 1.02 m |
15β | 1.83 ddd (14.1, 13.2, 4.4) | 1.81 m | 1.63 m |
16α | 2.60 ddd (13.3, 13.2, 4.4) | 2.57 ddd (13.4, 13.4, 4.0) | 1.75 m |
16β | 1.55 ddd (13.3, 4.2, 2.5) | 1.55 m | 1.60 m |
18 | 2.50 s | 2.51 s | 3.07 d (3.9) |
19 | 3.26 d (3.9) | ||
20 | 1.37 m | 1.34 m | |
21a | 1.25 m | 1.22 m | 2.29 m |
21b | 1.20 m | 1.16 m | 1.62 m |
22a | 1.75 m | 1.73 m | 1.61 m |
22b | 1.62 m | 1.62 m | 1.37 m |
23a | 3.71 d (12.0) | 1.21 s | 1.11 s |
23b | 3.69 d (12.0) | ||
24a | 1.29 s | 4.11 d (11.4) | 1.18 s |
24b | 3.50 d (11.4) | ||
25 | 1.30 s | 1.31 s | 1.22 s |
26 | 0.90 s | 0.84 s | 0.84 s |
27 | 1.36 s | 1.32 s | 1.30 s |
29 | 1.23 s | 1.19 s | 0.97 s |
30 | 0.95 d (7.1) | 0.93 d (6.3) | 0.94 s |
No. | 21 | No. | 21 | ||
---|---|---|---|---|---|
δH (J in Hz) b | δH (J in Hz) c | δH (J in Hz) b | δH (J in Hz) c | ||
1 | 1.37 d (12.4) | 2.06 d (12.2) | 12 | 1.62 m; 1.65 m | 1.87 m; 1.83 m |
2.41 d (12.4) | 2.67 d (12.2) | 13 | 1.88 m | 2.46 m | |
3 | 3.62 d (3.8) | 4.16 s | 14 | 1.57 m; 0.69 m | 1.70 m; 0.85 m |
5 | 0.91 br d (11.6) | 1.43 br d (11.5) | 15 | 1.39 m; 1.25 m | 1.63 m; 1.35 m |
6 | 1.32 m; 1.05 m | 1.69 m; 1.37 m | 17 | 3.44 d (10.3) | 4.12 d (11.0) |
7 | 1.22 m; 1.21 m | 1.56 m; 1.53 m | 3.37 d (10.3) | 4.05 d (11.0) | |
9 | 0.99 br d (6.7) | 1.22 br d (8.6) | 18 | 1.10 s | 0.96 s |
11 | 1.62 m; 1.18 m | 1.84 m; 1.51 m | 19 | 0.67 s | 1.28 s |
OH-3 | 3.72 d (3.8) | 20 | 0.69 s | 0.87 s |
Compound | NF-κB (IC50) a |
---|---|
15 | 0.08 ± 0.03 μM |
16 | 0.61 ± 0.12 μM |
17 | 1.60 ± 0.32 μM |
PS-341 b | 0.44 ± 0.08 μM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Wang, X.-J.; Guo, N.; Wu, X.-Y.; Xiong, J.; Zang, Y.; Jiang, C.-X.; Han, B.; Li, J.; Hu, J.-F. Highly Oxygenated Triterpenoids and Diterpenoids from Fructus Rubi (Rubus chingii Hu) and Their NF-kappa B Inhibitory Effects. Molecules 2021, 26, 1911. https://doi.org/10.3390/molecules26071911
Wan J, Wang X-J, Guo N, Wu X-Y, Xiong J, Zang Y, Jiang C-X, Han B, Li J, Hu J-F. Highly Oxygenated Triterpenoids and Diterpenoids from Fructus Rubi (Rubus chingii Hu) and Their NF-kappa B Inhibitory Effects. Molecules. 2021; 26(7):1911. https://doi.org/10.3390/molecules26071911
Chicago/Turabian StyleWan, Jiang, Xiao-Juan Wang, Nan Guo, Xi-Ying Wu, Juan Xiong, Yi Zang, Chun-Xiao Jiang, Bing Han, Jia Li, and Jin-Feng Hu. 2021. "Highly Oxygenated Triterpenoids and Diterpenoids from Fructus Rubi (Rubus chingii Hu) and Their NF-kappa B Inhibitory Effects" Molecules 26, no. 7: 1911. https://doi.org/10.3390/molecules26071911
APA StyleWan, J., Wang, X. -J., Guo, N., Wu, X. -Y., Xiong, J., Zang, Y., Jiang, C. -X., Han, B., Li, J., & Hu, J. -F. (2021). Highly Oxygenated Triterpenoids and Diterpenoids from Fructus Rubi (Rubus chingii Hu) and Their NF-kappa B Inhibitory Effects. Molecules, 26(7), 1911. https://doi.org/10.3390/molecules26071911