Role of pH on Nanostructured SERS Active Substrates for Detection of Organic Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. SERS on Metal Decorated Glass Slides
2.1.1. Methylene Blue Dye
2.1.2. Brazilwood and Alizarin Red-S Dyes
2.2. SERS on Metal Decorated Polishing Sheets
2.3. DFT Calculation Results
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Pulsed Laser Deposition
3.3. Raman Spectroscopy Measurements
3.4. UV–VIS Absorption Spectroscopy
3.5. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman scattering. J. Phys. Condens. Matter. 1992, 4, 1143–1212. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Premasiri, W.R.; Moir, D.T.; Klempner, M.S.; Krieger, N.; Jones, G.; Ziegler, L.D. Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria. J. Phys. Chem. B 2005, 109, 312–320. [Google Scholar] [CrossRef]
- Itzkan, I.; Dasari, R.R.; Feld, M.S.; Kneipp, K.; Kneipp, H. Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter. 2002, 14, R597–R624. [Google Scholar]
- Casadio, F.; Leona, M.; Lombardi, J.R.; Van Duyne, R. Identification of Organic Colorants in Fibers, Paints, and Glazes by Surface Enhanced Raman Spectroscopy. Acc. Chem. Res. 2010, 43, 782–791. [Google Scholar] [CrossRef]
- Alyami, A.; Saviello, D.; McAuliffe, M.; Mirabile, A.; Lewis, L.; Iacopino, D. Metal Nanoinks as Chemically Stable Surface Enhanced Scattering (SERS) Probes for Analysis of Blue BIC Ballpoint Pens. Phys. Chem. Chem. Phys. 2017, 19, 14652–14658. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, M.; Ledo-Suárez, A.; López, T.; Scalarone, D.; López-Quintela, M.A. Plastic matters: An analytical procedure to evaluate the degradability of contemporary works of art. Anal. Bioanal. Chem. 2011, 399, 2939–2948. [Google Scholar] [CrossRef]
- Sarkar, S.; Chowdhury, J.; Dutta, S.; Pal, T. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 169, 108–115. [Google Scholar] [CrossRef]
- Kazanci, M.; Schulte, J.P.; Douglas, C.; Fratzl, P.; Pink, D.; Smith-Palmer, T. Tuning the surface-enhanced raman scattering effect to different molecular groups by switching the silver colloid solution pH. Appl. Spectrosc. 2009, 63, 214–223. [Google Scholar] [CrossRef]
- Lee, S.; Wong, J.H.; Liu, S.J. Fluorescence and raman study of pH effect on the adsorption orientations of methyl red on silver colloids. Appl. Spectrosc. 2011, 65, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Chong, N.S.; Smith, K.A.; Setti, S.; Ooi, B.G. Application of gold and silver colloidal nanoparticles for the surface-enhanced Raman spectrometric analysis of melamine and 4-aminobiphenyl. Int. J. Environ. Technol. Manag. 2012, 16, 3. [Google Scholar] [CrossRef]
- Ossi, P.M.; Agarwal, N.R.; Fazio, E.; Neri, F.; Trusso, S. Laser-Mediated Nanoparticle Synthesis and Self-Assembling. Springer Ser. Mater. Sci. 2014, 191, 175–212. [Google Scholar]
- D’Andrea, C.; Neri, F.; Ossi, P.M.; Santo, N.; Trusso, S. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. Nanotechnology 2009, 20, 245606. [Google Scholar] [CrossRef] [PubMed]
- Fazio, E.; Neri, F.; D’Andrea, C.; Ossi, P.M.; Santo, N.; Trusso, S. SERS activity of pulsed laser ablated silver thin films with controlled nanostructure. J. Raman Spectrosc. 2011, 42, 1298–1304. [Google Scholar] [CrossRef]
- Agarwal, N.R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R.C.; Trusso, S.; Ossi, P.M. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation. Appl. Phys. A Mater. Sci. Process. 2014, 117, 347–351. [Google Scholar] [CrossRef]
- Agarwal, N.R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P.M. Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy. Appl. Surf. Sci. 2012, 258, 9148–9152. [Google Scholar] [CrossRef]
- Mollica Nardo, V.; Aliotta, F.; Mastelloni, M.A.; Ponterio, R.C.; Saija, F.; Trusso, S.; Vasi, C.S. A spectroscopic approach to the study of organic pigments in the field of cultural heritage. Atti Della Accad. Peloritana Dei Pericolanti Cl. Di Sci. Fis. Mat. e Nat(AAPP) 2017, 95, 1–12. [Google Scholar]
- Trusso, S.; Fazio, E.; Neri, F.; Ossi, P.M. Synthesis of SERS-active substrates by pulsed laser ablation. In Handbook of Enhanced Spectroscopy; Guigui-Lidgi, N., Gucciardi, P.G., de la Chapelle, M.L., Eds.; Pan Stanford Publishing: Singapore, 2016; pp. 243–284. [Google Scholar]
- Legan, L.; Retkoa, K.; Ropret, P. Vibrational spectroscopic study on degradation of alizarin carmine. Microchem. J. 2016, 127, 36–45. [Google Scholar] [CrossRef]
- Fazio, E.; Neri, F.; Valenti, A.; Ossi, P.M.; Trusso, S.; Ponterio, R.C. Raman spectroscopy of organic dyes adsorbed on pulsed laser deposited silver thin films. Appl. Surf. Sci. 2013, 278, 259–264. [Google Scholar] [CrossRef]
- Fazio, E.; Trusso, S.; Ponterio, R.C. Surface-enhanced Raman scattering study of organic pigments using silver and gold nanoparticles prepared by pulsed laser ablation. Appl. Surf. Sci. 2013, 272, 36–41. [Google Scholar] [CrossRef]
- Fazio, E.; Neri, F.; Ponterio, R.C.; Trusso, S.; Tommasini, M.; Ossi, P.M. Laser controlled synthesis of noble metal nanoparticle arrays for low concentration molecule recognition. Micromachines 2014, 5, 1296–1309. [Google Scholar] [CrossRef] [Green Version]
- Mollica Nardo, V.; Sinopoli, A.; Kabalan, L.; Ponterio, R.C.; Saija, F.; Trusso, S. SERS and DFT study of indigo adsorbed on silver nanostructured surface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 465–469. [Google Scholar] [CrossRef]
- Tommasini, M.; Zanchi, C.; Lucotti, A.; Bombelli, A.; Villa, N.S.; Casazza, M.; Ciusani, E.; de Grazia, U.; Santoro, M.; Fazio, E.; et al. Laser-Synthesized SERS Substrates as Sensors toward Therapeutic Drug Monitoring. Nanomaterials 2019, 9, 677. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Fazio, E.; Trusso, S.; Tommasini, M.; Lucotti, A.; Saija, R.; Casazza, M.; Neri, F.; Ossi, P.M. SERS sensing of perampanel with nanostructured arrays of gold particles produced by pulsed laser ablation in water. Med. Devices Sens. 2018, 1, e10003. [Google Scholar] [CrossRef]
- Xiao, G.-N.; Man, S.-Q. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 2007, 447, 305–309. [Google Scholar] [CrossRef]
- Whitney, A.V.; Van Duyne, R.P.; Casadio, F. An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J. Raman Spectrosc. 2006, 37, 993–1002. [Google Scholar] [CrossRef]
- De Oliveira, L.F.C.; Edwards, H.G.M.; Velozo, E.S.; Nesbitt, M. Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vibr. Spectrosc. 2002, 28, 243–249. [Google Scholar] [CrossRef]
- Melo, M.J.; Otero, V.; Vitorino, T.; Araújo, R.; Muralha, V.S.F.; Lemos, A.; Picollo, M. A Spectroscopic Study of Brazilwood Paints in Medieval Books of Hours. Appl. Spectrosc. 2014, 68, 434–443. [Google Scholar] [CrossRef]
- Casanova-González, E.; García-Bucio, A.; Ruvalcaba-Sil, J.L.; Santos-Vasquez, V.; Esquivel, B.; Falcón, T.; Arroyo, E.; Zetina, S.; Roldán, M.E.; Domingo, C. Surface-enhanced Raman spectroscopy spectra of Mexican dyestuffs. J. Raman Spectrosc. 2012, 43, 1551–1559. [Google Scholar] [CrossRef]
- De Souza, M.L.; Corio, P. Surface-enhanced Raman scattering study of alizarin red S. Vib. Spectrosc. 2010, 54, 137–141. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Liang, Y. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollica Nardo, V.; Renda, V.; Trusso, S.; Ponterio, R.C. Role of pH on Nanostructured SERS Active Substrates for Detection of Organic Dyes. Molecules 2021, 26, 2360. https://doi.org/10.3390/molecules26082360
Mollica Nardo V, Renda V, Trusso S, Ponterio RC. Role of pH on Nanostructured SERS Active Substrates for Detection of Organic Dyes. Molecules. 2021; 26(8):2360. https://doi.org/10.3390/molecules26082360
Chicago/Turabian StyleMollica Nardo, Viviana, Vincenzo Renda, Sebastiano Trusso, and Rosina Celeste Ponterio. 2021. "Role of pH on Nanostructured SERS Active Substrates for Detection of Organic Dyes" Molecules 26, no. 8: 2360. https://doi.org/10.3390/molecules26082360
APA StyleMollica Nardo, V., Renda, V., Trusso, S., & Ponterio, R. C. (2021). Role of pH on Nanostructured SERS Active Substrates for Detection of Organic Dyes. Molecules, 26(8), 2360. https://doi.org/10.3390/molecules26082360