Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study
Abstract
:1. Introduction
2. Results
2.1. Peptide Modification Affects Antioxidant Activities
2.2. Peptide Modification Affects Bioactivity and Stability during in Silico Digestion
2.3. Bioactivity Prediction for TBP and Its Analogs
2.4. Applicability of Predicted Multifunctional BAPs
3. Discussion
4. Materials and Methods
4.1. Peptide Analog Selection
4.2. Materials
4.3. Antioxidant Assays
4.4. In Silico Digestion
4.5. Multifunctionality, Stability, Toxicity and Bitterness Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Möller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods Basel Switz. 2020, 9, 846. [Google Scholar] [CrossRef]
- Daliri, E.; Oh, D.; Lee, B. Bioactive Peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr. 2021, 28, 1–14. [Google Scholar] [CrossRef]
- La Manna, S.; Di Natale, C.; Florio, D.; Marasco, D. Peptides as Therapeutic Agents for Inflammatory-Related Diseases. Int. J. Mol. Sci. 2018, 19, 2714. [Google Scholar] [CrossRef] [Green Version]
- Hajfathalian, M.; Ghelichi, S.; García-Moreno, P.J.; Moltke Sørensen, A.-D.; Jacobsen, C. Peptides: Production, bioactivity, functionality, and applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 3097–3129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. Biomed Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef] [Green Version]
- Vijaykrishnaraj, M.; Prabhasankar, P. Marine protein hydrolysates: Their present and future perspectives in food chemistry—A review. RSC Adv. 2015, 5, 34864–34877. [Google Scholar] [CrossRef]
- Lee, J.-K.; Patel, S.K.S.; Sung, B.H.; Kalia, V.C. Biomolecules from municipal and food industry wastes: An overview. Bioresour. Technol. 2020, 298, 122346. [Google Scholar] [CrossRef]
- Sasidharan, A.; Venugopal, V. Proteins and Co-products from Seafood Processing Discards: Their Recovery, Functional Properties and Applications. Waste Biomass Valorization 2020, 11, 5647–5663. [Google Scholar] [CrossRef]
- Välimaa, A.-L.; Mäkinen, S.; Mattila, P.; Marnila, P.; Pihlanto, A.; Mäki, M.; Hiidenhovi, J. Fish and fish side streams are valuable sources of high-value components. Food Qual. Saf. 2019, 3, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. N. Y. 2018, 20, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Le Gouic, A.V.; Harnedy, P.A.; FitzGerald, R.J. Bioactive Peptides From Fish Protein By-Products. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–35. ISBN 978-3-319-54528-8. [Google Scholar]
- Lassoued, I.; Mora, L.; Nasri, R.; Jridi, M.; Toldrá, F.; Aristoy, M.-C.; Barkia, A.; Nasri, M. Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. J. Funct. Foods 2015, 13, 225–238. [Google Scholar] [CrossRef]
- Chi, C.-F.; Wang, B.; Wang, Y.-M.; Zhang, B.; Deng, S.-G. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J. Funct. Foods 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; Benjakul, S. Antioxidative gelatin hydrolysate from unicorn leatherjacket skin as affected by prior autolysis. Int. Aquat. Res. 2015, 7, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Ketnawa, S.; Martínez-Alvarez, O.; Benjakul, S.; Rawdkuen, S. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chem. 2016, 192, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampath Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 2012, 42, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Himaya, S.W.A.; Ngo, D.-H.; Ryu, B.; Kim, S.-K. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem. 2012, 132, 1872–1882. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Ryu, B.; Kim, S.-K. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chem. 2014, 143, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Sae-Leaw, T.; O’Callaghan, Y.C.; Benjakul, S.; O’Brien, N.M. Antioxidant activities and selected characteristics of gelatin hydrolysates from seabass (Lates calcarifer) skin as affected by production processes. J. Food Sci. Technol. 2016, 53, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Wu, H.; Chi, Y.; Deng, R.; He, Q. Structural characterization, erythrocyte protection, and antifatigue effect of antioxidant collagen peptides from tilapia (Oreochromis nilotica L.) skin. Food Funct. 2020, 11, 10149–10160. [Google Scholar] [CrossRef]
- Cai, L.; Wu, X.; Zhang, Y.; Li, X.; Ma, S.; Li, J. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. J. Funct. Foods 2015, 16, 234–242. [Google Scholar] [CrossRef]
- Ahn, C.-B.; Kim, J.-G.; Je, J.-Y. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 2014, 147, 78–83. [Google Scholar] [CrossRef]
- Fan, J.; He, J.; Zhuang, Y.; Sun, L. Purification and identification of antioxidant peptides from enzymatic hydrolysates of Tilapia (Oreochromis niloticus) frame protein. Molecules 2012, 17, 12836–12850. [Google Scholar] [CrossRef]
- Saisavoey, T.; Sangtanoo, P.; Reamtong, O.; Karnchanatat, A. Free radical scavenging and anti-inflammatory potential of a protein hydrolysate derived from salmon bones on RAW 264.7 macrophage cells. J. Sci. Food Agric. 2019, 99, 5112–5121. [Google Scholar] [CrossRef]
- Slizyte, R.; Rommi, K.; Mozuraityte, R.; Eck, P.; Five, K.; Rustad, T. Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnol. Rep. 2016, 11, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, R.A.; Deeptha, R.; Jaiganesh, R.; Sampathkumar, N.S.; Naqash, S.Y. Radical Scavenging Activity of Seela (Sphyraena barracuda) and Ribbon Fish (Lepturacanthus savala) Backbone Protein Hydrolysates. Int. J. Pept. Res. Ther. 2011, 17, 209. [Google Scholar] [CrossRef]
- Sheriff, S.A.; Sundaram, B.; Ramamoorthy, B.; Ponnusamy, P. Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes. Saudi J. Biol. Sci. 2014, 21, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Je, J.-Y.; Qian, Z.-J.; Byun, H.-G.; Kim, S.-K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007, 42, 840–846. [Google Scholar] [CrossRef]
- Chuesiang, P.; Sanguandeekul, R. Protein hydrolysate from tilapia frame: Antioxidant and angiotensin I converting enzyme inhibitor properties. Int. J. Food Sci. Technol. 2015, 50, 1436–1444. [Google Scholar] [CrossRef]
- Abuine, R.; Rathnayake, A.U.; Byun, H.-G. Biological activity of peptides purified from fish skin hydrolysates. Fish. Aquat. Sci. 2019, 22, 10. [Google Scholar] [CrossRef] [Green Version]
- Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem. 2017, 218, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tang, R.; Liu, T.; Dai, W.; Liu, Q.; Gong, G.; Song, S.; Hu, M.; Huang, L.; Wang, Z. Physicochemical properties, antioxidant activity and immunological effects in vitro of polysaccharides from Schisandra sphenanthera and Schisandra chinensis. Int. J. Biol. Macromol. 2019, 131, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Karnjanapratum, S.; O’Callaghan, Y.C.; Benjakul, S.; O’Brien, N. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin. J. Sci. Food Agric. 2016, 96, 3220–3226. [Google Scholar] [CrossRef]
- Ahn, C.-B.; Cho, Y.-S.; Je, J.-Y. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem. 2015, 168, 151–156. [Google Scholar] [CrossRef]
- Halldorsdottir, S.M.; Sveinsdottir, H.; Freysdottir, J.; Kristinsson, H.G. Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability. Food Chem. 2014, 142, 201–209. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Sukketsiri, W.; Aluko, R.E.; Sae-leaw, T.; Benjakul, S. Effect of hydrolyzed collagen from defatted Asian sea bass (Lates calcarifer) skin on fibroblast proliferation, migration and antioxidant activities. J. Food Sci. Technol. 2021, 58, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. Biomed Res. Int. 2014, 608979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yin, M.; Huang, L.; Wang, J.; Gong, L.; Liu, J.; Sun, B. Evaluation of the Cellular and Animal Models for the Study of Antioxidant Activity: A Review. J. Food Sci. 2017, 82, 278–288. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, P.; Zhang, L.; Wang, H.; Ho, C.-T.; Li, S.; Shahidi, F.; Zhao, H. Detection of cellular redox reactions and antioxidant activity assays. J. Funct. Foods 2017, 37, 467–479. [Google Scholar] [CrossRef]
- Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends Anal. Chem. 2018, 105, 7–17. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [Green Version]
- Lammi, C.; Aiello, G.; Boschin, G.; Arnoldi, A. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. J. Funct. Foods 2019, 55, 135–145. [Google Scholar] [CrossRef]
- Liu, R.; Zheng, W.; Li, J.; Wang, L.; Wu, H.; Wang, X.; Shi, L. Rapid identification of bioactive peptides with antioxidant activity from the enzymatic hydrolysate of Mactra veneriformis by UHPLC-Q-TOF mass spectrometry. Food Chem. 2015, 167, 484–489. [Google Scholar] [CrossRef]
- Lan, V.T.T.; Ito, K.; Ohno, M.; Motoyama, T.; Ito, S.; Kawarasaki, Y. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chem. 2015, 175, 66–73. [Google Scholar] [CrossRef]
- Li, C.-H.; Matsui, T.; Matsumoto, K.; Yamasaki, R.; Kawasaki, T. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. J. Pept. Sci. 2002, 8, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Gorris, H.H.; Bade, S.; Röckendorf, N.; Albers, E.; Schmidt, M.A.; Fránek, M.; Frey, A. Rapid Profiling of Peptide Stability in Proteolytic Environments. Anal. Chem. 2009, 81, 1580–1586. [Google Scholar] [CrossRef]
- Duckworth, W.C.; Bennett, R.G.; Hamel, F.G. Insulin Degradation: Progress and Potential. Endocr. Rev. 1998, 19, 608–624. [Google Scholar] [PubMed] [Green Version]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Consortium, O.S.D.D.; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charoenkwan, P.; Yana, J.; Schaduangrat, N.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics 2020, 112, 2813–2822. [Google Scholar] [CrossRef]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Marine Drugs Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-H.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Reclamation of Fishery Processing Waste: A Mini-Review. Molecules 2019, 24, 2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestri, E.; Pavlicevic, M.; Montorsi, M.; Marmiroli, N. Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Compr. Rev. Food Sci. Food Saf. 2019, 18, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T.; Ikemoto, N.; Terashima, M. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018, 245, 750–755. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Liu, K.; Yang, J.; Liu, S.; Wang, S.; Wang, S. Advances on Food-Derived Peptidic Antioxidants—A Review. Antioxidants 2020, 9, 799. [Google Scholar] [CrossRef]
- Acquah, C.; Di Stefano, E.; Udenigwe, C.C. Role of hydrophobicity in food peptide functionality and bioactivity. J. Food Bioact. 2018, 4, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Hong, H.; Wu, J.; Yan, X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends Food Sci. Technol. 2019, 86, 399–411. [Google Scholar] [CrossRef]
- Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity. PLoS ONE 2012, 7, e45012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlov, Y.L.; Singla, D.; Rahman Ansari, H.; Shamima Khatun, M.; Mehedi Hasan, M.; Kurata, H. PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Front. Genet. 2019, 1, 129. Available online: www.frontiersin.org (accessed on 17 February 2021).
- Charoenkwan, P.; Kanthawong, S.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iDPPIV-SCM: A Sequence-Based Predictor for Identifying and Analyzing Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Peptides Using a Scoring Card Method. J. Proteome Res. 2020, 19, 4125–4136. [Google Scholar] [CrossRef]
- Ettayapuram Ramaprasad, A.S.; Singh, S.; Gajendra, P.S.R.; Venkatesan, S. AntiAngioPred: A Server for Prediction of Anti-Angiogenic Peptides. PLoS ONE 2015, 10, e0136990. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, K.; Singh Chauhan, J.; Nagpal, G.; Kumar, R.; Sharma, M.; Raghava, G.P.S. An in silico platform for predicting, screening and designing of antihypertensive peptides. Sci. Rep. 2015, 5, 12512. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Singla, D.; Rashid, M.; Raghava, G.P.S. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinform. 2014, 15, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, D.; Singh, S.; Mehta, A.; Agrawal, P.; Raghava, G.P.S. In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS ONE 2018, 13, e0196829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, M.; Tiwari, B.K. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities. Int. J. Mol. Sci. 2015, 16, 22485–22508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girgih, A.T.; He, R.; Malomo, S.; Offengenden, M.; Wu, J.; Aluko, R.E. Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J. Funct. Foods 2014, 6, 384–394. [Google Scholar] [CrossRef]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsopmo, A.; Diehl-Jones, B.W.; Aluko, R.E.; Kitts, D.D.; Elisia, I.; Friel, J.K. Tryptophan released from mother’s milk has antioxidant properties. Pediatr. Res. 2009, 66, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Sonklin, C.; Laohakunjit, N.; Kerdchoechuen, O. Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ 2018, 6, e5337. [Google Scholar] [CrossRef]
- Maralani, M.N.; Movahedian, A.; Javanmard, S.H. Antioxidant and cytoprotective effects of L-Serine on human endothelial cells. Res. Pharm. Sci. 2012, 7, 209–215. [Google Scholar]
- Netto, L.E.S.; de Oliveira, M.A.; Monteiro, G.; Demasi, A.P.D.; Cussiol, J.R.R.; Discola, K.F.; Demasi, M.; Silva, G.M.; Alves, S.V.; Faria, V.G.; et al. Reactive cysteine in proteins: Protein folding, antioxidant defense, redox signaling and more. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2007, 146, 180–193. [Google Scholar] [CrossRef]
- Imai, K.; Mitaku, S. Mechanisms of secondary structure breakers in soluble proteins. Biophys. Nagoya-shi Jpn. 2005, 1, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Arts, M.J.T.J.; Sebastiaan Dallinga, J.; Voss, H.-P.; Haenen, G.R.M.M.; Bast, A. A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem. 2004, 88, 567–570. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Chaudhary, K.; Sharma, M.; Nagpal, G.; Chauhan, J.S.; Singh, S.; Gautam, A.; Raghava, G.P.S. AHTPDB: A comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res. 2015, 43, D956–D962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peptide | % Degree of Hydrolysis | AA Residue | Fragments | Antioxidant | ACE-1 Inhibition | DPP-IV Inhibition | |||
---|---|---|---|---|---|---|---|---|---|
AE | No. of BAPs | AE | No. of BAPs | AE | No. of BAPs | ||||
TBP | 38.46 | 14 | 6 | 0.0714 | 1 | 0.1429 | 2 | 0.1429 | 2 |
2 | 28.57 | 15 | 5 | 0.0667 | 1 | 0.0667 | 1 | 0.0667 | 1 |
3 | 28.57 | 15 | 5 | __ | 0.0667 | 1 | 0.0667 | 1 | |
4 | 35.71 | 15 | 6 | 0.0667 | 1 | 0.1333 | 2 | 0.1333 | 2 |
5 | 28.57 | 15 | 5 | 0.0667 | 1 | 0.0667 | 1 | 0.0667 | 1 |
6 | 38.46 | 15 | 6 | 0.0714 | 1 | 0.1429 | 2 | 0.1429 | 2 |
7 | 35.71 | 15 | 6 | 0.0667 | 1 | 0.1333 | 2 | 0.1333 | 2 |
8 | 14.29 | 15 | 3 | __ | __ | __ | __ | __ | |
9 | 76.92 | 14 | 11 | __ | __ | __ | __ | 0.0714 | 1 |
10 | 28.57 | 8 | 2 | __ | __ | __ | __ | __ | |
11 | 30.77 | 14 | 5 | __ | __ | 0.0714 | 1 | 0.0714 | 1 |
12 | 28.57 | 15 | 5 | __ | __ | 0.0667 | 1 | 0.0667 | 1 |
13 | 23.08 | 15 | 4 | __ | __ | 0.0714 | 1 | 0.0714 | 1 |
14 | 46.15 | 14 | 7 | 0.0714 | 1 | 0.0714 | 1 | 0.0714 | 1 |
15 | 38.46 | 15 | 6 | 0.0714 | 1 | 0.1429 | 2 | 0.1429 | 2 |
16 | 46.15 | 14 | 7 | 0.0714 | 1 | 0.0714 | 1 | 0.0714 | 1 |
17 | 30.76 | 14 | 5 | 0.0714 | 1 | 0.0714 | 1 | 0.0714 | 1 |
18 | 38.46 | 14 | 6 | 0.0714 | 1 | 0.1429 | 2 | 0.1429 | 2 |
19 | 30.76 | 14 | 5 | 0.0714 | 1 | 0.0714 | 1 | 0.0714 | 1 |
20 | 30.76 | 14 | 5 | 0.0714 | 1 | 0.0714 | 1 | 0.0714 | 1 |
21 | 35.71 | 16 | 6 | 0.0667 | 1 | 0.1333 | 2 | 0.1333 | 2 |
22 | 29.41 | 18 | 6 | 0.0556 | 1 | 0.1111 | 2 | 0.1111 | 2 |
23 | 26.32 | 20 | 6 | 0.0500 | 1 | 0.1000 | 2 | 0.1000 | 2 |
24 | 22.22 | 19 | 5 | 0.0526 | 1 | 0.1053 | 2 | 0.1053 | 2 |
25 | 46.66 | 17 | 8 | 0.0625 | 1 | 0.1250 | 2 | 0.1875 | 3 |
26 | 42.85 | 16 | 7 | 0.0667 | 1 | 0.1333 | 2 | 0.2000 | 3 |
27 | 33.33 | 16 | 6 | 0.0625 | 1 | 0.1250 | 2 | 0.1250 | 2 |
28 | 28.57 | 16 | 5 | 0.0667 | 1 | 0.0667 | 1 | 0.0667 | 1 |
29 | 53.84 | 14 | 8 | 0.1429 | 2 | 0.1429 | 2 | 0.2143 | 3 |
30 | 38.46 | 14 | 5 | 0.0714 | 1 | 0.1429 | 2 | 0.1429 | 2 |
31 | 31.25 | 17 | 6 | 0.0588 | 1 | 0.0588 | 1 | 0.0588 | 1 |
32 | 30.76 | 15 | 5 | 0.0714 | 1 | 0.0714 | 1 | 0.0714 | 1 |
33 | 30.76 | 15 | 5 | 0.0714 | 1 | 0.0714 | 1 | 0.0714 | 1 |
Peptides | Peptide Ranker a | Anti-Inflammatory b | Antidiabetic c | Anti-Angiogenic d | Antihypertensive e | ||||
---|---|---|---|---|---|---|---|---|---|
Score | Score | Descriptor | Score | Descriptor | Score | Descriptor | Score | Descriptor | |
TBP | 0.250852 | 0.403 | Medium Confidence AIP | 257.92 | non-DPPIV | −0.96 | Non-anti-angiogenic | −1.49 | Non-AHT |
2 | 0.282936 | 0.424 | Medium Confidence AIP | 275.54 | non-DPPIV | −0.64 | Non-anti-angiogenic | −1.66 | Non-AHT |
3 | 0.146123 | 0.366 | Low Confidence AIP | 243.08 | non-DPPIV | −1.18 | Non-anti-angiogenic | −1.89 | Non-AHT |
4 | 0.318239 | 0.435 | Medium Confidence AIP | 254.08 | non-DPPIV | −0.62 | Non-anti-angiogenic | −1.87 | Non-AHT |
5 | 0.301595 | 0.412 | Medium Confidence AIP | 252.77 | non-DPPIV | −0.52 | Non-anti-angiogenic | −1.6 | Non-AHT |
6 | 0.341132 | 0.415 | Medium Confidence AIP | 250.92 | non-DPPIV | −0.98 | Non-anti-angiogenic | −2.18 | Non-AHT |
7 | 0.29307 | 0.43 | Medium Confidence AIP | 271.15 | non-DPPIV | −1.15 | Non-anti-angiogenic | −1.96 | Non-AHT |
8 | 0.581973 | 0.611 | High Confidence AIP | 250.92 | non-DPPIV | −0.57 | Non-anti-angiogenic | −0.1 | Non-AHT |
9 | 0.0930615 | 0.607 | High Confidence AIP | 156.15 | non-DPPIV | 1.8 | Anti-angiogenic | 0.04 | AHT |
10 | 0.38964 | 0.334 | negative AIP | 276.50 | non-DPPIV | −1.25 | Non-anti-angiogenic | −1.43 | Non-AHT |
11 | 0.21006 | 0.402 | Medium Confidence AIP | 250.15 | non-DPPIV | −1.02 | Non-anti-angiogenic | −1.42 | Non-AHT |
12 | 0.146824 | 0.359 | Low Confidence AIP | 238.46 | non-DPPIV | −1.68 | Non-anti-angiogenic | −1.62 | Non-AHT |
13 | 0.120407 | 0.362 | Low Confidence AIP | 230.69 | non-DPPIV | −1.52 | Non-anti-angiogenic | −1.34 | Non-AHT |
14 | 0.437794 | 0.421 | Medium Confidence AIP | 268.00 | non-DPPIV | −0.29 | Non-anti-angiogenic | −1.15 | Non-AHT |
15 | 0.539862 | 0.477 | High Confidence AIP | 286.00 | non-DPPIV | −0.83 | Non-anti-angiogenic | −1.41 | Non-AHT |
16 | 0.751235 | 0.493 | High Confidence AIP | 296.08 | DPPIV | −0.11 | Non-anti-angiogenic | −0.95 | Non-AHT |
17 | 0.322171 | 0.403 | Medium Confidence AIP | 273.38 | non-DPPIV | −0.96 | Non-anti-angiogenic | −1.57 | Non-AHT |
18 | 0.225945 | 0.416 | Medium Confidence AIP | 248.77 | non-DPPIV | −1.44 | Non-anti-angiogenic | −2.16 | Non-AHT |
19 | 0.279449 | 0.419 | Medium Confidence AIP | 264.23 | non-DPPIV | −1.29 | Non-anti-angiogenic | −1.96 | Non-AHT |
20 | 0.280885 | 0.404 | Medium Confidence AIP | 255.08 | non-DPPIV | −1.43 | Non-anti-angiogenic | −1.89 | Non-AHT |
21 | 0.279711 | 0.231 | negative AIP | 251.57 | non-DPPIV | −1.23 | Non-anti-angiogenic | −1.62 | Non-AHT |
22 | 0.384437 | 0.512 | High Confidence AIP | 241.25 | non-DPPIV | −1.37 | Non-anti-angiogenic | −1.46 | Non-AHT |
23 | 0.492159 | 0.476 | High Confidence AIP | 233.22 | non-DPPIV | −1.15 | Non-anti-angiogenic | −1.02 | Non-AHT |
24 | 0.477331 | 0.441 | Medium Confidence AIP | 233.22 | non-DPPIV | −1.11 | Non-anti-angiogenic | −0.22 | Non-AHT |
25 | 0.255879 | 0.524 | High Confidence AIP | 229.13 | non-DPPIV | −0.64 | Non-anti-angiogenic | −1.82 | Non-AHT |
26 | 0.131233 | 0.311 | negative AIP | 232.21 | non-DPPIV | −0.29 | Non-anti-angiogenic | −1.43 | Non-AHT |
27 | 0.194823 | 0.244 | negative AIP | 253.86 | non-DPPIV | −1.21 | Non-anti-angiogenic | −1.8 | Non-AHT |
28 | 0.227495 | 0.245 | negative AIP | 268.21 | non-DPPIV | −1.09 | Non-anti-angiogenic | −1.62 | Non-AHT |
29 | 0.509724 | 0.541 | High Confidence AIP | 299.67 | DPPIV | 1.01 | Anti-angiogenic | −0.31 | Non-AHT |
30 | 0.310984 | 0.423 | Medium Confidence AIP | 274.67 | non-DPPIV | −1.35 | Non-anti-angiogenic | −1.6 | Non-AHT |
31 | 0.598761 | 0.57 | High Confidence AIP | 231.27 | non-DPPIV | 0.64 | Anti-angiogenic | −1.19 | Non-AHT |
32 | 0.345985 | 0.388 | Low Confidence AIP | 294.85 | DPPIV | −0.68 | Non-anti-angiogenic | −0.68 | Non-AHT |
33 | 0.444989 | 0.408 | Medium Confidence AIP | 307.15 | DPPIV | −0.6 | Non-anti-angiogenic | −0.09 | Non-AHT |
TBP Analogs | Activities | Half-Life (Sec) Intestine a | Half-Life (Sec) Blood b | Toxicity c Score Descriptor | Bitterness d Score Descriptor | ||
---|---|---|---|---|---|---|---|
RKKRKRWTKNQQRS | AI, AG, AH | 2.021 | 967.61 | −1.41 | Non-Toxin | 279.23 | non-Bitter |
VKAGFAWTANQQLW | AO, AI | 2.847 | 1099.41 | −1.32 | Non-Toxin | 398.38 | Bitter |
WKAGFAWTANQQLW | AI, DI | 2.873 | 1004.21 | −1.23 | Non-Toxin | 396.46 | Bitter |
VKAWFWTWNQQLS | AI, DI, AG | 2.834 | 1176.91 | −1.42 | Non-Toxin | 396.92 | Bitter |
CVKAGFAWTANQQLSC | AI, AG | 2.809 | 931.61 | −1.09 | Non-Toxin | 397.53 | Bitter |
Peptide Sequence | Modifications from TBP | Mol. Weight (g/mol) | Isoelectric Point | |
---|---|---|---|---|
TBP | VKAGFAWTANQQLS | 1520.71 | 10.1 | |
2 | VIAGFAWTANQQLS | K(2) → I(2) | 1505.69 | 6 |
3 | VKAGFAITANQQLS | W(7) → I(7) | 1447.66 | 10.1 |
4 | VKAGFAWIANQQLS | T(8) → I(8) | 1532.76 | 10.1 |
5 | VKAGFAWTAIQQLS | N(10) → I(10) | 1519.76 | 10.1 |
6 | VKAGFAWTANIQLS | Q(11) → I(11) | 1505.74 | 10.1 |
7 | VKAGFAWTANQQLI | S(14) → I(14) | 1546.79 | 10.1 |
8 | VIAGFAIIAIIILI | Full Hydrophobic Peptide | 1439.89 | 6 |
9 | RKKRKRWTKNQQRS | Full Hydrophilic Peptide | 1900.22 | 13 |
10 | VAGFAAL | Full Hydrophobic Peptide | 647.77 | 6 |
11 | VKAGGAWTANQQLS | F(5) → G(5) | 1430.58 | 10.1 |
12 | VKAGFAGTANQQLS | W(7) → G(7) | 1391.55 | 10.1 |
13 | VKAGGAGTANQQLS | F(5), W(7) → G(5,7) | 1301.42 | 10.1 |
14 | WKAGFAWTANQQLS | V(1) → W(1) | 1607.79 | 10.1 |
15 | VKAGFAWTANQQLW | S(14) → W(14) | 1619.84 | 10.1 |
16 | WKAGFAWTANQQLW | V(1), S(14) → W(1,14) | 1706.92 | 10.1 |
17 | VDAGFAWTANQQLS | K(2) → D(2) | 1507.62 | 3.1 |
18 | VKAGFAWTANDQLS | Q(11) → D(11) | 1507.67 | 6.8 |
19 | VDAGFAWTANDQLS | K(2), Q(11) → D(2,11) | 1494.58 | 2.9 |
20 | VDAGFAWTANDDLS | K(2), Q(11), Q(12) → D(2,11,12) | 1481.54 | 2.8 |
21 | VKAGFAWGTANQQLS | G(8) inserted | 1577.76 | 10.1 |
22 | VKAGFAWGGGTANQQLS | G(8,9,10) inserted | 1691.86 | 10.1 |
23 | VKAGGGFAWGGGTANQQLS | G(5,6,10,11,12) inserted | 1805.97 | 10.1 |
24 | VKAGGGFAWGGGTANGGQQ | G(5,6,10,11,12,16,17) inserted, LS removed | 1719.83 | 10.1 |
25 | VKAGFAWTRKANQQLS | R(9), K(10) inserted | 1805.07 | 11.7 |
26 | VKAGRAWTRANQQLS | R(5), R(10) inserted | 1685.91 | 12.5 |
27 | VKAGFAWTDANQQLS | D(9) inserted | 1635.8 | 6.8 |
28 | VDAGFAWTDANQQLS | D(9) inserted, K(2) → D(2) | 1622.71 | 2.9 |
29 | VKAWFWTWNQQLS | G(4), A(8) → W(4,8) | 1693.93 | 10.1 |
30 | VKAGFAWTANQQL | S(14) removed | 1433.63 | 10.1 |
31 | CVKAGFAWTANQQLSC | C(1,16) inserted | 1727 | 8.3 |
32 | VPAGFAWTANQQLS | K(2) → P(2) | 1489.65 | 6 |
33 | VPAGFAWTANQPLS | K(2), Q(12) → P(2,12) | 1458.64 | 6 |
Platform/Server | Predictive Purpose | Link |
---|---|---|
Peptide Ranker | Bioactivity Potential Scoring | http://distilldeep.ucd.ie/PeptideRanker (accessed on 14 January 2021) |
PreAIP | Anti-inflammatory Peptide Screening | http://kurata14.bio.kyutech.ac.jp/PreAIP/ (accessed on 17 February 2021) |
iDPPIV-SCM | DPPIV Inhibitor Peptide Screening | http://camt.pythonanywhere.com/iDPPIV-SCM (accessed on 17 February 2021) |
AntiAngioPred | Anti-angiogenic Peptide Screening | https://webs.iiitd.edu.in/raghava/antiangiopred/ (accessed on 17 February 2021) |
AHTPIN | Antihypertensive Peptide Screening | http://crdd.osdd.net/raghava/ahtpin/ (accessed on 17 February 2021) |
HLP | Intestinal Stability | http://crdd.osdd.net/raghava/hlp/ (accessed on 21 February 2021) |
PlifePred | Plasma Stability | https://webs.iiitd.edu.in/raghava/plifepred/ (accessed on 21 February 2021) |
ToxinPred | Toxicity Screening | https://webs.iiitd.edu.in/raghava/toxinpred (accessed on 21 February 2021) |
iBitter-SCM | Bitterness Peptide Screening | http://camt.pythonanywhere.com/iBitter-SCM (accessed on 21 February 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopinatth, V.; Mendez, R.L.; Ballinger, E.; Kwon, J.Y. Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study. Molecules 2021, 26, 2064. https://doi.org/10.3390/molecules26072064
Gopinatth V, Mendez RL, Ballinger E, Kwon JY. Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study. Molecules. 2021; 26(7):2064. https://doi.org/10.3390/molecules26072064
Chicago/Turabian StyleGopinatth, Varun, Rufa L. Mendez, Elaine Ballinger, and Jung Yeon Kwon. 2021. "Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study" Molecules 26, no. 7: 2064. https://doi.org/10.3390/molecules26072064
APA StyleGopinatth, V., Mendez, R. L., Ballinger, E., & Kwon, J. Y. (2021). Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study. Molecules, 26(7), 2064. https://doi.org/10.3390/molecules26072064