Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Equipment and Software
2.3. Preparation of Spent Coffee Grounds Biochar (SCBC)
2.4. Preparation of the Titanium–Impregnated Spent Coffee Biochar (TiO2@SCBC)
2.5. The Point-of-Zero-Charge (PZC)
2.6. Batch Adsorption Studies
2.7. Sorption Equilibrium and Kinetics
2.8. Desorption and Regeneration Experiments
2.9. Economics and Financial Assessment
3. Results and Discussion
3.1. Physicochemical Characterization
3.1.1. Thermogravimetric Analysis (TGA)
3.1.2. Fourier–Transform Infrared (FTIR) Spectra
3.1.3. Raman Spectroscopic Analysis
3.1.4. Pore Structure Characterization of the Prepared Adsorbents
3.1.5. SEM, EDS, and TEM Analyses
3.2. Plackett–Burman Design (PBD)
3.2.1. Screening of the Variables’ Significance
3.2.2. Model Fitting Parameters
3.2.3. Contour, Surface, and Optimization Phase Plots
3.3. Isotherms and Adsorption Kinetics
3.3.1. Isotherms
3.3.2. Adsorption Kinetics
3.4. Desorption and Recovery Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- El-Gendy, A.; El-Shafie, A.S.; Issa, A.; Al-Meer, S.; Al-Saad, K.; El-Azazy, M. Carbon-based materials (CBMS) for determination and remediation of antimicrobials in different substrates: Wastewater and infant foods as examples. In Carbon-Based Material for Environmental Protection and Remediation; Bartoli, M., Frediani, M., Rosi, L., Eds.; IntechOpen: London, UK, 2020; pp. 103–122. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Elgendy, A.; Issa, A.; Al-Meer, S.; Al-Saad, K. A Comparison between Different Agro-Wastes and Carbon Nanotubes for Removal of Sarafloxacin from Wastewater: Kinetics and Equilibrium Studies. Molecules 2020, 25, 5429. [Google Scholar] [CrossRef] [PubMed]
- El-Azazy, M.; El-Shafie, A.S.; Al-Meer, S.; Al-Saad, K.A. Eco-structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits’ Biochar versus the Magnetic Biochar. Nanomaterials 2020, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.K.; Ghaly, T.M.; Gillings, M.R. A survey of sub-inhibitory concentrations of antibiotics in the environment. Environ. Sci. 2021, 99, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Arun, S.; Kumar, R.M.; Raj, J.; Mukhopadhyay, M.; Ilango, K.; Chakrabort, P. Occurrence, source and risk assessment of fluoroquinolones in dumpsite soil and sewage sludge from Chennai, India. Environ. Toxicol. Pharmacol. 2020, 79, 103410. [Google Scholar] [CrossRef]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 26 EU/EEA Countries in 2012: Fourth ESVAC Report; European Medicines Agency: London, UK, 2014; Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-26-european-union/european-economic-area-countries-2012-fourth-european-surveillance-veterinary-antimicrobial_en.pdf (accessed on 20 March 2021).
- Janecko, N.; Pokludova, L.; Blahova, J.; Svobodova, Z.; Literak, I. Implications of fluoroquinolone contamination for the aquatic environment—A review. Environ. Toxicol. Chem. 2016, 35, 2647–2656. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Chen, J.; Wei, X.; Zhang, S.; Qiao, X.; Cai, X.; Xie, Q. Aquatic Photochemistry of Fluoroquinolone Antibiotics: Kinetics, Pathways, and Multivariate Effects of Main Water Constituents. Environ. Sci. Technol. 2010, 44, 2400–2405. [Google Scholar] [CrossRef]
- Oliphant, C.M.; Green, G.M. Quinolones: A comprehensive review. Am. Fam. Physician 2002, 65, 455–464. [Google Scholar]
- Yulie, X.; Yancheng, L.; Haixia, L.; Peng, Z.; Ruizhi, T.; Xiyan, C.; Wenfeng, W. Pulse radiolysis and laser flash photolysis study of Balofloxacin. Nucl. Sci. Tech. 2013, 24, S010312. [Google Scholar]
- Ge, L.; Halsall, C.; Chen, C.E.; Zhang, P.; Dong, Q.; Yao, Z. Exploring the aquatic photodegradation of two ionisable fluoroquinolone antibiotics—Gatifloxacin and balofloxacin: Degradation kinetics, photobyproducts and risk to the aquatic environment. Sci. Total Environ. 2018, 633, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Song, W. Photo-transformation of pharmaceutically active compounds in the aqueous environment: A review. Environ. Sci. Process. Impacts 2014, 16, 697–720. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Yahyaoui, S.; Hanafy, H.; Seliem, M.K.; Bonilla-Petriciolet, A.; Dotto, G.L.; Sellaoui, L.; Li, Q. Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modelling. Chem. Eng. J. 2020, 128116. [Google Scholar] [CrossRef]
- Li, Z.; Sellaoui, L.; Franco, D.; Netto, M.S.; Georgin, J.; Dotto, G.L.; Bajahzar, A.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism. Chem. Eng. J. 2020, 389, 124467. [Google Scholar] [CrossRef]
- Li, Z.; Sellaoui, L.; Dotto, G.L.; Bonilla-Petriciolet, A.; Lamine, A.B. Understanding the adsorption mechanism of phenol and 2-nitrophenol on a biopolymer-based biochar in single and binary systems via advanced modeling analysis. Chem. Eng. J. 2019, 371, 1–6. [Google Scholar] [CrossRef]
- Zhang, B.; Han, X.; Gu, P.; Fang, S.; Bai, J. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. Mol. Liq. 2017, 238, 316–325. [Google Scholar] [CrossRef]
- Peng, H.; Pa, B.; Wu, M.; Liu, Y.; Zhang, D.; Xing, B. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity- and structure-controlled process. Hazard. Mater. 2012, 233–234, 89–96. [Google Scholar] [CrossRef]
- Yang, C.; Li, R.; Wang, Q.; Wang, W.; Gao, P.; Hu, B. Synthesis of alkyl-functionalized magnetic for fluoroquinolones removal: Adsorption performance and mechanism studies in single and binary systems. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125549. [Google Scholar] [CrossRef]
- International Coffee Organization. Available online: http://www.ico.org/ (accessed on 18 March 2021).
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.S.; El-Shafie, A.S.; Zaher, N.; El-Azazy, M. Application of Pineapple Leaves as Adsorbents for Removal of Rose Bengal from Wastewater: Process Optimization Operating Face-Centered Central Composite Design (FCCCD). Molecules 2020, 25, 3752. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Ashraf, A.; Issa, A.A. Eco-Structured Biosorptive Removal of Basic Fuchsin Using Pistachio Nutshells: A Definitive Screening Design—Based Approach. Appl. Sci. 2019, 9, 4855. [Google Scholar] [CrossRef] [Green Version]
- El-Azazy, M.; Kalla, R.N.; Issa, A.A.; Al-Sulaiti, M.; El-Shafie, A.S.; Shomar, B.; Al-Saad, K. Pomegranate peels as versatile adsorbents for water purification: Application of box–behnken design as a methodological optimization approach. Environ. Prog. Sustain. Energy 2019, 38, 13223. [Google Scholar] [CrossRef]
- Al-Saad, K.; El-Azazy, M.; Issa, A.A.; Al-Yafie, A.; El-Shafie, A.S.; Al-Sulaiti, M.; Shomar, B. Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach. Front. Chem. 2019, 7, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saad, K.; Issa, A.A.; Idoudi, S.; Shomar, B.; Al-Ghouti, M.A.; Al-Hashimi, N.; El-Azazy, M. Smart Synthesis of Trimethyl Ethoxysilane (TMS) Functionalized Core–Shell Magnetic Nanosorbents Fe3O4@SiO2: Process Optimization and Application for Extraction of Pesticides. Molecules 2020, 25, 4827. [Google Scholar] [CrossRef] [PubMed]
- Elazazy, M.S.; Issa, A.A.; Al-Mashreky, M.; Al-Sulaiti, M.; Al-Saad, K. Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization. Adv. Powder Technol. 2018, 29, 1204–1215. [Google Scholar] [CrossRef]
- Masoudian, N.; Rajabi, M.; Ghaedi, M. Titanium oxide nanoparticles loaded onto activated carbon prepared from bio-waste watermelon rind for the efficient ultrasonic-assisted adsorption of congo red and phenol red dyes from wastewaters. Polyhedron 2019, 173, 114105. [Google Scholar] [CrossRef]
- Poudel, B.R.; Aryal, R.L.; Bhattarai, S.; Koirala, A.R.; Gautam, S.K.; Ghimire, K.N.; Pant, B.; Park, M.; Paudyal, H.; Pokhrel, M.R. Agro-Waste Derived Biomass Impregnated with TiO2 as a Potential Adsorbent for Removal of As (III) from Water. Catalysts 2020, 10, 1125. [Google Scholar] [CrossRef]
- Lessa, E.F.; Nunes, M.L.; Fajardo, A.R. Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydr. Polym. 2018, 189, 257–266. [Google Scholar] [CrossRef]
- Shin, J.; Kwak, J.; Lee, Y.G.; Kim, S.; Choi, M.; Bae, S.; Lee, S.H.; Park, Y.; Chon, K. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions. Environ. Pollut. 2021, 270, 116244. [Google Scholar] [CrossRef]
- Paredes-Laverde, M.; Salamanca, M.; Silva-Agredo, J.; Manrique-Losada, L.; Torres-Palma, R.A. Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions. J. Environ. Chem. Eng. 2019, 7, 103318. [Google Scholar] [CrossRef]
- Benyekkou, N.; Ghezzar, M.R.; Abdelmalek, F.; Addou, A. Elimination of paracetamol from water by a spent coffee grounds biomaterial. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100396. [Google Scholar] [CrossRef]
- El-Azazy, M.; Dimassi, S.; El-Shafie, A.S.; Issa, A. Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater: Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design. Appl. Sci. 2019, 9, 4856. [Google Scholar] [CrossRef] [Green Version]
- Elazazy, M.S.; El-Hamshary, M.; Sakr, M.; Al-Easa, H.S. Plackett-Burman and Box-Behnken designs as chemometric tools for micro-determination of l-Ornithine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 193, 397–406. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Zhang, L.; Hao, Y.; Ma, J.; Xu, B.; Li, W. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. Mol. Catal. 2000, 151, 205–216. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Zhang, L.; Zhang, J.; Jin, L. Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method. Water Res. 2003, 37, 3815. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Liz-Marzán, L.M. Oleylamine in Nanoparticle Synthesis. Chem. Mater. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Babic, M.B.; Milovijic, S.K.; Polovina, M.J.; Kaludierovic, B.V. Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 1999, 37, 477–481. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; Lostado-Lorza, R.; Somovilla-Gómez, F.; Escribano-García, R. Effective use of activated carbon from olive stone waste in the biosorption removal of Fe(III) ions from aqueous solutions. Clean. Prod. 2021, 294, 126332. [Google Scholar] [CrossRef]
- Debnath, S.; Ghosh, U.C. Nanostructured hydrous titanium(IV) oxide: Synthesis, characterization and Ni(II) adsorption behavior. Chem. Eng. 2009, 152, 480–491. [Google Scholar] [CrossRef]
- Ching, S.L.; Yousoff, M.S.; Aziz, H.A.; Umar, M. Influence of impregnation ratio on coffee ground activated carbon as landfill leachate adsorbent for removal of total iron and orthophosphate. Desalination 2011, 279, 225–234. [Google Scholar] [CrossRef]
- Ferraz, F.M.; Yuan, Q. Organic matter removal from landfill leachate by adsorption using spent coffee grounds activated carbon. Sustain. Mater. Technol. 2020, 23, e00141. [Google Scholar] [CrossRef]
- Imessaoudene, D.; Hanini, S.; Bouzidi, A.; Ararem, A. Kinetic and thermodynamic study of cobalt adsorption by spent coffee. Desalination Water Treat. 2016, 57, 6116–6123. [Google Scholar] [CrossRef]
- Mugundan, S.; Rajamannan, B.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 2015, 5, 449–456. [Google Scholar] [CrossRef] [Green Version]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Ren, X.; Qian, H.; Tang, P.; Tang, Y.; Liu, Y.; Pu, H.; Zhang, M.; Zhao, L.; Li, H. Preparation, Characterization, and Properties of Inclusion Complexes of Balofloxacin with Cyclodextrins. AAPS PharmSciTech 2019, 20, 278. [Google Scholar] [CrossRef] [PubMed]
- Franca, A.S.; Oliveira, L.S.; Ferreira, M.E. Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 2009, 249, 267–272. [Google Scholar] [CrossRef]
- Lafi, R.; Fradj, A.B.; Hafiane, A.; Hameed, B.H. Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. Korean Chem. Eng. 2014, 31, 2198–2206. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Gevaerd, A.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar obtained from spent coffee grounds: Evaluation of adsorption properties and its application in a voltammetric sensor for lead (II) ions. Microchem. J. 2021, 165, 106114. [Google Scholar] [CrossRef]
- Ohsaka, T. Temperature Dependence of the Raman Spectrum in Anatase TiO2. J. Phys. Soc. Jpn. 1980, 48, 1661–1668. [Google Scholar] [CrossRef]
- Azimi, E.B.; Badiei, A.; Ghasemi, J.B. Efficient removal of malachite green from wastewater by using boron-doped mesoporous carbon nitride. Appl. Surf. Sci. 2019, 469, 236–245. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic—Inorganic Nanocomposite Materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Mathew, S.S.; Sunny, N.E.; Shanmugam, V. Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorg. Chem. Commun. 2021, 126, 108485. [Google Scholar] [CrossRef]
- Balachandran, K.; Mageswari, S.; Preethi, A. Photocatalytic decomposition of A549-lung cancer cells by TiO2 nanoparticles. Mater. Today Proc. 2021, 37, 1071–1074. [Google Scholar] [CrossRef]
- Elazazy, M.S. Factorial design and machine learning strategies: Impacts on pharmaceutical analysis. In Spectroscopic Analyses: Developments and Applications; Zafar, F., Sharmin, E., Eds.; InTech Open: London, UK, 2017; pp. 213–230. [Google Scholar] [CrossRef] [Green Version]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Langmuir, I. Adsorption of gases on glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Wang, J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Araújo, C.S.t.; Almeida, I.L.s.; Rezende, H.C.; Marcionilio, S.M.l.o.; Léon, J.J.L.; de Matos, T.N. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 2018, 137, 348–354. [Google Scholar] [CrossRef]
- Moussavi, G.; Barikbin, B. Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chem. Eng. J. 2010, 162, 893–900. [Google Scholar] [CrossRef]
- Singh, T.; Singhal, R. Methyl Orange adsorption by reuse of a waste adsorbent poly(AAc/AM/SH)-MB superabsorbent hydrogel: Matrix effects, adsorption thermodynamic and kinetics studies. Desalination Water Treat. 2015, 53, 1942–1956. [Google Scholar] [CrossRef]
Factors-Code | Unit | Low (−1) | Mid (0) | High (+1) |
---|---|---|---|---|
pH-(A) | pH unit | 3.0 | 6.0 | 9.0 |
Initial [BALX]-(B) | Ppm | 10 | 35 | 60 |
Contact Time (CT)-(C) | Min | 10 | 50 | 90 |
Adsorbent Dosage (AD)-(D) | mg/13 mL | 30 | 75 | 120 |
Dependent Variables | Percentage Removal (%R), Adsorption Capacity (qe, mg/g) |
Variables | SCBC | TiO2@SCBC | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trial # | pH | [BALX] | CT | AD | %R Obs * | %R Pred ** | RE *** | qe Obs * | qe Pred ** | RE *** | %R Obs * | %R Pred ** | RE *** | qe Obs * | qe Pred ** | RE *** |
01 | 9 (+) | 60 (+) | 10 (−) | 120 (+) | 45.31 | 45.08 | 0.01 | 2.94 | 2.90 | 0.01 | 43.40 | 45.22 | 0.04 | 2.82 | 3.14 | 0.10 |
02 | 9 (+) | 10 (−) | 90 (+) | 120 (+) | 62.14 | 68.34 | 0.09 | 0.67 | 0.69 | 0.04 | 92.47 | 91.78 | 0.01 | 1.00 | 1.00 | 0.01 |
03 | 3 (−) | 10 (−) | 10 (−) | 30 (−) | 22.11 | 20.94 | 0.06 | 0.95 | 0.87 | 0.09 | 19.77 | 22.03 | 0.10 | 0.85 | 0.90 | 0.06 |
04 | 3 (−) | 60 (+) | 10 (−) | 120 (+) | 39.83 | 40.25 | 0.01 | 2.59 | 2.66 | 0.03 | 29.22 | 28.82 | 0.01 | 1.90 | 1.83 | 0.04 |
05 | 3 (−) | 60 (+) | 90 (+) | 30 (−) | 27.76 | 27.07 | 0.03 | 7.19 | 7.14 | 0.01 | 15.26 | 15.25 | 0.00 | 3.96 | 3.90 | 0.02 |
06 | 3 (−) | 60 (+) | 90 (+) | 120 (+) | 57.29 | 56.35 | 0.02 | 3.76 | 3.72 | 0.01 | 32.13 | 34.16 | 0.06 | 2.09 | 2.14 | 0.02 |
07 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 30.36 | 28.91 | 0.05 | 1.84 | 1.75 | 0.05 | 16.09 | 15.27 | 0.05 | 0.97 | 0.94 | 0.04 |
08 | 3 (−) | 10 (−) | 90 (+) | 30 (−) | 28.40 | 29.31 | 0.03 | 1.26 | 1.22 | 0.03 | 24.34 | 26.11 | 0.07 | 1.05 | 1.05 | 0.00 |
09 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 27.06 | 28.91 | 0.06 | 1.64 | 1.75 | 0.06 | 14.74 | 15.27 | 0.03 | 0.89 | 0.94 | 0.05 |
10 | 9 (+) | 10 (−) | 10 (−) | 30 (−) | 21.59 | 23.45 | 0.08 | 0.93 | 0.95 | 0.02 | 32.98 | 34.56 | 0.05 | 1.42 | 1.55 | 0.08 |
11 | 3 (−) | 10 (−) | 10 (−) | 120 (+) | 48.39 | 43.59 | 0.11 | 0.47 | 0.45 | 0.03 | 50.44 | 49.35 | 0.02 | 0.55 | 0.50 | 0.11 |
12 | 9 (+) | 60 (+) | 90 (+) | 30 (−) | 30.38 | 30.31 | 0.00 | 7.98 | 7.79 | 0.02 | 22.72 | 23.93 | 0.05 | 5.89 | 6.69 | 0.12 |
13 | 9 (+) | 60 (+) | 10 (−) | 30 (−) | 21.48 | 21.65 | 0.01 | 5.63 | 5.56 | 0.01 | 21.04 | 20.19 | 0.04 | 5.47 | 5.72 | 0.04 |
14 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 30.73 | 28.91 | 0.06 | 1.86 | 1.75 | 0.06 | 15.79 | 15.27 | 0.03 | 0.96 | 0.94 | 0.02 |
15 | 3 (−) | 60 (+) | 10 (−) | 120 (+) | 38.57 | 40.25 | 0.04 | 2.51 | 2.66 | 0.06 | 29.28 | 28.81 | 0.02 | 1.90 | 1.83 | 0.04 |
16 | 9 (+) | 60 (+) | 90 (+) | 120 (+) | 59.51 | 63.10 | 0.06 | 3.82 | 4.06 | 0.06 | 49.65 | 53.60 | 0.07 | 3.22 | 3.67 | 0.12 |
17 | 9 (+) | 10 (−) | 90 (+) | 30 (−) | 36.33 | 32.83 | 0.11 | 1.21 | 1.33 | 0.09 | 44.49 | 40.97 | 0.09 | 1.92 | 1.81 | 0.06 |
18 | 3 (-) | 10 (−) | 90 (+) | 120 (+) | 57.29 | 61.02 | 0.06 | 0.62 | 0.64 | 0.01 | 61.39 | 58.49 | 0.05 | 0.66 | 0.58 | 0.14 |
19 | 9 (+) | 10 (−) | 10 (−) | 120 (+) | 54.98 | 48.81 | 0.13 | 0.52 | 0.50 | 0.05 | 81.27 | 77.43 | 0.05 | 0.88 | 0.85 | 0.04 |
20 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 29.36 | 28.91 | 0.02 | 1.78 | 1.75 | 0.02 | 15.11 | 15.27 | 0.01 | 0.92 | 0.94 | 0.02 |
21 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 32.12 | 28.91 | 0.11 | 1.95 | 1.75 | 0.11 | 16.36 | 15.27 | 0.07 | 0.99 | 0.94 | 0.06 |
22 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 29.32 | 28.91 | 0.01 | 1.78 | 1.75 | 0.02 | 16.06 | 15.27 | 0.05 | 0.97 | 0.94 | 0.04 |
23 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 26.09 | 28.91 | 0.10 | 1.58 | 1.75 | 0.10 | 14.42 | 15.27 | 0.06 | 0.87 | 0.94 | 0.07 |
24 | 6 (0) | 35 (0) | 50 (0) | 75 (0) | 26.82 | 28.91 | 0.10 | 1.62 | 1.75 | 0.08 | 13.81 | 15.27 | 0.01 | 0.84 | 0.94 | 0.10 |
25 | 9 (+) | 10 (−) | 90 (+) | 120 (+) | 70.03 | 68.34 | 0.02 | 0.77 | 0.69 | 0.11 | 92.99 | 91.78 | 0.01 | 1.01 | 1.00 | 0.02 |
26 | 3 (−) | 60 (+) | 90 (+) | 30 (−) | 29.27 | 27.07 | 0.10 | 7.59 | 7.14 | 0.06 | 16.18 | 15.25 | 0.06 | 4.18 | 3.89 | 0.07 |
27 | 3 (−) | 10 (−) | 10 (−) | 30 (−) | 18.36 | 20.94 | 0.12 | 0.79 | 0.87 | 0.02 | 21.61 | 22.03 | 0.04 | 0.93 | 0.90 | 0.10 |
28 | 9 (+) | 60 (+) | 10 (−) | 30 (−) | 21.48 | 21.65 | 0.01 | 5.64 | 5.56 | 0.04 | 21.42 | 20.19 | 0.01 | 5.55 | 5.72 | 0.01 |
Parameters | SCBC | TiO2@SCBC |
---|---|---|
Langmuir surface area (SA) (m2/g) | 49.23 | 50.54 |
Total pore volume (cm3/g) | 0.058 | 0.048 |
Average pore radius (°A) | 30.3 | 24.4 |
SCBC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Response | %R | qe | ||||||||
Source | DF * | Adj SS * | Adj MS * | F-Value | p-Value | DF * | Adj SS * | Adj MS * | F-Value | p-Value |
Model | 5 | 3.64890 | 0.72978 | 125.67 | 0.000 | 5 | 18.3315 | 3.6663 | 842.07 | 0.000 |
Linear | 4 | 3.34975 | 0.83744 | 144.21 | 0.000 | 4 | 18.3022 | 4.5756 | 1050.90 | 0.000 |
pH | 1 | 0.06412 | 0.06412 | 11.04 | 0.003 | 1 | 0.0372 | 0.0372 | 8.54 | 0.008 |
[BALX] | 1 | 0.03176 | 0.03176 | 5.47 | 0.029 | 1 | 15.5721 | 15.5721 | 3576.55 | 0.000 |
CT | 1 | 0.56584 | 0.56584 | 97.44 | 0.000 | 1 | 0.5694 | 0.5694 | 130.79 | 0.000 |
AD | 1 | 2.68803 | 2.68803 | 462.88 | 0.000 | 1 | 2.1236 | 2.1236 | 487.73 | 0.000 |
Curvature | 1 | 0.29915 | 0.29915 | 51.51 | 0.000 | 1 | 0.0293 | 0.0293 | 6.73 | 0.017 |
Error | 22 | 0.12776 | 0.00581 | 22 | 0.0958 | 0.0044 | ||||
Lack-of-Fit | 10 | 0.06322 | 0.00632 | 1.18 | 0.390 | 10 | 0.0294 | 0.0029 | 0.53 | 0.838 |
Pure Error | 12 | 0.06454 | 0.00538 | 12 | 0.0664 | 0.0055 | ||||
Total | 27 | 3.77666 | 27 | 18.4273 | ||||||
TiO2@SCBC | ||||||||||
Response | %R | qe | ||||||||
Source | DF * | Adj SS * | Adj MS * | F-Value | p-Value | DF * | Adj SS * | Adj MS * | F-Value | p-Value |
Model | 5 | 9.61640 | 1.92328 | 543.22 | 0.000 | 5 | 14.4461 | 2.88922 | 1482.04 | 0.000 |
Linear | 4 | 5.85847 | 1.46462 | 413.67 | 0.000 | 4 | 11.9301 | 2.98252 | 1529.90 | 0.000 |
pH | 1 | 1.01483 | 1.01483 | 286.63 | 0.000 | 1 | 1.4524 | 1.45244 | 745.03 | 0.000 |
[BALX] | 1 | 1.44657 | 1.44657 | 408.58 | 0.000 | 1 | 8.5523 | 8.55228 | 4386.92 | 0.000 |
CT | 1 | 0.14464 | 0.14464 | 40.85 | 0.000 | 1 | 0.1206 | 0.12056 | 61.84 | 0.000 |
AD | 1 | 3.25243 | 3.25243 | 918.63 | 0.000 | 1 | 1.8048 | 1.80482 | 925.79 | 0.000 |
Curvature | 1 | 3.75793 | 3.75793 | 1061.40 | 0.000 | 1 | 2.5160 | 2.51602 | 1290.60 | 0.000 |
Error | 1 | 3.75793 | 3.75793 | 1061.40 | 0.000 | 1 | 2.5160 | 2.51602 | 1290.60 | 0.000 |
Lack-of-Fit | 22 | 0.07789 | 0.00354 | 1.85 | 0.155 | 22 | 0.0429 | 0.00195 | 1.29 | 0.335 |
Pure Error | 10 | 0.04729 | 0.00473 | 10 | 0.0222 | 0.00222 | ||||
Total | 12 | 0.03060 | 0.00255 | 12 | 0.0207 | 0.00173 |
Response | R2% | R2–Adj % | R2–Pred % | Optimum Conditions |
---|---|---|---|---|
%R (SCBC) | 96.62 | 95.85 | 94.46 | pH = 9.0, [BALX] = 10 ppm, CT = 90 min, AD = 120 mg, (d = 0.9672, %R = 68.34%) |
qe(SCBC) | 99.48 | 99.36 | 99.17 | pH = 9.0, [BALX] = 60 ppm, CT = 90 min, AD = 30 mg, (d = 0.9740, qe = 7.79 mg/g) |
%R (TiO2@SCBC) | 99.20 | 99.01 | 98.70 | pH = 9.0, [BALX] = 10 ppm, CT = 90 min, AD = 120 mg, (d = 0.9848, %R = 91.78%) |
qe(TiO2@SCBC) | 99.70 | 99.64 | 99.52 | pH = 9.0, [BALX] = 60 ppm, CT = 90 min, AD = 30 mg, (d = 1.000, qe = 6.69 mg/g) |
Isotherm | Equations (Nonlinear Forms) | Parameters | Value | |
---|---|---|---|---|
SCBC | TiO2@SCBC | |||
Langmuir | (mg/g) | 142.55 | 196.73 | |
(L. mole−1) | 0.031 | 0.019 | ||
R2 | 0.9803 | 0.9784 | ||
Freundlich | 0.78 | 0.84 | ||
(mole/g) (L/mole)1/n | 5.47 | 4.45 | ||
R2 | 0.9844 | 0.9831 | ||
Temkin | (J/mole) | 221.6 | 224.7 | |
(L/mole) | 1.992 | 1.753 | ||
R2 | 0.8867 | 0.8645 | ||
D-R | . exp (−β.) | 1.04 × 10−8 | 9.97 × 10−9 | |
(kJ/mole) | 6.93 | 7.08 | ||
(mg/g) | 50.29 | 47.17 | ||
R2 | 0.8732 | 0.8747 |
Model | Parameter | Value | |
---|---|---|---|
SCBC | TiO2@SCBC | ||
PFO = k1(qe − qt) | K1 (min−1) | 1.826 | 1.263 |
qe (mg/g) | 38.48 | 38.98 | |
R2 | 0.4884 | 0.6899 | |
PSO = k2(qe − qt)2 | K2 (g.mg−1 min−1) | 0.113 | 0.064 |
qe (mg/g) | 39.23 | 40.04 | |
R2 | 0.8705 | 0.9451 | |
Elovich qt= | α | 2.44 × 1011 | 1.18 × 108 |
B | 0.759 | 0.549 | |
R2 | 0.9135 | 0.7694 | |
Weber-Morris | KI | 0.509 | 0.649 |
C | 35.32 | 34.63 | |
R2 | 0.6863 | 0.4910 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Azazy, M.; El-Shafie, A.S.; Morsy, H. Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin. Molecules 2021, 26, 2295. https://doi.org/10.3390/molecules26082295
El-Azazy M, El-Shafie AS, Morsy H. Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin. Molecules. 2021; 26(8):2295. https://doi.org/10.3390/molecules26082295
Chicago/Turabian StyleEl-Azazy, Marwa, Ahmed S. El-Shafie, and Hagar Morsy. 2021. "Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin" Molecules 26, no. 8: 2295. https://doi.org/10.3390/molecules26082295
APA StyleEl-Azazy, M., El-Shafie, A. S., & Morsy, H. (2021). Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin. Molecules, 26(8), 2295. https://doi.org/10.3390/molecules26082295