Chemical Hemisynthesis of Sulfated Cyanidin-3-O-Glucoside and Cyanidin Metabolites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cyanidin Sulfates
2.1.1. Retention Time
2.1.2. UV/Vis Spectra
2.1.3. Mass Spectrometry
2.2. Cyanidin-3-O-Glucoside Sulfates
2.2.1. Retention Time
2.2.2. UV Spectra
2.2.3. Mass Spectrometry
2.3. Challenges
2.4. Human Pilot Study
3. Materials and Methods
3.1. Chemicals
3.2. Hemisynthesis of Sulfated Metabolites
3.3. LC-MS-Analysis
3.4. Study Design and Analysis of Urine
3.5. Sample Preparation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Horbowicz, M.; Kosson, R.; Grzesiuk, A.; Dębski, H. Anthocyanins of Fruits and Vegetables—Their Occurrence, Analysis and Role in Human Nutrition. Veg. Crop. Res. Bull. 2008, 68, 5–22. [Google Scholar] [CrossRef]
- Kay, C.D.; Pereira-Caro, G.; Ludwig, I.A.; Clifford, M.N.; Crozier, A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu. Rev. Food Sci. Technol. 2017, 8, 155–180. [Google Scholar] [CrossRef] [PubMed]
- Felgines, C.; Talavera, S.; Texier, O.; Gil-Izquierdo, A.; Lamaison, J.-L.; Remesy, C. Blackberry Anthocyanins Are Mainly Recovered from Urine as Methylated and Glucuronidated Conjugates in Humans. J. Agric. Food Chem. 2005, 53, 7721–7727. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Tratzka, S.; Schieber, A.; Passon, M. Hemisynthesis of Anthocyanin Phase II Metabolites by Porcine Liver Enzymes. J. Agric. Food Chem. 2019, 67, 6177–6189. [Google Scholar] [CrossRef]
- Fossen, T.; Cabrita, L.; Andersen, O.M. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem. 1998, 63, 435–440. [Google Scholar] [CrossRef]
- Al-Horani, R.A.; Desai, U.R. Chemical sulfation of small molecules—Advances and challenges. Tetrahedron 2010, 66, 2907–2918. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.J.; Jukes-Jones, R.; Verschoyle, R.D.; Farmer, P.B.; Gescher, A. A synthetic approach to the generation of quercetin sulfates and the detection of quercetin 3′-O-sulfate as a urinary metabolite in the rat. Bioorg. Med. Chem. 2005, 13, 6727–6731. [Google Scholar] [CrossRef]
- Day, A.J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M.R.; Williamson, G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radic. Res. 2001, 35, 941–952. [Google Scholar] [CrossRef]
- Dueñas, M.; González-Manzano, S.; Surco-Laos, F.; González-Paramas, A.; Santos-Buelga, C. Characterization of Sulfated Quercetin and Epicatechin Metabolites. J. Agric. Food Chem. 2012, 60, 3592–3598. [Google Scholar] [CrossRef]
- Anouar, E.H.; Gierschner, J.; Duroux, J.-L.; Trouillas, P. UV/Visible spectra of natural polyphenols: A time-dependent density functional theory study. Food Chem. 2012, 131, 79–89. [Google Scholar] [CrossRef]
- Welch, C.R.; Wu, Q.; Simon, J. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem. 2008, 4, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Giusti, M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Barnes, J.S.; Schug, K.A. Structural characterization of cyanidin-3,5-diglucoside and pelargonidin-3,5-diglucoside anthocyanins: Multi-dimensional fragmentation pathways using high performance liquid chromatography-electrospray ionization-ion trap-time of flight mass spectrometry. Int. J. Mass Spectrom. 2011, 308, 71–80. [Google Scholar] [CrossRef]
- González-Manzano, S.; González-Paramás, A.; Santos-Buelga, C.; Dueñas, M. Preparation and Characterization of Catechin Sulfates, Glucuronides, and Methylethers with Metabolic Interest. J. Agric. Food Chem. 2009, 57, 1231–1238. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Esperança, P.; Ferreira, M.A.A. Characterisation of anthocyanidins by electrospray ionisation and collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1525–1532. [Google Scholar] [CrossRef]
- Hvattum, E.; Ekeberg, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003, 38, 43–49. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Dangles, O.; Fenger, J.-A. The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef] [Green Version]
- Turvey, J.R.; Williams, T.P. Sulphates of monsaccharides and derivatives. Part V. Products of sulphation of galactose and glucose. J. Chem. Soc. 1963, 2242–2246. [Google Scholar] [CrossRef]
- Needs, P.W.; Kroon, P.A. Convenient syntheses of metabolically important quercetin glucuronides and sulfates. Tetrahedron 2006, 62, 6862–6868. [Google Scholar] [CrossRef]
- Mattarei, A.; Biasutto, L.; Romio, M.; Zoratti, M.; Paradisi, C. Synthesis of resveratrol sulfates: Turning a nightmare into a dream. Tetrahedron 2015, 71, 3100–3106. [Google Scholar] [CrossRef]
- Iwuchukwu, O.F.; Sharan, S.; Canney, D.J.; Nagar, S. Analytical method development for synthesized conjugated metabolites of trans-resveratrol, and application to pharmacokinetic studies. J. Pharm. Biomed. Anal. 2012, 63, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Correia-Da-Silva, M.; Sousa, E.; Pinto, M.M.M. Emerging Sulfated Flavonoids and other Polyphenols as Drugs: Nature as an Inspiration. Med. Res. Rev. 2013, 34, 223–279. [Google Scholar] [CrossRef]
- Feliciano, R.P.; Boeres, A.; Massacessi, L.; Istas, G.; Ventura, M.R.; dos Santos, C.N.; Heiss, C.; Rodriguez-Mateos, A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch. Biochem. Biophys. 2016, 599, 31–41. [Google Scholar] [CrossRef]
- Felgines, C.; Talavéra, S.; Gonthier, M.-P.; Texier, O.; Scalbert, A.; Lamaison, J.-L.; Rémésy, C. Strawberry Anthocyanins Are Recovered in Urine as Glucuro- and Sulfoconjugates in Humans. J. Nutr. 2003, 133, 1296–1301. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, M.; Müller-Ehl, L.; Passon, M.; Schieber, A. Development and Validation of Methods for the Determination of Anthocyanins in Physiological Fluids via UHPLC-MSn. Molecules 2020, 25, 518. [Google Scholar] [CrossRef] [Green Version]
Peak No. | RT a (min) | [M]+ Calculated (m/z) | [M]+ Measured (m/z) | Mass Error (mDa) | Characteristic Fragment Ions MS2 (m/z) QTOF | Characteristic Fragment Ions MS2 (m/z) LIT | Degree of Sulfation | CCS Value /[M]+ (Å2) | λmax (nm) | Supposed Location of Sulfate Group |
---|---|---|---|---|---|---|---|---|---|---|
- | 4.4 | 446.9686 | 446.9691 | +0.5 | 286.0469, 367.0120 | 287, 367 | 2 | 198.9 ± 0.6 | 250, 385, 505 | n.d. |
- | 4.8 | 446.9686 | 446.9684 | −0.2 | 287.0550, 367.0117 | 287, 367 | 2 | 196.3 ± 0.1 | n.d. | n.d. |
- | 5.5 | 446.9686 | 446.9692 | +0.6 | 287.0552, 367.0120 | 287, 367 | 2 | 204.5 ± 0.6 | 278, 487 | n.d. |
- | 6.5 | 449.1078 | 449.1079 | +0.1 | 287.0551 | 287 | * | 204.6 ± 0.2 | 278, 516 | |
1 | 7.5 | 367.0118 | 367.0118 | ±0.0 | 121.0285, 137.0234, 149.0235, 177.0183, 256.9752, 286.0492, 287.0551 | 137, 177, 257, 287 | 1 | 183.6 ± 0.3 | 267, 410, 505 | C ring |
- | 7.6 | 446.9686 | 446.9689 | +0.3 | 287.0550, 367.0121 | 287, 367 | 2 | 203.7 ± 0.3 | 281, 505 | n.d. |
- | 9.3 | 446.9686 | 446.9686 | ±0.0 | 286.0473, 367.0123 | 287, 367 | 2 | 202.7 ± 0.1 | 254, 372, 490 | n.d. |
2 | 9.9 | 367.0118 | 367.0118 | ±0.0 | 109.0284, 121.0285, 137.0235, 139.0390, 149.0238, 177.0185, 216.9805, 218.9785, 269.0447, 286.0475, 287.0551, | 137, 139, 177, 217, 257, 269, 287 | 1 | 183.3 ± 0.1 | 275, 513 | A ring |
3 | 10.3 | 367.0118 | 367.0120 | +0.2 | 121.0286, 137.0236, 139.0392, 149.0239, 177.0184, 219.0265, 256.9752, 287.0552, | 137, 177, 257, 287 | 1 | 187.6 ± 0.1 | 281, 517 | A ring |
- | 11.3 | 446.9686 | 446.9687 | +0.1 | 286.0470, 367.0120 | 287, 367 | 2 | 189.6 ± 0.2 | 278, 329sh, 428, 497 | n.d. |
- | 11.7 | 287.0550 | 287.0552 | +0.2 | 109.0286, 121.0286, 137.0236, 149.0236, 269.0448 | 137, 149, 177, 269 | cyanidin | 163.4 ± 0.1 | 277, 443sh, 525 | |
4 | 12.6 | 367.0118 | 367.0118 | ±0.0 | 216.9807, 268.0370, 286.0471 | 137, 269, 287 | 1 | 182.6 ± 0.1 | 271, 429, 513 | B ring |
5 | 12.8 | 367.0118 | 367.0118 | ±0.0 | 268.0370, 269.0445, 286.0472, 287.0553 | 137, 269, 287 | 1 | 180.8 ± 0.2 | 283, 512 | B ring |
Peak No. | RT b (min) | [M]+ Calculated (m/z) | [M]+ Measured (m/z) | Mass Error (mDa) | Fragment Ions MS2 (m/z) | Degree of Sulfation | CCS Value [M]+ (Å2) | λmax |
---|---|---|---|---|---|---|---|---|
- | 5.3 | 609.0215 | 609.0221 | +0.6 | 529 (3.5), 447 (100), 367 (4.2) | 2 | 240.8 ± 0.1 | 277, 505 |
- | 5.5 | 609.0215 | 609.0219 | +0.4 | 529 (5.1), 447 (100), 367 (5.4) | 2 | 240.6 ± 0.1 | 278, 505 |
- | 7.0 | 609.0215 | 609.0225 | +1.0 | 529 (100), 447 (88.1), 367 (52.3), 287 (4.0) | 2 | 237.5 ± 0.5 | 278 |
- | 8.3 | 609.0215 | 609.0224 | +0.9 | 529 (70.9), 367 (100), 287 (14.5) | 2 | 232.3 ± 0.1 | 278, 500 |
6 | 8.8 | 529.0647 | 529.0650 | +0.3 | 449 (2.8), 367 (100), 287 (5.3) | 1 | 224.7 ± 0.1 | 278, 509 |
7 | 9.3 | 529.0647 | 529.0649 | +0.2 | 449 (96.5), 367 (3.0), 287 (100) | 1 | 217.1 ± 0.1 | 277, 504 |
- | 9.8 | 609.0215 | 609.0223 | +0.8 | 529 (100), 447 (2.3), 367 (18.7), 287 (3.3) | 2 | 239.9 ± 0.2 | 278, 509 |
- | 11.5 | 609.0215 | 609.0222 | +0.7 | 529 (57.4), 447 (1.9), 367 (100), 287 (27.4) | 2 | 236.2 ± 0.1 | 278, 492 |
8 | 12.0 | 529.0647 | 529.0652 | +0.5 | 449 (7.5), 367 (100), 287 (4.5) | 1 | 219.2 ± 0.1 | 278, 511 |
9 | 12.8 | 529.0647 | 529.0650 | +0.3 | 449 (100), 367 (80.2), 287 (92.6) | 1 | 216.2 ± 2.4 | 277, 407, 493 |
- | 15.2 | 449.1078 | 449.1079 | +0.1 | 287 (100) | * | 204.6 ± 0.2 | 279, 516 |
10 | 16.4 | 529.0647 | 529.0651 | +0.4 | 449 (100), 287 (99.6) | 1 | 215.7 ± 0.2 | 279, 516 |
11 | 17.1 | 529.0647 | 529.0651 | +0.4 | 449 (100), 287 (35.2) | 1 | 218.2 ± 0.1 | 280, 516 |
- | 17.2 | 609.0215 | 609.0224 | +0.9 | 529 (100), 449 (2.3), 367 (1.8), 287 (19.3) | 2 | 224.7 ± 0.2 | 280, 516 |
12 | 17.7 | 529.0647 | 529.0648 | +0.1 | 449 (17.2), 287 (100) | 1 | 214.9 ± 0.1 | 280, 516 |
- | 18.2 | 609.0215 | 609.0220 | +0.5 | 529 (100), 449 (21.8), 367 (1.1), 287 (3.9) | 2 | 224.4 ± 0.1 | 280, 517 |
Suspected Compound | RT (min) | [M]+ Calculated (m/z) | [M]+ Measured (m/z) | Mass Error (mDa) | Fragment MS2 (m/z) | CCS Value (Å2) |
---|---|---|---|---|---|---|
Cyanidin | ||||||
unconjugated * | 11.7 a | 287.0550 | 287.0549 | −0.1 | 162.5 ± 0.1 | |
glucuronidated | 8.3 a | 463.0877 | 463.0871 | −0.6 | 287 | 200.1 ± 0.9 |
9.6 a | 463.0877 | 463.0874 | −0.3 | 287 | 204.7 ± 1.0 | |
glucuronidated and methylated | 8.8 a | 477.1033 | 477.1029 | −0.4 | 301 | 209.4 ± 2.4 |
9.1 a | 477.1033 | 477.1030 | −0.3 | 301 | 207.6 ± 0.7 | |
9.6 a | 477.1033 | 477.1028 | −0.5 | 301 | 208.2 ± 0.7 | |
10.2 a | 477.1033 | 477.1029 | −0.4 | 301 | 207.6 ± 0.4 | |
sulfated | 9.8 a | 367.0118 | 367.0118 | ±0.0 | 287 | 180.0 ± 1.0 |
12.7 a | 367.0118 | 367.0118 | ±0.0 | 287 | 180.6 ± 0.5 | |
Cyanidin-3-O-glucoside | ||||||
unconjugated * | 15.0 b | 449.1078 | 449.1081 | +0.3 | 287 | 203.3 ± 2.5 |
sulfated | 13.1 b | 529.0647 | 529.0648 | +0.1 | 287 | 209.4 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straßmann, S.; Passon, M.; Schieber, A. Chemical Hemisynthesis of Sulfated Cyanidin-3-O-Glucoside and Cyanidin Metabolites. Molecules 2021, 26, 2146. https://doi.org/10.3390/molecules26082146
Straßmann S, Passon M, Schieber A. Chemical Hemisynthesis of Sulfated Cyanidin-3-O-Glucoside and Cyanidin Metabolites. Molecules. 2021; 26(8):2146. https://doi.org/10.3390/molecules26082146
Chicago/Turabian StyleStraßmann, Sarah, Maike Passon, and Andreas Schieber. 2021. "Chemical Hemisynthesis of Sulfated Cyanidin-3-O-Glucoside and Cyanidin Metabolites" Molecules 26, no. 8: 2146. https://doi.org/10.3390/molecules26082146
APA StyleStraßmann, S., Passon, M., & Schieber, A. (2021). Chemical Hemisynthesis of Sulfated Cyanidin-3-O-Glucoside and Cyanidin Metabolites. Molecules, 26(8), 2146. https://doi.org/10.3390/molecules26082146