Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Photocatalytic Activity Test
3. Results and Discussion
3.1. Structural Analysis and Microstructure
3.2. Optical Properties
3.3. Photocatalytic Activity
3.4. Photocatalysis Species
3.5. Energy Band Structure and Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Choi, J.H.; Hong, J.; Son, Y.R.; Wang, J.; Kim, H.S.; Lee, H.; Lee, H. Comparison of Enhanced Photocatalytic Degradation Efficiency and Toxicity Evaluations of CeO2 Nanoparticles Synthesized Through Double- Modulation. Nanomaterials 2020, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Lee, M.; Lee, S.; Lee, J.; Cho, S.; Lee, H.; Cha, H.G.; Kim, H.S. Enhancing Photocatalytic β-O-4 Bond Cleavage in Lignin Model Compounds by Silver-Exchanged Cadmium Sulfide. ACS Catal. 2020, 10, 8465–8475. [Google Scholar] [CrossRef]
- Byrne, J.A.; Dunlop, P.S.M.; Hamilton, J.W.J.; Fernandez-Ibanez, P.; Polo-Lopez, I.; Sharma, P.K.; Vennard, A.S.M. A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 2015, 20, 5574–5615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.L.; Zhang, L.S.; Chen, Z.G.; Hu, J.Q.; Li, S.J.; Wang, Z.H.; Liu, J.S.; Wang, X.C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Chen, H.; Rong, J.; Zhang, X.; Wei, J.; Liu, S.; Zhou, X.; Xu, J.; Qiu, F.; Wu, Z. An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement. Chem. Eng. J. 2019, 371, 286–293. [Google Scholar] [CrossRef]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 2017, 38, 1936–1955. [Google Scholar] [CrossRef]
- Kumar, A.; Raizada, P.; Singh, P.; Saini, R.V.; Saini, A.K.; Hosseini-Bandegharaei, A. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem. Eng. J. 2020, 391, 123496. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, J.; Mao, Z.; Bradley, D.; Fahlman, C.; Wang, D. Construction of Z-scheme heterostructure with enhanced photocatalytic Hoevolution for g-C3N4 nanosheets via loading porous silicon. J. Catal. 2017, 356, 22–31. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Y.; Wang, X. Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review. J. Alloys Compd. 2015, 649, 910–932. [Google Scholar] [CrossRef]
- Ge, M.; Li, Z. Recent progress in Ag3PO4-based all-solid-state Z-scheme photocatalytic systems. Chin. J. Catal. 2017, 38, 1794–1803. [Google Scholar] [CrossRef]
- Martin, D.J.; Liu, G.; Moniz, S.J.A.; Bi, Y.; Beale, A.M.; Ye, J.; Tang, J. Efficient visible driven photocatalyst, silver phosphate: Performance, understanding and perspective. J. Alloys Compd. 2015, 649, 910–932. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2015, 44, 7808–7828. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, L.; Jiang, B.; Zheng, J.; Hu, P.; Li, S.; Wu, M.; Wu, W. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 2016, 377, 99–108. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, J.; Dai, K.; Lu, L.; Liang, C.; Geng, L. Large scale and facile synthesis of novel Z-scheme Bi2MoO6/Ag3PO4 composite for enhanced visible light photocatalyst. Mater. Lett. 2016, 169, 250–253. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Construction of Z-scheme Ag3PO4/Bi2WO6 composite with excellent visible-light photodegradation activity for removal of organic contaminants. Chin. J. Catal. 2017, 38, 2021–2029. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, Y.; Duan, M.; Ren, Z.; Hu, M. Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/BiMoO4 visible-light photocatalyst. Catal. Sci. Technol. 2018, 8, 3818–3832. [Google Scholar] [CrossRef]
- Bu, Y.; Chen, Z.; Sun, C. Highly efficient Z-Scheme AgPO4/Ag/WO3-x photocatalyst for its enhanced photocatalytic performance. Appl. Catal. B Environ. 2015, 179, 363–371. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Zhang, L.; Feng, L.; Wen, J.; Yang, J.; Zhang, C.; Jiang, J.; Wang, H. An urchin-like Ag3PO4/Pd/LaPO4 photocatalyst with Z-scheme heterojunction for enhanced hydrogen evolution. Appl. Surf. Sci. 2019, 497, 143771. [Google Scholar] [CrossRef]
- Ren, Y.; Zeng, D.; Ong, W. Interfacial engineering of graphitic carbon nitride g-C3N4-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal. 2019, 40, 289–319. [Google Scholar] [CrossRef]
- Ong, W.; Tan, L.; Ng, Y.H.; Yong, S.; Chai, S. Graphitic Carbon Nitride (g-C3N4)—Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; Don, G.; Ho, W. Mechanism of NO Photocatalytic Oxidationon g-C3N4 Was Changed by Pd-QDs Modification. Molecules 2015, 21, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices. Adv. Mater. 2010, 17, 1789–1792. [Google Scholar] [CrossRef]
- Xu, L.; Shen, X.; Wu, J.; Ji, Z.; Wang, J.; Kong, L.; Liu, M.; Song, C. Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalytic activity. Appl. Catal. A Gen. 2017, 5, 104–113. [Google Scholar]
- Chen, X.; Li, R.; Pan, X.; Huang, X.; Yi, Z. Fabrication of In2O3-Ag-Ag3PO4 composites with Z-scheme configuration for photocatalytic ethylene degradation under visible light irradiation. Chem. Eng. J. 2017, 320, 644–652. [Google Scholar] [CrossRef]
- Liu, L.; Ding, L.; Liu, Y.; An, W.; Lin, S.; Liang, Y.; Cui, W. A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with r-r conjugation. Appl. Catal. B Environ. 2017, 201, 92–104. [Google Scholar] [CrossRef]
- Rawool, S.A.; Samanta, A.; Ajithkumar, T.G.; Kar, Y.; Polshettiwar, V. Photocatalytic Hydrogen Generation and CO2 Conversion Using g-C3N4 Decorated Dendritic Fibrous Nanosilica: Role of Interfaces between Silica and g-C3N4. ACS Appl. Energy Mater. 2020, 3, 8150–8158. [Google Scholar] [CrossRef]
- Wei, Z.; Liang, F.; Liu, Y.; Luo, W.; Wang, J.; Yao, W.; Zhu, Y. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film. Appl. Catal. B Environ. 2017, 201, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Du, H.; Ji, J.; Li, F.; Lin, Y.C.; Qin, C.; Zhang, Z.; Shen, Y. Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol. Molecules 2021, 26, 2062. https://doi.org/10.3390/molecules26072062
Zhang M, Du H, Ji J, Li F, Lin YC, Qin C, Zhang Z, Shen Y. Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol. Molecules. 2021; 26(7):2062. https://doi.org/10.3390/molecules26072062
Chicago/Turabian StyleZhang, Mingxi, Hanxiao Du, Juan Ji, Fengfeng Li, Y. C. Lin, Chenwei Qin, Ze Zhang, and Yi Shen. 2021. "Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol" Molecules 26, no. 7: 2062. https://doi.org/10.3390/molecules26072062
APA StyleZhang, M., Du, H., Ji, J., Li, F., Lin, Y. C., Qin, C., Zhang, Z., & Shen, Y. (2021). Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol. Molecules, 26(7), 2062. https://doi.org/10.3390/molecules26072062