Effect of Increased Ionic Liquid Uptake via Thermal Annealing on Mechanical Properties of Polyimide-Poly(ethylene glycol) Segmented Block Copolymer Membranes
Abstract
:1. Introduction
2. System Design
- Group 1: Membranes Proton Exchange Membrane_1 (PEM_1) through Proton Exchange Membrane_5 (PEM_5)
- Group 2: Membranes Proton Exchange Membrane_6 (PEM_6) through Proton Exchange Membrane_10 (PEM_10)
- Group 3: Membranes Proton Exchange Membrane_11 (PEM_11) through Proton Exchange Membrane_15 (PEM_15)
3. Experimental
3.1. Materials
3.2. Synthesis of PEG-Containing Poly(amic acid) Solution
3.3. Imidization of the Poly(amic acid) Solution to Produce PEG-PI Membrane
3.4. Characterization
3.5. IL Incorporation and Water Uptake
3.6. Electrochemical Impedance Spectroscopy (EIS) Measurements and Membrane Proton Conductivity
3.7. Mechanical Testing
4. Results and Discussion
4.1. FTIR Measurements
4.2. TGA Measurements
4.3. Ionic Liquid and Water Uptake
4.4. Effect of Increasing Temperature
4.5. Summary of Ionic Liquid Uptake Results
4.6. Proton Conductivity
- Unannealed, undoped SBC membranes
- Unannealed, EAN-doped SBC membranes
- Unannealed, PAN-doped SBC membranes
- 1 h thermally annealed undoped SBC membranes
- 1 h thermally annealed EAN-doped SBC membranes
- 1 h thermally annealed PAN-doped SBC membranes
4.6.1. Effect of Changing Ionic Liquid
4.6.2. Effect of Thermal Annealing
4.6.3. Effect of Changing Diamines
4.6.4. Effect of Changing Dianhydrides
4.7. Tensile Strength
- SBC undoped membranes without thermal treatment
- SBC undoped membranes with thermal treatment at 60 °C
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kerres, J.A. Development of Ionomer Membranes for Fuel Cells. J. Membr. Sci. 2001, 185, 3–27. [Google Scholar] [CrossRef]
- Kreuer, K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 2001, 185, 29–39. [Google Scholar] [CrossRef]
- Aleksandrova, E.; Hiesgen, R.; Friedrich, K.A.; Roduner, E. Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane. Phys. Chem. Chem. Phys. 2007, 9, 2735–2743. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4585. [Google Scholar] [CrossRef]
- Lu, J.; Tang, H.; Xu, C.; Jiang, S.P. Nafion Membranes with Ordered Mesoporous Structure and High Water Retention Properties for Fuel Cell Applications. J. Mater. Chem. 2012, 22, 5510–5819. [Google Scholar] [CrossRef]
- Diat, O.; Gebel, G. Proton channels. Nat. Mater. 2008, 7, 13–14. [Google Scholar] [CrossRef] [PubMed]
- MSatterfield, B.B.; Majsztrik, P.W.; Ota, H.; Benziger, J.B.; Bocarsly, A.B. Mechanical Properties of Nafion and Titania/Nafion Composite Membranes for Polymer Electrolyte Membrane Fuel Cells. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 2327–2345. [Google Scholar] [CrossRef] [Green Version]
- Zawodzinski, T.A.; Springer, T.E.; Davey, J.; Jestel, R.; Lopez, C.; Valerio, J.; Gottesfeld, S. A Comparative Study of Water Uptake by and Transport through Ionomeric Fuel Cell Membranes. J. Electrochem. Soc. 1993, 140, 1981–1985. [Google Scholar] [CrossRef]
- Buchi, F.N.; Scherer, G.G. Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2001, 148, A183–A188. [Google Scholar] [CrossRef]
- Buchi, F.N.; Scherer, G.G. In-situ resistance measurements of Nafion® 117 membranes in polymer electrolyte fuel cells. J. Electroanal. Chem. 1996, 404, 37–43. [Google Scholar] [CrossRef]
- Park, M.J.; Downing, K.H.; Jackson, A.; Gomez, E.D.; Minor, A.M.; Cookson, D.; Weber, A.Z.; Balsara, N.P. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation. Nano Lett. 2007, 7, 3547–3552. [Google Scholar] [CrossRef] [PubMed]
- Motupally, S.; Becker, A.J.; Weidner, J.W. Diffusion of Water in Nafion 115 Membranes. J. Electrochem. Soc. 2000, 147, 3171–3177. [Google Scholar] [CrossRef]
- Tang, H.; Jiang, S.P. Self-Assembled Pt/Mesoporous Silica-Carbon Electrocatalysts for Elevated-Temperature Polymer Electrolyte Membrane Fuel Cells. J. Phys. Chem. C 2008, 112, 19748–19755. [Google Scholar] [CrossRef]
- Chang, H.; Joo, S.H.; Pak, C. Synthesis and characterization of mesoporous carbon for fuel cell applications. J. Mater. Chem. 2007, 17, 3078–3088. [Google Scholar] [CrossRef]
- Dang, W.J.; He, J.P.; Zhou, J.H.; Ji, Y.J.; Liu, X.L.; Mei, T.Q.; Li, H.L. Dispersion and electrocatalytic performance of platinum nanoparticles supported on ordered mesoporous carbon. Acta Phys. Chim. Sin. 2007, 23, 1085–1089. [Google Scholar]
- Joo, S.H.; Pak, C.; You, D.J.; Lee, S.A.; Lee, H.I.; Kim, J.M.; Chang, H.; Seung, D. Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): Effect of carbon precursors of OMC on DMFC performances. Electrochim. Acta 2006, 52, 1618–1626. [Google Scholar] [CrossRef]
- Su, F.B.; Zeng, J.H.; Bao, X.Y.; Yu, Y.S.; Lee, J.Y.; Zhao, X.S. Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 2005, 17, 3960–3967. [Google Scholar] [CrossRef]
- Sun, W.; Guo, C.X.; Zhu, Z.; Li, C.M. Ionic liquid/mesoporous carbon/protein composite microelectrode and its biosensing application. Electrochem. Commun. 2009, 11, 2105–2108. [Google Scholar] [CrossRef]
- Deluca, N.W.; Elabd, Y.A. Polymer electrolyte membranes for the direct methanol fuel cell: A review. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 22001–22025. [Google Scholar] [CrossRef]
- Cui, Z.; Li, N.; Zhou, X.; Liu, C.; Liao, J.; Zhang, S.; Xing, W. Surface-modified Nafion® membrane by casting proton-conducting polyelectrolyte complexes for direct methanol fuel cells. J. Power Sour. 2007, 173, 162–165. [Google Scholar] [CrossRef]
- Lu, S.F.; Wang, D.L.; Jiang, S.P.; Xiang, Y.; Lu, J.L.; Zeng, J. HPW/MCM-41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Proton-Exchange Membranes for Elevated-Temperature Fuel Cells. Adv. Mater. 2010, 22, 971–976. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, Y.H.; Li, L.; Jiang, S.P. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Phys. Chem. Chem. Phys. 2011, 21, 10249–10257. [Google Scholar] [CrossRef]
- Lu, J.L.; Tang, H.L.; Lu, S.F.; Wu, H.W.; Jiang, S.P. A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells. J. Mater. Chem. 2011, 21, 6668–6676. [Google Scholar] [CrossRef]
- MAnderson, L.; Stroud, R.M.; Rolison, D.R. Enhancing the Activity of Fuel-Cell Reactions by Designing Three-Dimensional Nanostructured Architecture: Catalyst-modified Carbon-Silica Composite Aerogels. Nano Lett. 2002, 2, 235–240. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Corpas-Martinez, J.R.; Stoller, M.; Martinez-Ferez, A. Organic/TiO2 Nanocomposite Membranes: Recent Developments. In Organic-Inorganic Composite Polymer Electrolyte Membranes; Inamuddin, D., Mohammad, A., Asiri, A.M., Eds.; Springer International Publishing: New York, NY, USA, 2017; pp. 25–46. ISBN 978-3-319-52738-3. [Google Scholar]
- Sacca, A.; Gatto, I.; Carbone, A.; Pedicini, R.; Passalacqua, E. ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J. Power Sour. 2006, 163, 47–51. [Google Scholar] [CrossRef]
- Santamaria, M.; Pecoraro, C.M.; di Quarto, F.; Bocchetta, P. Chitosanephosphotungstic acid complex as membranes for low temperature H2-O2 fuel cell. J. Power Sour. 2015, 276, 189–194. [Google Scholar] [CrossRef]
- Coletta, E.; Toney, F.M.; Frank, C.W. Effects of Aromatic Regularity on the Structure and Conductivity of Polyimide-Poly(ethylene glycol) Materials Doped with Ionic Liquid. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 509–521. [Google Scholar] [CrossRef]
- Coletta, E.; Toney, M.F.; Frank, C.W. Impacts of Polymer-polymer Interactions and Interfaces on the structure and conductivity of PEG-containing polyimides doped with ionic liquid. Polymer 2014, 55, 6883–6895. [Google Scholar] [CrossRef]
- Coletta, E.; Toney, M.F.; Frank, C.W. Influences of liquid electrolyte and polyimide identity on the structure and conductivity of polyimide–poly(ethylene glycol) materials. J. Appl. Polym. Sci. 2015, 132, 41675–41687. [Google Scholar] [CrossRef]
- Woo, E.; Coletta, E.; Holm, A.; Mun, J.; Toney, M.F.; Yoon, D.Y.; Frank, C.W. Polyimide-PEG Segmented Block Copolymer Membranes with Hight Proton Conductivity by Improving Bİcontinuous Nanostructure of Ionic-Doped Films. Macromol. Chem. Phys. 2019, 220, 1900006. [Google Scholar] [CrossRef]
- Marcos-Fernandez, A.; Tena, A.; Lozano, A.E.; de la Campa, J.G.; de Abajo, J.; Palacio, L.; Pradanos, P.; Hernandez, A. Physical properties of films made of copoly(ether-imide)s with long poly(ethylene oxide) segments. Eur. Polym. J. 2010, 46, 2352–2364. [Google Scholar] [CrossRef] [Green Version]
- Tena, A.; Marcos-Fernandez, A.; Palacio, L.; Cuadrado, P.; Pradanos, P.; de Abajo, J.; Lozano, A.E.; Hernandez, A. Phase segregation and gas separation properties of thermally treated copoly (ether-imide) from an aromatic dianhydride, an aromatic diamine, and various aliphatic diamines. Ind. Eng. Chem. Res. 2012, 51, 3766–3775. [Google Scholar] [CrossRef]
- Tena, A.; Marcos-Fernandez, A.; Palacio, L.; Pradanos, P.; Lozano, A.E.; de Abajo, J.; Hernandez, A. On the influence of the proportion of PEO in thermally controlled phase segregation of copoly (ether-imide) s for gas separation. J. Membr. Sci. 2013, 434, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Tena, A.; Marcos-Fernandez, A.; Lozano, A.E.; de la Campa, J.G.; de Abajo, J.; Palacio, L.; Pradanos, P.; Hernandez, A. Thermally treated copoly (ether-imide) s made from bpda and alifatic plus aromatic diamines. Gas separation properties with different aromatic diamimes. J. Membr. Sci. 2012, 387, 54–65. [Google Scholar] [CrossRef]
- Tena, A.; de la Viuda, M.; Palacio, L.; Pradanos, P.; Marcos-Fernandez, A.; Lozano, A.E.; Hernandez, A. Prediction of gas permeability of block-segregated polymeric membranes by an effective medium model. J. Membr. Sci. 2014, 453, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Orzezsko, A. Application of new copolyimides as phases for gas–liquid chromatography. J. Appl. Polym. Sci. 1991, 42, 873–875. [Google Scholar] [CrossRef]
- Munoz, D.; Maya, E.; Deabajo, J.; Delacampa, J.; Lozano, A. Thermal treatment of poly(ethylene oxide)-segmented copolyimide based membranes: An effective way to improve the gas separation properties. J. Membr. Sci. 2008, 323, 53–59. [Google Scholar] [CrossRef]
- Maya, E.M.; Munoz, D.M.; de la Campa, J.G.; de Abajo, J.; Lozano, A.E. Thermal effect on polyethyleneoxide-containing copolyimide membranes for CO2/N2 seperation. Desalination 2006, 199, 188–190. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Schwarz, G.; Berghahn, M.; de Abajo, J.; de la Campa, J.G. Layer Structures. 2. Influence of Spacers on Chain Packing and Phase Transitions of Poly (ester-imide) s Derived from N-(4-Carboxyphenyl) trimellitimide. Macromolecules 1994, 27, 2540–2547. [Google Scholar] [CrossRef]
- Eastmond, G.C.; Paprotny, J. Polyimides with main-chain ethylene oxide units: Synthesis and properties. Polymer 2002, 43, 3455–3468. [Google Scholar] [CrossRef]
- Eastmond, G.C.; Gibas, M.; Pacynko, W.F.; Paprotny, J. Grafted and segmented hydrophilic polyimides for microfiltration membranes: Part I. Synthesis and characterization. J. Membr. Sci. 2002, 207, 29–41. [Google Scholar] [CrossRef]
- Costa, G.; Eastmond, G.C.; Fairclough, J.P.A.; Paprotny, J.; Ryan, A.J.; Stagnaro, P. Segmented Polyimides with Poly(ethylene oxide) Blocks Exhibiting Liquid Crystallinity. Macromolecules 2008, 41, 1034–1040. [Google Scholar] [CrossRef]
- Tigelaar, D.M.; Palker, A.E.; Meador, M.A.B.; Bennett, W.R. Synthesis and compatibility of ionic liquid containing rod-coil polyimide gel electrolytes with lithium metal electrodes. J. Electrochem. Soc. 2008, 155, A768–A774. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Yang, S.; Fan, L. Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 2013, 54, 6339–6348. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.; Kim, J.; Lee, D.; Lee, S.; Kwon, J.; Han, H. New continuous process developed for synthesizing sponge-type polyimide membrane and its pore size control method via non-solvent induced phase separation (NIPS). Microporous Mesoporous Mater. 2017, 242, 166–172. [Google Scholar] [CrossRef]
- Li, J.; Song, G.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z. Preparation of Solution Blown Polyamic Acid Nanofibers and Their Imidization into Polyimide Nanofiber Mats. Nanomaterials 2017, 7, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–630. [Google Scholar] [CrossRef]
- Belieres, J.P.; Angell, C.A. Protic Ionic Liquids: Preparation, Characterization, and Proton Free Energy Level Representation. J. Phys. Chem. B 2007, 111, 4926–4937. [Google Scholar] [CrossRef]
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef]
- Park, M.J.; Choi, I.; Hong, J.; Kim, O. Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J. Appl. Polym. Sci. 2013, 129, 2363–2376. [Google Scholar] [CrossRef]
- Ye, Y.S.; Rick, J.; Hwang, B.J. Ionic liquid polymer electrolytes. J. Mater. Chem. A 2013, 1, 2719–2743. [Google Scholar] [CrossRef]
- Young, W.S.; Kuan, W.F.; Epps, T.H. Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. Part B Polym. Phys. 2013, 52, 1–16. [Google Scholar] [CrossRef]
- Sekhon, S.S.; Park, J.S.; Baek, J.S.; Yim, S.D.; Yang, T.H.; Kim, C.S. Small-angle X-ray scattering study of water free fuel cell membranes containing ionic liquids. Chem. Mater. 2010, 22, 803–812. [Google Scholar] [CrossRef]
- Deligöz, H.; Yılmazoglu, M. Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells. J. Power Sour. 2010, 196, 3496–3502. [Google Scholar] [CrossRef]
- Han, A.; Park, S.J.; Shin, J.S.; Kim, S. Preparation and electrochemical behaviors of polymer electrolyte based on PEO/PMMA containing Li ion. Korean Chem. Eng. Res. 2009, 47, 476–480. [Google Scholar]
- Ma, H.; Chen, X.; Hsiao, B.S.; Chu, B. Improving toughness of ultra-high molecular weight polyethylene with ionic liquid modified carbon nanofiber. Polymer 2014, 55, 160–165. [Google Scholar] [CrossRef]
- Gebel, G.; Aldebert, P.; Pineri, M. Swelling study of perfluorosulphonated ionomer membranes. Polymer 1993, 34, 333–339. [Google Scholar] [CrossRef]
- Carmo, M.; Henkensmeier, D.; Lakeand, W.; Stolten, D. Inhibiting the Swelling Behavior of Nafion Membranes for PEM Water Electrolysis. In Proceedings of the 228th ECS Meeting, Phoenix, AZ, USA, 11–15 October 2015. [Google Scholar]
- Fu, Q.; Livengood, B.P.; Shen, C.C.; Lin, F.L.; Harris, F.W.; Cheng, S.Z.D.; Hsiao, B.S.; Yeh, F. Crystallization and phase behavior in nylon 6/aromatic polyimide triblock copolymers. Macromol. Chem. Phys. 1998, 199, 1107–1118. [Google Scholar] [CrossRef]
- Lin, B.; Cheng, S.; Qiu, L.; Yan, F.; Shang, S.; Lu, J. Protic Ionic Liquid-Based Hybrid Proton-Conducting Membranes for Anhydrous Proton Exchange Membrane Application. Chem. Mater. 2010, 22, 1807–1813. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, S.; Park, M.J. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under waterfree conditions. Nat. Commun. 2010, 1, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.P.; Gao, X.H.; Chen, J.C.; Li, Z.W.; Li, C.L.; Zhang, S.C. Imidazolium-organic solvent–alkali metal salt mixtures as nonflammable electrolytes incorporated into PVDF–PEG polymer electrolyte. J. Appl. Polym. Sci. 2009, 113, 2492–2498. [Google Scholar] [CrossRef]
- Parveen, N.; Schonhoff, M. Swelling and Stability of Polyelectrolyte Multilayers in Ionic Liquid Solutions. Macromolecules 2013, 46, 7880. [Google Scholar] [CrossRef]
- Sekhon, S.S.; Lalia, B.S.; Park, J.-S.; Kim, C.-S.; Yamada, K. Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J. Mater. Chem. 2006, 16, 2256. [Google Scholar] [CrossRef]
- Sekhon, S.S.; Park, J.S.; Cho, E.; Yoon, Y.G.; Kim, C.S.; Lee, W.Y. Morphology Studies of High Temperature Proton Conducting Membranes Containing Hydrophilic/Hydrophobic Ionic Liquids. Macromolecules 2009, 42, 2054. [Google Scholar] [CrossRef]
- Gwee, L.; Choi, J.H.; Winey, K.I.; Elabd, Y.A. Block copolymer/ionic liquid films: The effect of ionic liquid composition on morphology and ion conduction. Polymer 2010, 51, 5516. [Google Scholar] [CrossRef]
- Vazquez, M.I.; Romero, V.; Fontas, C.; Antico, E.; Benavente, J. Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: Effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. J. Membr. Sci. 2014, 455, 312. [Google Scholar] [CrossRef]
- He, Y.; Lodge, T.P. A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem. Commun. 2007, 2732–2734. [Google Scholar] [CrossRef]
- He, Y.; Boswell, P.G.; Buhlmann, P.; Lodge, T.P. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J. Phys. Chem. B 2007, 111, 4645. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Chen, B.; Wang, Y.; Xie, Z.; Dong, F. Preparation and characterization of a novel organophilic vermiculite/poly(methyl methacrylate)/1-butyl-3-methylimidazolium hexafluorophosphate composite gel polymer electrolyte. Electrochim. Acta 2013, 111, 108. [Google Scholar] [CrossRef]
- Debeljuh, N.J.; Sutti, A.; Barrow, C.J.; Byrne, N. Phase transition of poly(N-isopropylacrylamide) in aqueous protic ionic liquids: Kosmotropic versus chaotropic anions and their interaction with water. J. Phys. Chem. B 2013, 117, 8430. [Google Scholar] [CrossRef]
- Vidal, F.; Plesse, C.; Palaprat, G.; Juger, J.; Gauthier, C.; Pelletier, J.M.; Masenelli-Varlot, K.; Chevrot, C.; Teyssie, D. Influence of the poly(ethylene oxide)/polybutadiene IPN morphology on the ionic conductivity of ionic liquid. Eur. Polym. J. 2013, 49, 2670. [Google Scholar] [CrossRef]
- Noro, A.; Matsushima, S.; He, X.; Hayashi, M.; Matsushita, Y. Thermoreversible Supramolecular Polymer Gels via Metal–Ligand Coordination in an Ionic Liquid. Macromolecules 2013, 46, 8304. [Google Scholar] [CrossRef]
- Si, Z.; Gu, F.; Guo, J.; Yan, F. Phosphoric acid-doped imidazolium ionomers with enhanced stability for anhydrous proton-exchange membrane applications. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 1311. [Google Scholar] [CrossRef]
- Reddy, B.N.; Deepa, M. Electrochromic switching and nanoscale electrical properties of a poly(5-cyano indole)-poly(3,4-ethylenedioxypyrrole) device with a free standing ionic liquid electrolyte. Polymer 2013, 54, 5801. [Google Scholar] [CrossRef] [Green Version]
- Virgili, J.M.; Hoarfrost, M.L.; Segalman, R.A. Effect of an Ionic Liquid Solvent on the Phase Behavior of Block Copolymers. Macromolecules 2010, 43, 5417. [Google Scholar] [CrossRef]
- Susan, M.A.B.H.; Kaneko, T.; Noda, A.; Watanabe, M. Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes. J. Am. Chem. Soc. 2005, 127, 4976. [Google Scholar] [CrossRef]
- Mistry, M.K.; Subianto, S.; Choudhury, N.R.; Dutta, N.K. Interfacial Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its Correlation with High Temperature Conductivity and Thermal Properties. Langmuir 2009, 25, 9240. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Venkatnathan, A. Mechanism of proton transport in ionic-liquid-doped perfluorosulfonic acid membranes. J. Phys. Chem. B 2013, 117, 14449. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, Z.; Chao, C.; Li, J.; Zhu, Y. Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. Power Sour. 2014, 251, 432. [Google Scholar] [CrossRef]
- Doyle, M.; Choi, S.K.; Proulx, G. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. J. Electrochem. Soc. 2000, 147, 34. [Google Scholar] [CrossRef]
- Wang, S.W.; Liu, W.; Colby, R.H. Counterion Dynamics in Polyurethane-Carboxylate Ionomers with Ionic Liquid Counterions. Chem. Mater. 2011, 23, 1862. [Google Scholar] [CrossRef]
- Deligöz, H.; Yılmazoğlu, M.; Yılmazturk, S.; Şahin, Y.; Ulutaş, K. Synthesis and characterization of anhydrous conducting polyimide/ionic liquid complex membranes via a new route for high-temperature fuel cells. Polym. Adv. Technol. 2012, 23, 1156. [Google Scholar] [CrossRef]
- Kanehashi, S.; Kishida, M.; Kidesaki, T.; Shindo, R.; Sato, S.; Miyakoshi, T.; Nagai, K. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquid. J. Membr. Sci. 2013, 430, 211. [Google Scholar] [CrossRef]
- Li, P.; Coleman, M.R. Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications. Eur. Polym. J. 2013, 49, 482. [Google Scholar] [CrossRef]
- Liang, L.; Gan, Q.; Nancarrow, P. Composite ionic liquid and polymer membranes for gas separation at elevated temperatures. J. Membr. Sci. 2014, 450, 407. [Google Scholar] [CrossRef]
- Ganesan, V.; Pyramitsyn, V.; Bertoni, C.; Shah, M. Mechanisms Underlying Ion Transport in Lamellar Block Copolymer Membranes. ACS Macro Lett. 2012, 1, 513. [Google Scholar] [CrossRef]
- Lazareva, Y.N.; Vidyakin, M.N.; Alentiev, A.Y.; Yablokova, M.Y.; Kuznetsov, A.A.; Ronova, I.A. Transport propertie of polyimides derived from benzophenone tetracarboxylic dianhydride and other diamines. Polym. Sci. Ser. A 2009, 51, 1068. [Google Scholar] [CrossRef]
- Low, B.T.; Xiao, Y.; Chung, T.S. Amplifying the molecular sieving capability of polyimide membranes via coupling of diamine networking and molecular architecture. Polymer 2009, 50, 3250. [Google Scholar] [CrossRef]
- Okamoto, K.I.; Fuji, M.; Okamyo, S.; Suzuki, H.; Tanaka, K.; Kita, H. Gas permeation properties of poly(ether imide) segmented copolymers. Macromolecules 1995, 28, 6950. [Google Scholar] [CrossRef]
- Okamoto, K.I.; Umeo, N.; Okamyo, S.; Tanaka, K.; Kita, H. Selective Permeation of Carbon Dioxide over Nitrogen through Polyethyleneoxide-Containing Polyimide Membranes. Chem. Lett. 1993, 22, 225–228. [Google Scholar] [CrossRef]
- Heimerdinger, P.; Rosin, A.; Danzer, M.A.; Gerdes, T. A Novel Method for Humidity-Dependent Through-Plane Impedance Measurement for Proton Conducting Polymer Membranes. Memranes 2019, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Alberti, G.; Casciola, M.; Massinelli, L.; Bauer, B. Polymeric proton conducting membranes for medium temperature fuel cells (110–160 °C). J. Membr. Sci. 2001, 185, 73–81. [Google Scholar] [CrossRef]
- Arslanova, A.A.; Sanginov, E.A.; Dobrovol’skii, Y.A. New Composite Proton-Conducting Membranes Based on Nafion and Cross-Linked Sulfonated Polystyrene. Russ. J. Electrochem. 2018, 54, 318–323. [Google Scholar] [CrossRef]
- Gardner, C.L.; Anantaraman, A.V. Studies on ion-exchange membranes. II. Measurement of the anisotropic conductance of Nafion®. J. Electroanal. Chem. 1998, 449, 209–214. [Google Scholar] [CrossRef]
- Matos, B.R.; Goulart, C.A.; Santiago, E.I.; Muccillo, R.; Fonseca, F.C. Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity. Appl. Phys. Lett. 2014, 104, 91904. [Google Scholar] [CrossRef] [Green Version]
- Maréchal, M.; Souquet, J.-L.; Guindet, J.; Sanchez, J.-Y. Solvation of sulphonic acid groups in Nafion® membranes from accurate conductivity measurements. Electrochem. Commun. 2007, 9, 1023–1028. [Google Scholar] [CrossRef]
- Iojoiu, C.; Genova-Dimitrova, P.; Maréchal, M.; Sanchez, J.-Y. Chemical and physicochemical characterizations of ionomers. Electrochim. Acta 2006, 51, 4789–4801. [Google Scholar] [CrossRef]
- Soboleva, T.; Xie, Z.; Shi, Z.; Tsang, E.; Navessin, T.; Holdcroft, S. Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. J. Electroanal. Chem. 2008, 622, 145–152. [Google Scholar] [CrossRef]
- Paul, D.K.; McCreery, R.; Karan, K. Proton Transport Property in Supported Nafion Nanothin Films by Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2014, 161, F1395–F1402. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Song, C.; Andreaus, B.; Navessin, T.; Shi, Z.; Zhang, J.; Holdcroft, S. Discrepancies in the Measurement of Ionic Conductivity of PEMs Using Two- and Four-Probe AC Impedance Spectroscopy. J. Electrochem. Soc. 2006, 153, E173. [Google Scholar] [CrossRef]
- Cooper, K.R. Progress toward Accurate Through-Plane Ion Transport Resistance Measurement of Thin Solid Electrolytes. J. Electrochem. Soc. 2010, 157, B1731–B1739. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Siroma, Z.; Tanaka, H. Anisotropic Conductivity over In-Plane and Thickness Directions in Nafion-117. J. Electrochem. Soc. 2006, 153, A2274–A2281. [Google Scholar] [CrossRef]
- Al-Madani, G.; Kailani, M.H.; Al-Hussein, M. Test System for Through-Plane Conductivity Measurements of Hydrogen Proton Exchange Membranes. Int. J. Electrochem. Sci. 2015, 10, 6465–6474. [Google Scholar]
- Gardner, C.L.; Anantaraman, A.V. Measurement of membrane conductivities using an open-ended coaxial probe. J. Electroanal. Chem. 1995, 395, 67–73. [Google Scholar] [CrossRef]
- Ertem, S.P.; Caire, B.R.; Tsai, T.H.; Zeng, D.; Vandiver, M.A.; Kuşoğlu, A.; Seifert, S.; Hayward, R.C.; Weber, A.Z.; Herring, A.M.; et al. Ion transport properties of mechanically stable symmetric ABCBA pentablock copolymers with quaternary ammonium functionalized midblock. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 612–622. [Google Scholar] [CrossRef]
Coletta et. al. [28,29,30] | ODPA-PDODA-PEG1500 (50%) | ODPA-AP6F-PEG1500 (50%) | ODPA-AP6F-PEG6000 (50%) | 6FDA-PDODA-PEG1500 (50%) | 6FDA-AP6F-PEG1500 (50%) | |
ODPA-AP6F-PEG1500 (40%) | ODPA-AP6F-PEG3400 (50%) | |||||
ODPA-AP6F-PEG1500 (30%) | ODPA-AP6F-PEG2000 (50%) | |||||
ODPA-AP6F-PEG990 (50%) | ||||||
Woo et. al. [31] | 6FDA-PDODA-PEG1500 (46.8%) | |||||
6FDA-PDODA-PEG1500 (42.1%) | ||||||
6FDA-PDODA-PEG1500 (33.6%) | ||||||
6FDA-PDODA-PEG1500 (26.2%) | ||||||
Ciftcioglu et. al. | Group 1 | Group 2 | Group 3 | |||
ODPA-PDODA-6FDA-PEG1500 (50%) | 6FDA-ODPA-AP6F-PEG1500 (42.1%) | ODPA-PDODA-6FDA-AP6F-PEG1500 (42.1%) | ||||
See Table 2 for detailed weight percentages | See Table 2 for detailed weight percentages | See Table 2 for detailed weight percentages |
Materials | PEG1500 | PDODA | AP6F | 6FDA | ODPA | |
---|---|---|---|---|---|---|
Membranes | ||||||
Proton Exchange Membrane_1 (PEM_1) | 42.10 wt% | 27.90 wt% | 0.00 wt% | 30.00 wt% | 0.00 wt% | |
Proton Exchange Membrane_2 (PEM_2) | 42.10 wt% | 27.90 wt% | 0.00 wt% | 22.50 wt% | 7.50 wt% | |
Proton Exchange Membrane_3 (PEM_3) | 42.10 wt% | 27.90 wt% | 0.00 wt% | 15.00 wt% | 15.00 wt% | |
Proton Exchange Membrane_4 (PEM_4) | 42.10 wt% | 27.90 wt% | 0.00 wt% | 7.50 wt% | 22.50 wt% | |
Proton Exchange Membrane_5 (PEM_5) | 42.10 wt% | 27.90 wt% | 0.00 wt% | 0.00 wt% | 30.00 wt% | |
Proton Exchange Membrane_6 (PEM_6) | 42.10 wt% | 0.00 wt% | 27.90 wt% | 30.00 wt% | 0.00 wt% | |
Proton Exchange Membrane_7 (PEM_7) | 42.10 wt% | 0.00 wt% | 27.90 wt% | 22.50 wt% | 7.50 wt% | |
Proton Exchange Membrane_8 (PEM_8) | 42.10 wt% | 0.00 wt% | 27.90 wt% | 15.00 wt% | 15.00 wt% | |
Proton Exchange Membrane_9 (PEM_9) | 42.10 wt% | 0.00 wt% | 27.90 wt% | 7.50 wt% | 22.50 wt% | |
Proton Exchange Membrane_10 (PEM_10) | 42.10 wt% | 0.00 wt% | 27.90 wt% | 0.00 wt% | 30.00 wt% | |
Proton Exchange Membrane_11 (PEM_11) | 42.10 wt% | 13.95 wt% | 13.95 wt% | 30.00 wt% | 0.00 wt% | |
Proton Exchange Membrane_12 (PEM_12) | 42.10 wt% | 13.95 wt% | 13.95 wt% | 22.50 wt% | 7.50 wt% | |
Proton Exchange Membrane_13 (PEM_13) | 42.10 wt% | 13.95 wt% | 13.95 wt% | 15.00 wt% | 15.00 wt% | |
Proton Exchange Membrane_14 (PEM_14) | 42.10 wt% | 13.95 wt% | 13.95 wt% | 7.50 wt% | 22.50 wt% | |
Proton Exchange Membrane_15 (PEM_15) | 42.10 wt% | 13.95 wt% | 13.95 wt% | 0.00 wt% | 30.00 wt% |
Doped in EAN at 25 °C | Doped in EAN at 60 °C | Doped in PAN at 25 °C | Doped in PAN at 60 °C | Doped in WU at 25 °C | Doped in WU at 60 °C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of WU% | Standard Deviation | Average Value of WU% | Standard Deviation | |
PEM_1 | 106 | 14 | 195 | 17 | 148 | 11 | 242 | 12 | 22 | 10 | 41 | 6 |
PEM_2 | 103 | 11 | 173 | 18 | 125 | 10 | 217 | 14 | 36 | 5 | 49 | 2 |
PEM_3 | 89 | 11 | 154 | 18 | 119 | 12 | 190 | 15 | 42 | 10 | 53 | 4 |
PEM_4 | 88 | 9 | 141 | 17 | 109 | 12 | 187 | 15 | 43 | 8 | 54 | 6 |
PEM_5 | 80 | 9 | 135 | 11 | 95 | 10 | 146 | 13 | 45 | 10 | 58 | 5 |
Doped in EAN at 25 °C | Doped in EAN at 60 °C | Doped in PAN at 25 °C | Doped in PAN at 60 °C | Doped in WU at 25 °C | Doped in WU at 60 °C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of WU% | Standard Deviation | Average Value of WU% | Standard Deviation | |
PEM_6 | 164 | 11 | 224 | 16 | 183 | 10 | 254 | 15 | 69 | 4 | 84 | 4 |
PEM_7 | 138 | 13 | 186 | 17 | 165 | 12 | 235 | 13 | 41 | 2 | 50 | 2 |
PEM_8 | 120 | 12 | 170 | 17 | 152 | 12 | 207 | 14 | 39 | 4 | 45 | 2 |
PEM_9 | 118 | 13 | 145 | 18 | 121 | 9 | 200 | 15 | 24 | 2 | 31 | 3 |
PEM_10 | 102 | 12 | 139 | 15 | 114 | 10 | 192 | 12 | 30 | 2 | 42 | 2 |
Doped in EAN at 25 °C | Doped in EAN at 60 °C | Doped in PAN at 25 °C | Doped in PAN at 60 °C | Doped in WU at 25 °C | Doped in WU at 60 °C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of ILU% | Standard Deviation | Average Value of WU% | Standard Deviation | Average Value of WU% | Standard Deviation | |
PEM_11 | 148 | 10 | 216 | 15 | 171 | 12 | 245 | 14 | 58 | 4 | 74 | 5 |
PEM_12 | 123 | 9 | 181 | 14 | 146 | 8 | 225 | 14 | 42 | 4 | 49 | 4 |
PEM_13 | 105 | 12 | 159 | 14 | 140 | 12 | 188 | 15 | 34 | 5 | 44 | 3 |
PEM_14 | 101 | 11 | 142 | 11 | 115 | 10 | 180 | 16 | 33 | 3 | 39 | 3 |
PEM_15 | 91 | 12 | 137 | 9 | 100 | 10 | 169 | 16 | 28 | 4 | 36 | 2 |
PEG-PI Systems | EAN Uptake (%) at 25 °C | EAN Uptake (%) at 60 °C |
---|---|---|
ODPA-AP6F-PEG1500 (50%) [28] | 149 | Not studied |
ODPA-PDODA-PEG1500 (50%) [28] | 65 | Not studied |
ODPA-AP6F-PEG1500 (40 wt%) [29] | 5 | Not studied |
ODPA-AP6F-PEG1500 (50 wt%) [29] | 149 | Not studied |
ODPA-AP6F-PEG1500 (50 wt%) [30] | 149 | Not studied |
6FDA-AP6F-PEG1500 (50 wt%) [30] | 203 | |
6FDA-PDODA-PEG1500 (42.1 wt%) [31] | 62 | Not studied |
6FDA-PDODA-PEG1500 (42.1 wt%) (PEM_1) | 106 | 195 |
ODPA-PDODA-PEG1500 (42.1 wt%) PEM_5 | 80 | 135 |
6FDA-AP6F-PEG1500 (42.1 wt%) (PEM_6) | 164 | 224 |
ODPA-AP6F-PEG1500 (42.1 wt%) PEM_10 | 102 | 139 |
Membranes Not Thermally Treated | Membranes Thermally Annealed for 1 h | |||
---|---|---|---|---|
Tensile Stress at Maximum Force (MPa) | Young’s Modulus(MPa) | Tensile Stress at Maximum Force (MPa) | Young’s Modulus(MPa) | |
PEM_1 | 9.62 | 147.05 | 6.50 | 45.6 |
PEM_2 | 11.67 | 166.92 | 4.03 | 59.54 |
PEM_3 | 18.21 | 150.43 | 6.71 | 79.83 |
PEM_4 | 14.53 | 152.18 | 7.24 | 75.30 |
PEM_5 | 17.43 | 220.33 | 10.80 | 145.97 |
PEM_6 | 10.88 | 140.21 | 3.75 | 41.29 |
PEM_7 | 9.29 | 158.65 | 3.00 | 52.24 |
PEM_8 | 13.12 | 164.94 | 4.56 | 133.02 |
PEM_9 | 14.22 | 193.44 | 3.05 | 72.03 |
PEM_10 | 22.23 | 198.44 | 10.12 | 180.58 |
PEM_11 | 11.23 | 165.26 | 5.12 | 101.32 |
PEM_12 | 27.82 | 206.78 | 6.83 | 103.57 |
PEM_13 | 14.25 | 243.24 | 7.33 | 166.63 |
PEM_14 | 15.76 | 213.67 | 8.31 | 183.31 |
PEM_15 | 18.65 | 195.35 | 11.77 | 175.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciftcioglu, G.A.; Frank, C.W. Effect of Increased Ionic Liquid Uptake via Thermal Annealing on Mechanical Properties of Polyimide-Poly(ethylene glycol) Segmented Block Copolymer Membranes. Molecules 2021, 26, 2143. https://doi.org/10.3390/molecules26082143
Ciftcioglu GA, Frank CW. Effect of Increased Ionic Liquid Uptake via Thermal Annealing on Mechanical Properties of Polyimide-Poly(ethylene glycol) Segmented Block Copolymer Membranes. Molecules. 2021; 26(8):2143. https://doi.org/10.3390/molecules26082143
Chicago/Turabian StyleCiftcioglu, Gokcen A., and Curtis W. Frank. 2021. "Effect of Increased Ionic Liquid Uptake via Thermal Annealing on Mechanical Properties of Polyimide-Poly(ethylene glycol) Segmented Block Copolymer Membranes" Molecules 26, no. 8: 2143. https://doi.org/10.3390/molecules26082143
APA StyleCiftcioglu, G. A., & Frank, C. W. (2021). Effect of Increased Ionic Liquid Uptake via Thermal Annealing on Mechanical Properties of Polyimide-Poly(ethylene glycol) Segmented Block Copolymer Membranes. Molecules, 26(8), 2143. https://doi.org/10.3390/molecules26082143