Cluster Analysis Classification of Honey from Two Different Climatic Zones Based on Selected Physicochemical and of Microbiological Parameters
Abstract
:1. Introduction
2. Results
2.1. Pollen Analysis
2.2. Physicochemical Analysis
2.3. Microbiological Analysis
3. Discussion
4. Materials and Methods
4.1. Research Material
4.2. Methods of Analysis
4.2.1. Pollen Analysis
4.2.2. Physicochemical Analysis
4.2.3. Microbial Counts Analysis
4.2.4. Bacterial Detection Analysis
4.2.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, H.T.L.; Panyoyai, N.; Kasapis, S.; Pang, E.; Mantri, N. Honey and its role in relieving multiple facets of atherosclerosis. Nutrients 2019, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Lashani, E.; Davoodabadi, A.; Dallal, M.M.S. Some probiotic properties of Lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. Vet. Res. Forum 2020, 11, 121–126. [Google Scholar]
- Esawy, M.A.; Awad, G.E.; Ahmed, E.F.; Danial, E.N.; Mansour, N.M. Evaluation of honey as new reservoir for probiotic bacteria. Adv. Food Sci. 2012, 34, 72–81. [Google Scholar]
- Begum, S.B.; Roobia, R.R.; Karthikeyan, M.; Murugappan, R.M. Validation of nutraceutical properties of honey and probiotic potential of its innate microflora. LWT Food Sci. Technol. 2015, 60, 743–750. [Google Scholar] [CrossRef]
- Asama, T.; Arima, T.-H.; Gomi, T.; Keishi, T.; Tani, H.; Kimura, Y.; Tatefuji, T.; Hashimoto, K. Lactobacillus kunkeei YB38 from honeybee products enhances IgA production in healthy adults. J. Appl. Microbiol. 2015, 119, 818–826. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saranraj, P.; Sivasakthi, S. Comprehensive review on honey: Biochemical and medicinal properties. J. Acad. Res. 2018, 6, 165–181. [Google Scholar]
- Lignor, M.; Bukowska, M.; Ratiu, I.A.; Gadzała-Kopciuch, R.; Buszewski, B. Determination of neonicotinoids in honey samples originated from Poland and other world countries. Molecules 2020, 25, 5817. [Google Scholar] [CrossRef] [PubMed]
- Madras-Majewska, B.; Rosiak, E.; Jaworska, D.; Kulesza, K.; Wasiak-Zys, G.; Teper, D. Comparison of selected quality characteristics of domestic and Thailand multifloral honeys. Vet. Med. 2016, 72, 593–656. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation sudy of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finola, M.S.; Lasagno, M.C.; Marioli, J.M. Microbiological and chemical characterization of honeys from central Argentina. Food Chem. 2007, 100, 1649–1653. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 2012, 7, e33188. [Google Scholar] [CrossRef]
- Snowdon, J.A.; Cliver, D.O. Microorganisms in honey. Int. J. Food Microbiol. 1996, 31, 1–26. [Google Scholar] [CrossRef]
- Vázquez-Quiñones, C.R.; Moreno-Terrazas, R.; Natividad-Bonifacio, I.; Quiñones-Ramírez, E.I.; Vázquez-Salinas, C. Microbiological assessment of honey in México. Rev. Argent. Microbiol. 2018, 50, 75–80. [Google Scholar] [CrossRef]
- Fernandez, L.A.; Ghilardi, C.; Hoffmann, B.; Busso, C.; Gallez, L.M. Microbiological quality of honey from the Pampas Region (Argentina) throughout the extraction process. Rev. Argent. Microbiol. 2017, 49, 55–61. [Google Scholar]
- European Comission. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying Down Procedures in Matters of Food Safety; European Comission: Brussels, Belgium, 2002; pp. 1–24. [Google Scholar]
- WHO; FAO. Codex 2019. Codex Alimentarius Standard for Honey; CXS 12-1981; FAO: Italy, Rome, 1981. [Google Scholar]
- Sinacori, M.; Francesca, N.; Alfonso, A.; Cruciata, M.; Sannino, C.; Settanni, L.; Moschetti, G. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 2014, 38, 284–294. [Google Scholar] [CrossRef] [Green Version]
- European Comission. Directive 2014/63/EU of the European Parliament and of the Council of 15 May 2014 Amending Council Directive 2001/110/EC Relating to Honey; European Comission: Brussels, Belgium, 2014; pp. 1–5. [Google Scholar]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Liolios, V.; Kanalis, D.; Gounari, S. Legislation of honey criteria and standards. J. Apic. Res. 2018, 15, 88–96. [Google Scholar] [CrossRef]
- Grunert, K.G.; Aachmann, K. Consumer reactions to the use of EU quality labels on food products: A review of the literature. Food Control 2016, 59, 178–187. [Google Scholar] [CrossRef]
- Nevas, M.; Hielm, S.; Lindstrom, M.; Horn, H.; Koivulehto, K.; Korkeala, H. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction. Int. J. Food Microbiol. 2002, 72, 45–52. [Google Scholar] [CrossRef]
- Nevas, M.; Lindstrom, M.; Hautamaki, K.; Puoskari, S.; Korkeala, H. Prevalence and diversity of Clostridium botulinum types A, B, E and F in honey produced in the Nordic countries. Int. J. Food Microbiol. 2005, 105, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Küplülü, Ö.; Göncüoğlu, M.; Özdemir, H.; Koluman, A. Incidence of Clostridium botulinum spores in honey in Turkey. Food Control 2006, 17, 222–224. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development of Poland. Regulation of the Minister of Agriculture and Rural Development of 29 May 2015 [Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z Dnia 29 Maja 2015 Zmieniające Rozporządzenie w Sprawie Szczegółowych Wymagań w Zakresie Jakości Handlowej Miodu]; Ministry of Agriculture and Rural Development of Poland: Warsaw, Poland, 2015; p. 850. (In Polish)
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development of Poland. Regulation of the Minister of Agriculture and Rural Development of January 14 2009 [Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z Dnia 14 Stycznia 2009 r. w Sprawie Metod Analiz Związanych z Dokonywaniem Oceny Miodu]; Ministry of Agriculture and Rural Development of Poland: Warsaw, Poland, 2009; p. 94. (In Polish)
- Sniderman, J.K.; Matley, K.A.; Haberle, S.G.; Cantrill, D.J. Pollen analysis of Australian honey. PLoS ONE 2018, 13, e0197545. [Google Scholar] [CrossRef] [Green Version]
- Piekut, J.; Witkowska, A.; Borawska, M.; Hejft, R. Próba zastosowania analizy spektrofotometrycznej w bliskiej podczerwieni do rozróżniania miodów. Bromatol. Chem. Toksykol. 2000, 33, 73–78. [Google Scholar]
- Puścion-Jakubik, A.; Borawska, M. Varietal bee honey—Principal and accompanying pollen as a basis for their classification. Probl. Hig. Epidemiol. 2016, 97, 275–278. [Google Scholar]
- Iurlina, M.O.; Fritz, R. Characterization of microorganisms in Argentinian honeys from different sources. Int. J. Food Microbiol. 2005, 105, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Zamora, M.C.; Chirife, J.; Roldan, D. On the nature of the relationship between water activity and % moisture in honey. Food Control 2006, 17, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Guau, A.; Akalakou, C.; Degrande, A.; Biloso, A. Determinants of consumer preferences for honey in the Democratic Republic of Congo. J. Food Prod. Market. 2014, 20, 476–490. [Google Scholar] [CrossRef]
- Ismaiel, S.; Al-Kahtani, S.; Adgaba, N.; Al-Ghamdi, A.A.; Zulail, A. Factors that affect consumption patterns and market demands for honey in the Kingdom of Saudi Arabia. Food Nutr. Sci. 2014, 5, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
- Pocol, C.B.; Bolboac, S.D. Perceptions and trends related to the consumption of honey. A case study of North-West Romania. Int. J. Consum. Stud. 2013, 37, 642–649. [Google Scholar] [CrossRef]
- Piana, M.L.; Poda, G.; Cesaroni, D.; Cuetti, L.; Bucci, M.A.; Gotti, P. Research on microbial characteristics of honey samples of Udine province. Riv. Stor. Ital. 1991, 20, 293–301. [Google Scholar]
- Ministry of Health of Poland. Regulation of the Minister of Health of January 13 2003 [Rozporządzenie Ministra Zdrowia z Dnia 13 Stycznia 2003 r. w Sprawie Maksymalnych Poziomów Zanieczyszczeń Chemicznych i Biologicznych, Które Mogą Znajdować Się w Żywności, Składnikach Żywności, Dozwolonych Substancjach Dodatkowych, Substancjach Pomagających w Przetwarzaniu Albo na Powierzchni Żywności]; Ministry of Health of Poland: Warsaw, Poland, 2003; p. 326. (In Polish)
- Forsgren, E.; Olofsson, T.C.; Vasquez, A.; Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 2009, 41, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Hosny, I.M.; El-Ghani, S.; Nadir, A.S. Nutrient composition and microbiological quality of three unifloral honeys with emphasis on processing of honey probiotic yoghurt. Glob. Vet. 2009, 3, 107–112. [Google Scholar]
- Bahiru, B.T.; Mehari, T.M.; Ashenafi, M. Yeast and lactic acid flora of an indigenous Ethiopian honey wine. Variations within and between production units. Food Microbiol. 2006, 23, 277–282. [Google Scholar] [CrossRef]
- Ruiz-Argueso, T.; Rodriguez-Navarro, A. Microbiology of ripening honey. Appl. Environ. Microbiol. 1975, 30, 893–896. [Google Scholar] [CrossRef]
- Tavaria, F.K.; Dahl, S.; Carballo, F.J.; Malcata, F.X. Amino acid catabolism and generation of volatiles by lactic acid bacteria. J. Dairy Sci. 2002, 85, 2462–2470. [Google Scholar] [CrossRef]
- Iurlina, M.O.; Saiz, A.I.; Fuselli, S.R.; Fritz, R. Prevalence of Bacillus spp. in different food products collected in Argentina. LWT Food Sci. Technol. 2006, 39, 105–110. [Google Scholar] [CrossRef]
- Lopez, A.C.; Alippi, A.M. Phenothypic and genotyphic diversity of Bacillus cereus isolates recovered from honey. Int. J. Food Microbiol. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, N.T.; Klein, G. Microbiology and foodborne pathogens in honey. Crit. Rev. Food Sci. Nutr. 2017, 57, 1852–1862. [Google Scholar] [PubMed]
- European Comission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union. 2005, L338, 1–26. [Google Scholar]
- ISO. ISO 4833-1-2:2013. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique; ISO: Geneva, Switzerland, 2020. [Google Scholar]
- ISO. ISO 21527-2:2008. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Molds. Part 2: Colony Count Technique in Products with Water Activity less than or Equal to 0,95; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- ISO. ISO 15214:1998. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteri–Colony-Count Technique at 30 Degrees C; ISO: Geneva, Switzerland, 2021. [Google Scholar]
- ISO. ISO 7932:2004. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Presumptive Bacillus cereus—Colony-Count Technique at 30 Degrees C; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- StatSoft Inc. STATISTICA (Data Analysis Software System), version 13.3; StatSoft: Tulsa, OK, USA, 2011; Available online: www.statsoft.com (accessed on 31 March 2021).
Sample No. | Producer Declaration | Sample No. | Producer Declaration |
---|---|---|---|
P1 | goldenrod nectar honey | T1 | coffee nectar honey |
P2 | raspberry nectar honey | T2 | coffee nectar honey |
P3 | rapeseed nectar honey | T3 | coffee nectar honey |
P4 | rapeseed nectar honey | T4 | coffee nectar honey |
P5 | linden nectar honey | T5 | coffee nectar honey |
P6 | linden nectar honey | T6 | wild forest nectar honey |
P7 | multiflorous nectar honey | T7 | wild forest nectar honey |
P8 | multiflorous nectar honey | T8 | wild forest nectar honey |
P9 | multiflorous nectar honey | T9 | wild forest nectar honey |
P10 | buckwheat nectar honey | T10 | longan nectar honey |
P11 | multiflorous nectar honey | T11 | longan nectar honey |
P12 | dandelion nectar honey | T12 | longan nectar honey |
P13 | forest nectar honey | T13 | longan nectar honey |
P14 | multiflorous nectar honey | T14 | longan nectar honey |
P15 | raspberry nectar honey | T15 | longan nectar honey |
P16 | buckwheat nectar honey | T16 | longan nectar honey |
P17 | multiflorous nectar honey | T17 | longan nectar honey |
P18 | acacia nectar honey | T18 | lychee nectar honey |
P19 | acacia nectar honey | T19 | lychee nectar honey |
P20 | forest nectar honey | T20 | lychee nectar honey |
Polish and Thai Honey Sample | |||
---|---|---|---|
No. of Sample | pH ± SD | Water Content [%] ± SD | Water Activity ± SD |
P1 | 4.07 ± 0.02 | 20.90 ± 0.04 | 0.566 ± 0.00 |
P2 | 3.47 ± 0.02 | 17.20 ± 0.05 | 0.544 ± 0.00 |
P3 | 3.38 ± 0.04 | 22.00 ± 0.01 | 0.549 ± 0.00 |
P4 | 3.71 ± 0.05 | 16.70 ± 0.05 | 0.503 ± 0.00 |
P5 | 4.12 ± 0.03 | 19.70 ± 0.00 | 0.521 ± 0.00 |
P6 | 4.15 ± 0.11 | 16.70 ± 0.02 | 0.533 ± 0.01 |
P7 | 4.12 ± 0.01 | 18.80 ± 0.02 | 0.526 ± 0.00 |
P8 | 4.43 ± 0.03 | 20.50 ± 0.00 | 0.543 ± 0.00 |
P9 | 3.92 ± 0.09 | 18.30 ± 0.10 | 0.547 ± 0.02 |
P10 | 3.86 ± 0.05 | 19.10 ± 0.06 | 0.559 ± 0.01 |
P11 | 3.43 ± 0.06 | 19.20 ± 0.08 | 0.538 ± 0.01 |
P12 | 4.25 ± 0.10 | 16.00 ± 0.10 | 0.501 ± 0.00 |
P13 | 4.22 ± 0.12 | 16.90 ± 0.09 | 0.525 ± 0.00 |
P14 | 3.53 ± 0.09 | 15.10 ± 0.10 | 0.516 ± 0.00 |
P15 | 3.78 ± 0.05 | 19.60 ± 0.00 | 0.532 ± 0.01 |
P16 | 3.54 ± 0.07 | 20.70 ± 0.09 | 0.578 ± 0.00 |
P17 | 3.62 ± 0.11 | 19.00 ± 0.05 | 0.537 ± 0.00 |
P18 | 3.66 ± 0.10 | 17.60 ± 0.05 | 0.513 ± 0.00 |
P19 | 3.72 ± 0.01 | 17.40 ± 0.80 | 0.558 ± 0.00 |
P20 | 3.52 ± 0.08 | 16.60 ± 0.20 | 0.505 ± 0.00 |
Average value | 3.75 ± 0.05 | 18.55 ± 0.05 | 0.535 ± 0.00 |
Median value | 3.82 ± 0.06 | 18.40 ± 0.09 | 0.534 ± 0.00 |
T1 | 4.67 ± 0.01 | 21.80 ± 0.07 | 0.594 ± 0.00 |
T2 | 3.44 ± 0.03 | 21.70 ± 0.19 | 0.643 ± 0.00 |
T3 | 4.18 ± 0.03 | 17.31 ± 0.11 | 0.572 ± 0.01 |
T4 | 4.53 ± 0.00 | 21.33 ± 0.09 | 0.621 ± 0.00 |
T5 | 4.90 ± 0.09 | 21.65 ± 0.03 | 0.629 ± 0.02 |
T6 | 4.16 ± 0.01 | 17.86 ± 0.16 | 0.575 ± 0.00 |
T7 | 4.53 ± 0.00 | 20.87 ± 0.12 | 0.633 ± 0.00 |
T8 | 3.50 ± 0.04 | 17.14 ± 0.10 | 0.567 ± 0.01 |
T9 | 3.67 ± 0.03 | 25.07 ± 0.16 | 0.656 ± 0.01 |
T10 | 3.73 ± 0.11 | 24.21 ± 0.18 | 0.673 ± 0.00 |
T11 | 3.87 ± 0.06 | 21.70 ± 0.22 | 0.608 ± 0.00 |
T12 | 3.82 ± 0.08 | 26.20 ± 0.31 | 0.657 ± 0.01 |
T13 | 3.72 ± 0.10 | 23.31 ± 0.24 | 0.647 ± 0.02 |
T14 | 3.83 ± 0.14 | 22.20 ± 0.15 | 0.596 ± 0.00 |
T15 | 3.66 ± 0.20 | 20.50 ± 0.11 | 0.592 ± 0.00 |
T16 | 3.69 ± 0.08 | 17.40 ± 0.09 | 0.582 ± 0.00 |
T17 | 4.62 ± 0.03 | 16.00 ± 0.09 | 0.577 ± 0.02 |
T18 | 4.17 ± 0.10 | 17.60 ± 0.10 | 0.553 ± 0.00 |
T19 | 3.90 ± 0.12 | 19.50 ± 0.04 | 0.602 ± 0.00 |
T20 | 3.64 ± 0.01 | 26.41 ± 0.20 | 0.612 ± 0.01 |
Average value | 3.85 ± 0.05 | 21.49 ± 0.11 | 0.605 ± 0.00 |
Median value | 4.01 ± 0.06 | 20.98 ± 0.13 | 0.609 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosiak, E.; Madras-Majewska, B.; Teper, D.; Łepecka, A.; Zielińska, D. Cluster Analysis Classification of Honey from Two Different Climatic Zones Based on Selected Physicochemical and of Microbiological Parameters. Molecules 2021, 26, 2361. https://doi.org/10.3390/molecules26082361
Rosiak E, Madras-Majewska B, Teper D, Łepecka A, Zielińska D. Cluster Analysis Classification of Honey from Two Different Climatic Zones Based on Selected Physicochemical and of Microbiological Parameters. Molecules. 2021; 26(8):2361. https://doi.org/10.3390/molecules26082361
Chicago/Turabian StyleRosiak, Elżbieta, Beata Madras-Majewska, Dariusz Teper, Anna Łepecka, and Dorota Zielińska. 2021. "Cluster Analysis Classification of Honey from Two Different Climatic Zones Based on Selected Physicochemical and of Microbiological Parameters" Molecules 26, no. 8: 2361. https://doi.org/10.3390/molecules26082361
APA StyleRosiak, E., Madras-Majewska, B., Teper, D., Łepecka, A., & Zielińska, D. (2021). Cluster Analysis Classification of Honey from Two Different Climatic Zones Based on Selected Physicochemical and of Microbiological Parameters. Molecules, 26(8), 2361. https://doi.org/10.3390/molecules26082361