Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Extraction Time on the Amino-Acid Contents of Silk-Protein Extracts (SPE)
2.2. The Effect of Extraction Time on Protein Content
2.3. The Effect of Extraction Time on Amino-Acid Contributions to Taste
2.4. The Effect of Extraction Time on Total Phenolic Content and Total Flavonoid Content
2.5. The Effects on DPPH Radical-Scavenging Activity, ABTS+• and FRAP Assay
2.6. The Effect of Inhibitory Activities against the Enzymes α-Amylase and α-Glucosidase
2.7. The Effect of Anti-AGEs Formation Activity
2.8. Correlations
3. Materials and Methods
3.1. Silk Cocoons
3.2. Chemicals and Reagents
3.3. Extraction with Distilled Water
3.4. Protein Determination
3.5. Amino-Acid Content by LCMS/MS
3.6. Total Phenolic Content (TPC)
3.7. Total Flavonoid Content (TFC)
3.8. DPPH Radical Scavenging Activity
3.9. Antioxidant Activity by ABTS Assay
3.10. Ferric Reducing/Antioxidant Power Assay (FRAP)
3.11. Inhibitory Activity against the Enzyme α-Amylase
3.12. Inhibitory Activity against the Enzyme α-Glucosidase
3.13. Evaluation of Anti-AGEs Formation Activity
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kato, N.; Sato, S.; Yamanaka, A.; Yamada, H.; Fuwa, N.; Nomura, M. Silk Protein, Sericin, Inhibits Lipid Peroxidation and Tyrosinase Activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Koh, L.-D.; Cheng, Y.; Teng, C.-P.; Khin, Y.-W.; Loh, X.-J.; Tee, S.-Y.; Low, M.; Ye, E.; Yu, H.-D.; Zhang, Y.-W.; et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86–110. [Google Scholar] [CrossRef]
- Perteghella, S.; Crivelli, B.; Catenacci, L.; Sorrenti, M.; Bruni, G.; Necchi, V.; Vigani, B.; Sorlini, M.; Torre, M.L.; Chlapanidas, T. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. Int. J. Pharm. 2017, 520, 86–97. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Liu, H. Corn silk extract inhibit the formation of Nε-carboxymethyllysine by scavenging glyoxal/methyl glyoxal in a casein glucose-fatty acid model system. Food Chem. 2020, 309, 125708. [Google Scholar] [CrossRef] [PubMed]
- Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Nakajima, K.-I.; Nagayasu, K.-I.; Takabayashi, C. Flavonoid 5-glucosides from the cocoon shell of the silkworm, Bombyx mori. Phytochemistry 2002, 59, 275–278. [Google Scholar] [CrossRef]
- Napavichayanun, S.; Lutz, O.; Fischnaller, M.; Jakschitz, T.; Bonn, G.; Aramwit, P. Identification and quantification and antioxidant activity of flavonoids in different strains of silk cocoon, Bombyx mori. Arch. Biochem. Biophys. 2017, 631, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Takechi, T.; Maekawa, Z.-I.; Sugimura, Y. Use of Sericin as an Ingredient of Salad Dressing. Food Sci. Technol. Res. 2011, 17, 493–497. [Google Scholar] [CrossRef]
- Rangi, A.; Jajpura, L. The Biopolymer Sericin: Extraction and Applications. J. Text. Sci. Eng. 2015, 5, 1–5. [Google Scholar]
- Zhaorigetu, S.; Sasaki, M.; Watanabe, H.; Kato, N. Supplemental Silk Protein, Sericin, Suppresses Colon Tumorigenesis in 1,2-Dimethylhydrazine-Treated Mice by Reducing Oxidative Stress and Cell Proliferation. Biosci. Biotechnol. Biochem. 2001, 65, 2181–2186. [Google Scholar] [CrossRef] [Green Version]
- Sen, K.; Babu, K.M. Studies on Indian silk. II. Structure–property correlations. J. Appl. Polym. Sci. 2004, 92, 1098–1115. [Google Scholar] [CrossRef]
- Cao, T.-T.; Zhang, Y.-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef]
- Zayas, J.F. Functionality of Proteins in Food; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; pp. 6–75. [Google Scholar]
- Dyson, H.J.; Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. [Google Scholar] [CrossRef]
- Fuke, S.; Shimizu, T. Sensory and preference aspects of umami. Trends Food Sci. Technol. 1993, 4, 246–251. [Google Scholar] [CrossRef]
- Tabunoki, H.; Higurashi, S.; Ninagi, O.; Fujii, H.; BannoMasashi, Y.; Kitajima, K.; Miura, N.; AtsumiKozo, S.; Hideaki, T.; Sato, M. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett. 2004, 567, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Butkhup, L.; Jeenphakdee, M.; Jorjong, S.; Samappito, S.; Samappito, W.; Butimal, J. Phenolic composition and antioxidant activity of Thai and Eri silk sericins. Food Sci. Biotechnol. 2012, 21, 389–398. [Google Scholar] [CrossRef]
- Kurioka, A.; Yamazaki, M. Purification and Identification of Flavonoids from the Yellow Green Cocoon Shell (Sasamayu) of the Silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 2002, 66, 1396–1399. [Google Scholar] [CrossRef] [Green Version]
- Andallu, B.; Shankaran, M.; Ullagaddi, R.; Iyer, S. In Vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. J. Herb. Med. 2014, 4, 10–17. [Google Scholar] [CrossRef]
- Butsat, S.; Siriamornpun, S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 2010, 119, 606–613. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prommuak, C.; De-Eknamkul, W.; Shotipruk, A. Extraction of flavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts. Sep. Purif. Technol. 2008, 62, 444–448. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 2014, 3, 136–174. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardestani, A.; Yazdanparast, R. Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation. Int. J. Biol. Macromol. 2007, 41, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-Y.; Gao, H.-Y.; Sun, L.; Huang, J.; Xu, X.-M.; Wu, L.-J. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J. Nat. Med. 2010, 65, 37–42. [Google Scholar] [CrossRef]
- Benzie, I.F.; Stezo, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Kubola, J.; Siriamornpun, S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 2008, 110, 881–890. [Google Scholar] [CrossRef]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kaewseejan, N.; Sutthikhum, V.; Siriamornpun, S. Potential of Gynura procumbens leaves as source of flavonoid-enriched fractions with enhanced antioxidant capacity. J. Funct. Foods 2015, 12, 120–128. [Google Scholar] [CrossRef]
- Van Quan, N.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [Green Version]
- Sangwong, G.; Sumida, M.; Sutthikhum, V. Antioxidant activity of chemically and enzymatically modified sericin extracted from cocoons of Bombyx mori. Biocatal. Agric. Biotechnol. 2016, 5, 155–161. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. The Diversity of Biologically Active Compounds in the Rhizomes of Recently Discovered Zingiberaceae Plants Native to North Eastern Thailand. Pharmacogn. J. 2019, 11, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Xiao, Z.; Storms, R.; Tsang, A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 2006, 351, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-J.; Zhao, J.-L. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed. Pharmacother. 2019, 110, 510–517. [Google Scholar] [CrossRef]
- Vinson, J.A.; Howard, T.B. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 1996, 7, 659–663. [Google Scholar] [CrossRef]
Parameters | Extraction Time (h) | ||||||
---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | |||
Amino acid content (µg/g DW) | Essential amino acids | Phenylalanine | 0.63 ± 0.36 e | 1.01 ± 0.57 d | 1.63 ± 0.64 c | 2.44 ± 0.45 a | 2.16 ± 0.23 b |
Valine | 0.86 ± 0.48 e | 2.19 ± 0.11 d | 2.69 ± 0.51 c | 3.22 ± 0.92 a | 2.95 ± 0.55 bc | ||
Tryptophan | 1.07 ± 0.57 e | 1.81 ± 0.29 d | 2.01 ± 0.09 c | 2.79 ± 0.19 a | 2.37 ± 0.13 b | ||
Threonine | 1.86 ± 0.62 e | 10.38 ± 0.19 d | 26.92 ± 0.19 c | 29.30 ± 0.46 a | 28.61 ± 0.23 b | ||
Isoleucine | 0.96 ± 0.46 e | 1.95 ± 0.84 d | 2.89 ± 0.94 c | 3.91 ± 1.21 a | 3.24 ± 0.56 b | ||
Methionine | 0.78 ± 0.54 e | 1.48 ± 0.26 d | 1.98 ± 0.26 c | 2.79 ± 0.65 a | 2.21 ± 0.54 b | ||
Histidine | 0.04 ± 0.61 d | 7.35 ± 0.17 c | 8.92 ± 0.19 b | 10.29 ± 0.14 a | 8.93 ± 0.26 b | ||
Arginine | 0.97 ± 0.52 d | 1.57 ± 0.30 c | 1.71 ± 0.33 b | 2.64 ± 0.24 a | 1.69 ± 0.13 b | ||
Lysine | 1.53 ± 0.41 d | 2.44 ± 0.41 c | 4.64 ± 0.16 b | 5.32 ± 0.31 a | 4.88 ± 0.52 b | ||
Leucine | 1.02 ± 0.26 d | 1.98 ± 0.65 c | 2.31 ± 0.65 b | 2.59 ± 0.95 a | 2.20 ± 0.15 b | ||
Total essential amino acids | 9.72 ± 0.49 e | 32.16 ± 0.66 d | 56.50 ± 0.53 c | 65.29 ± 0.86 a | 59.84 ± 0.48 b | ||
Non-essential amino acids | Glycine | 2.76 ± 0.38 e | 11.73 ± 0.38 d | 21.32 ± 0.72 c | 34.11 ± 0.48 a | 30.23 ± 0.52 b | |
Glutamic acid | 1.93 ± 0.52 e | 8.67 ± 0.85 d | 10.37 ± 0.53 c | 20.67 ± 0.51 a | 18.18 ± 0.87 b | ||
Aspartic acid | 1.57 ± 0.48 e | 16.44 ± 0.51 d | 22.17 ± 0.93 c | 25.64 ± 0.23 a | 24.25 ± 0.10 b | ||
Glutamine | 0.74 ± 0.63 d | 1.87 ± 0.19 c | 3.07 ± 0.19 b | 3.79 ± 0.46 a | 3.01 ± 0.23 b | ||
Serine | 2.01 ± 0.74 d | 10.04 ± 0.71 c | 15.19 ± 0.69 c | 21.60 ± 0.65 a | 18.03 ± 1.75 b | ||
Tyrosine | 0.67 ± 0.40 e | 1.07 ± 0.37 d | 3.27 ± 0.57 c | 6.48 ± 0.28 a | 5.35 ± 0.06 b | ||
Alanine | 1.06 ± 0.39 d | 1.94 ± 0.57 c | 2.48 ± 0.27 b | 3.25 ± 0.49 a | 2.30 ± 0.18 b | ||
Asparagine | 1.96 ± 0.44 f | 2.81 ± 1.68 e | 3.22 ± 0.98 c | 5.06 ± 1.48 a | 4.29 ± 0.37 b | ||
Total amino acids | 23.79 ± 0.61 e | 91.30 ± 0.64 d | 143.38 ± 0.68 c | 193.53 ± 0.53 a | 172.97 ± 0.60 b | ||
Protein content (mg/g) | 0.80 ± 0.56 e | 1.15 ± 0.42 d | 1.24 ± 0.55 c | 1.46 ± 0.72 b | 2.18 ± 0.23 a |
Parameters | Extraction Time (h) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | ||||
Amino acid content (µg/g DW) | Essential amino acids | Phenylalanine | 0.12 ± 0.25 e | 0.36 ± 0.67 d | 0.52 ± 0.44 c | 1.49 ± 0.50 a | 0.75 ± 0.32 b | |
Valine | 0.73 ± 0.36 e | 2.02 ± 0.11 d | 2.43 ± 0.51 c | 2.61 ± 0.55 bc | ||||
Tryptophan | 0.07 ± 0.31 e | 0.41 ± 0.37 d | 0.50 ± 0.35 c | 0.95 ± 0.20 a | 0.63 ± 0.47 b | |||
Threonine | 1.31 ± 0.69 d | 2.08 ± 0.39 c | 3.52 ± 0.19 b | 4.53 ± 0.51 a | 3.37 ± 0.49 b | |||
Isoleucine | 0.11 ± 0.57 e | 0.46 ± 0.77 d | 0.53 ± 0.38 c | 0.87 ± 0.76 a | 0.62 ± 0.42 b | |||
Methionine | 0.23 ± 0.60 e | 0.57 ± 0.30 d | 0.68 ± 0.37 c | 0.86 ± 0.42 a | 0.72 ± 0.49 b | |||
Histidine | 0.11 ± 0.32 e | 0.21 ± 0.36 d | 0.54 ± 0.79 c | 0.76 ± 0.36 a | 0.57 ± 0.67 b | |||
Arginine | 0.18 ± 0.45 d | 0.28 ± 0.62 c | 0.39 ± 0.37 b | 0.54 ± 0.46 a | 0.43 ± 0.25 b | |||
Lysine | 1.64 ± 0.62 e | 2.31 ± 0.35 d | 3.08 ± 0.32 c | 4.71 ± 0.64 a | 2.58 ± 0.48 b | |||
Leucine | 1.02 ± 0.61 e | 1.56 ± 0.44 d | 2.07 ± 0.92 c | 3.65 ± 0.38 a | 2.54 ± 0.47 b | |||
Total essential amino acids | 5.52 ± 0.51 e | 10.26 ± 0.63 d | 14.26 ± 0.86 c | 21.23 ± 0.72 a | 14.82 ± 0.53 b | |||
Non-essential amino acids | Glycine | 1.44 ± 0.65 e | 11.03 ± 0.38 d | 19.36 ± 0.43 c | 28.66 ± 0.51 a | 27.32 ± 0.38 b | ||
Glutamic acid | 2.51 ± 0.41 e | 8.53 ± 0.69 d | 12.09 ± 0.53 c | 14.03 ± 0.42 a | 13.98 ± 0.37 b | |||
Aspartic acid | 0.54 ± 0.32 e | 10.21 ± 0.86 d | 10.42 ± 0.73 c | 12.87 ± 0.47 a | 12.23 ± 0.32 b | |||
Glutamine | 0.79 ± 0.37 e | 1.08 ± 0.56 d | 1.32 ± 0.29 c | 1.57 ± 0.39 a | 1.09 ± 0.75 b | |||
Serine | 1.24 ± 0.55 e | 11.76 ± 0.32 d | 13.87 ± 0.43 c | 17.62 ± 0.73 a | 15.42 ± 1.49 b | |||
Tyrosine | 1.97 ± 0.53 e | 2.37 ± 0.43 d | 4.08 ± 0.72 c | 5.64 ± 0.43 a | 2.79 ± 0.38 b | |||
Alanine | 0.94 ± 0.47 e | 1.09 ± 0.39 cd | 1.27 ± 0.44 c | 1.46 ± 0.37 a | 1.17 ± 0.45 b | |||
Asparagine | 1.07 ± 0.56 f | 1.50 ± 0.79 e | 1.84 ± 0.37 d | 2.10 ± 0.96 b | 1.97 ± 0.54 c | |||
Total amino acids | 16.10 ± 0.58 e | 57.98 ± 0.69 d | 78.73 ± 0.62 c | 105.96 ± 0.68 a | 90.86 ± 0.62 b | |||
Protein content (mg/g) | 0.81 ± 0.36 e | 1.02 ± 0.22 d | 1.16 ± 0.31 c | 1.21 ± 0.30 b | 1.87 ± 0.43 a |
Strain | Extraction Time (h) | Total Phenolic Content (mg GAE/g DW) | Total Flavonoid Content (mg RE/g DW) | Dpph Radical-Scavenging Activity (% inhibition) | ABTS+• (% Inhibition) | FRAP Assay (mg FeSO4/g DW) |
---|---|---|---|---|---|---|
Nangsew | 0 | 10.51 ± 1.48 e | 5.94 ± 1.63 e | 10.51 ± 1.48 d | 2.81 ± 0.08 e | 1.24 ± 0.13 d |
2 | 43.03 ± 1.05 f | 35.74 ± 1.25 d | 43.03 ± 1.05 e | 7.86 ± 0.15 d | 3.16 ± 0.24 c | |
4 | 58.23 ± 1.05 c | 43.03 ± 1.05 c | 58.23 ± 1.05 c | 15.99 ± 0.26 c | 4.59 ± 0.32 b | |
6 | 78.89 ± 1.82 a | 47.29 ± 1.11 a | 78.89 ± 1.82 a | 23.94 ± 0.24 a | 5.01 ± 0.22 a | |
8 | 76.28 ± 1.05 b | 45.06 ± 1.10 b | 76.28 ± 1.05 b | 22.87 ± 0.31 b | 4.53 ± 0.13 b | |
Eri | 0 | 10.22 ± 1.11 e | 1.57 ± 1.01 e | 1.03 ± 0.14 e | 1.58 ± 0.11 d | 1.02 ± 0.17 e |
2 | 18.12 ± 1.20 d | 8.98 ± 1.17 d | 2.28 ± 0.18 d | 3.25 ± 0.20 c | 2.11 ± 0.24 d | |
4 | 22.54 ± 1.03 c | 10.43 ± 1.32 c | 5.21 ±0.2c c | 4.20 ± 0.26 b | 2.68 ± 0.16 c | |
6 | 32.06 ± 1.14 a | 12.67 ± 1.13 a | 12.36 ± 0.19 a | 4.88 ± 0.17 a | 3.45 ± 0.22 a | |
8 | 30.08 ± 1.07 b | 11.85 ± 1.21 b | 11.33 ± 0.13 b | 4.19 ± 0.28 b | 3.37 ± 0.19 b |
Strain | Extraction Time (h) | Inhibitory Activity against Enzyme α-Amylase (% Inhibition) | Inhibitory Activity against Enzyme α-Glucosidase (% Inhibition) | Anti-AGEs Formation Activity (% Inhibition) |
---|---|---|---|---|
Nangsew | 0 | 2.81 ± 0.08 e | 1.24 ±0.13 d | 2.17 ± 0.12 e |
2 | 7.86 ± 0.15 d | 3.16 ± 0.04 c | 4.68 ± 0.11 d | |
4 | 15.99 ± 0.26 c | 4.59 ± 0.02 b | 14.66 ± 0.09 c | |
6 | 24.94 ± 0.24 a | 5.51 ± 0.02 a | 21.90 ± 0.07 a | |
8 | 22.87 ± 0.31 b | 4.53 ± 0.03 b | 18.88 ± 0.04 b | |
Eri | 0 | 1.06 ± 0.15 e | 0.69 ± 0.51 e | 1.58 ± 0.83 e |
2 | 3.60 ± 0.20 d | 1.15 ± 0.37 d | 3.46 ± 0.97 d | |
4 | 5.65 ± 0.19 c | 2.29 ± 0.26 c | 5.55 ± 0.48 c | |
6 | 7.91 ± 0.30 a | 3.63 ± 0.35 a | 9.30 ± 0.73 a | |
8 | 6.03 ± 0.27 b | 3.11 ± 0.41 b | 8.56 ± 0.69 b |
TPC | TFC | DPPH | ABTS+• | FRAP | Anti-α-Amylase | Anti-α-Glucosidase | Anti-Glycation | |
---|---|---|---|---|---|---|---|---|
TPC | 1 | 0.950 ** | 0.903 ** | 0.972 ** | 0.961 ** | 0.951 ** | 0.843 ** | 0.927 ** |
TFC | 1 | 0.839 ** | 0.865 ** | 0.948 ** | 0.848 ** | 0.777 ** | 0.828 ** | |
DPPH | 1 | 0.940 ** | 0.926 ** | 0.873 ** | 0.875 ** | 0.980 ** | ||
ABTS+• | 1 | 0.927 ** | 0.965 ** | 0.868 ** | 0.975 ** | |||
FRAP | 1 | 0.922 ** | 0.906 ** | 0.907 ** | ||||
Anti-α-amylase | 1 | 0.905 ** | 0.913 ** | |||||
Anti-α-glucosidase | 1 | 0.865 ** | ||||||
Anti-glycation | 1 |
TPC | TFC | DPPH | ABTS+• | FRAP | Anti-α-Amylase | Anti-α-Glucosidase | Anti-Glycation | |
---|---|---|---|---|---|---|---|---|
TPC | 1 | 0.923 ** | 0.965 ** | 0.925 ** | 0.982 ** | 0.994 ** | 0.977 ** | 0.974 ** |
TFC | 1 | 0.795 ** | 0.993 ** | 0.971 ** | 0.880 ** | 0.962 ** | 0.855 ** | |
DPPH | 1 | 0.804 ** | 0.909 ** | 0.986 ** | 0.909 ** | 0.980 ** | ||
ABTS+• | 1 | 0.973 ** | 0.888 ** | 0.973 ** | 0.874 ** | |||
FRAP | 1 | 0.963 ** | 0.990 ** | 0.946 ** | ||||
Anti-α-amylase | 1 | 0.961 ** | 0.986 ** | |||||
Anti-α-glucosidase | 1 | 0.959 ** | ||||||
Anti-glycation | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bungthong, C.; Siriamornpun, S. Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction. Molecules 2021, 26, 2033. https://doi.org/10.3390/molecules26072033
Bungthong C, Siriamornpun S. Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction. Molecules. 2021; 26(7):2033. https://doi.org/10.3390/molecules26072033
Chicago/Turabian StyleBungthong, Chuleeporn, and Sirithon Siriamornpun. 2021. "Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction" Molecules 26, no. 7: 2033. https://doi.org/10.3390/molecules26072033
APA StyleBungthong, C., & Siriamornpun, S. (2021). Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction. Molecules, 26(7), 2033. https://doi.org/10.3390/molecules26072033