Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects
Abstract
:1. Introduction
2. Combined Polyphenols and Fish Oils Intake for Improving Metabolic Health
2.1. Combined Polyphenols and Fish Oils Intake for Improving Metabolic Syndrome Features
2.1.1. Preclinical Evidence: In Vitro and In Vivo Studies
2.1.2. Clinical Evidence: Human Trials
2.2. Combined Polyphenols and Fish Oils Intake in Neurodegenerative Pathologies, Cancer, and Other Health Effects
2.2.1. Preclinical and Clinical Evidence on Neurodegenerative Diseases
2.2.2. Preclinical and Clinical Evidence on Cancer
2.2.3. Preclinical and Clinical Evidence on Other Pathologies and Physiological Processes
2.3. Omega-3 Lipophenols Derivatives: The Combined Properties of Omega-3 PUFAs and Polyphenols in a Single Molecule
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeFelice, S.L. The Nutraceutical Revolution: Its Impact on Food Industry R&;D. Trends Food Sci. Technol. 1995, 6, 59–61. [Google Scholar] [CrossRef]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes, Metab. Syndr. Obes. Targets Ther. 2019, 12, 2221–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Correa, E.; González-Pérez, I.; Clavel-Pérez, P.I.; Contreras-Vargas, Y.; Carvajal, K. Biochemical and Nutritional Overview of Diet-Induced Metabolic Syndrome Models in Rats: What is the Best Choice? Nutr. Diabetes 2020, 10, 24. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballantyne, C.M.; Hoogeveen, R.C.; McNeill, A.M.; Heiss, G.; Schmidt, M.I.; Duncan, B.B.; Pankow, J.S. Metabolic Syndrome Risk for Cardiovascular Disease and Diabetes in the ARIC Study. Int. J. Obes. 2008, 32, S21–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atella, V.; Piano Mortari, A.; Kopinska, J.; Belotti, F.; Lapi, F.; Cricelli, C.; Fontana, L. Trends in Age-Related Disease Burden and Healthcare Utilization. Aging Cell 2019, 18, e12861. [Google Scholar] [CrossRef] [PubMed]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Capó, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A.A. Metabolic Syndrome is Associated with Oxidative Stress and Proinflammatory State. Antioxidants 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 8267234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandl, G.; Wolfrum, C. Hemostasis, Endothelial Stress, Inflammation, and the Metabolic Syndrome. Semin. Immunopathol. 2018, 40, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrier, A. Metabolic Syndrome and Oxidative Stress: A Complex Relationship. Antioxid. Redox Signal. 2017, 26, 429–431. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Torres, J.L. Analysis of Nonextractable Phenolic Compounds in Foods: The Current State of the Art. J. Agric. Food Chem. 2011, 59, 12713–12724. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofosu, F.K.; Daliri, E.B.-M.; Elahi, F.; Chelliah, R.; Lee, B.-H.; Oh, D.-H. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
- Mei, J.; Ma, X.; Xie, J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Pezeshk, S.; Ojagh, S.M.; Alishahi, A. Effect of Plant Antioxidant and Antimicrobial Compounds on the Shelf-Life of Seafood—A Review. Czech J. Food Sci. 2016, 33, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Dasilva, G.; Boller, M.; Medina, I.; Storch, J. Relative Levels of Dietary EPA and DHA Impact Gastric Oxidation and Essential Fatty Acid Uptake. J. Nutr. Biochem. 2018, 55, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Maestre, R.; Douglass, J.D.; Kodukula, S.; Medina, I.; Storch, J. Alterations in the Intestinal Assimilation of Oxidized PUFAs Are Ameliorated by a Polyphenol-Rich Grape Seed Extract in an In Vitro Model and Caco-2 Cells. J. Nutr. 2013, 143, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Molinar-Toribio, E.; Ramos-Romero, S.; Fuguet, E.; Taltavull, N.; Méndez, L.; Romeu, M.; Medina, I.; Torres, J.L.; Pérez-Jiménez, J. Influence of Omega-3 PUFAs on the Metabolism of Proanthocyanidins in Rats. Food Res. Int. 2017, 97, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Suleria, H.A.R.; Dunshea, F.R.; Howell, K. Dietary Lipids Influence Bioaccessibility of Polyphenols from Black Carrots and Affect Microbial Diversity under Simulated Gastrointestinal Digestion. Antioxidants 2020, 9, 762. [Google Scholar] [CrossRef]
- Crauste, C.; Rosell, M.; Durand, T.; Vercauteren, J. Omega-3 Polyunsaturated Lipophenols, How and Why? Biochimie 2016, 120, 62–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Mason, R.P.; Jacob, R.F.; Shrivastava, S.; Sherratt, S.C.R.; Chattopadhyay, A. Eicosapentaenoic Acid Reduces Membrane Fluidity, Inhibits Cholesterol Domain Formation, and Normalizes Bilayer Width in Atherosclerotic-Like Model Membranes. Biochim. Biophys. Acta Biomembr. 2016, 1858, 3131–3140. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cruz, M.; Serna, D.S. Nutrigenomics of ω-3 Fatty Acids: Regulators of the Master Transcription Factors. Nutrition 2017, 41, 90–96. [Google Scholar] [CrossRef]
- Dasilva, G.; Medina, I. Lipidomic Methodologies for Biomarkers of Chronic Inflammation in Nutritional Research: ω-3 and ω-6 Lipid Mediators. Free Radic. Biol. Med. 2019, 144, 90–109. [Google Scholar] [CrossRef]
- Fattori, V.; Zaninelli, T.H.; Rasquel-Oliveira, F.S.; Casagrande, R.; Verri, W.A. Specialized Pro-Resolving Lipid Mediators: A New Class of Non-Immunosuppressive and Non-Opioid Analgesic Drugs. Pharmacol. Res. 2020, 151, 104549. [Google Scholar] [CrossRef]
- Zgórzyńska, E.; Dziedzic, B.; Gorzkiewicz, A.; Stulczewski, D.; Bielawska, K.; Su, K.-P.; Walczewska, A. Omega-3 Polyunsaturated Fatty Acids Improve the Antioxidative Defense in Rat Astrocytes Via an Nrf2-Dependent Mechanism. Pharmacol. Rep. 2017, 69, 935–942. [Google Scholar] [CrossRef]
- Bang, H.-Y.; Park, S.-A.; Saeidi, S.; Na, H.-K.; Surh, Y.-J. Docosahexaenoic Acid Induces Expression of Heme Oxygenase-1 and NAD(P)H:quinone Oxidoreductase through Activation of Nrf2 in Human Mammary Epithelial Cells. Molecules 2017, 22, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, C.; Ishida, M.; Ohba, H.; Yamashita, H.; Uchida, H.; Yoshizumi, M.; Ishida, T. Fish Oil Omega-3 Polyunsaturated Fatty Acids Attenuate Oxidative Stress-Induced DNA Damage in Vascular Endothelial Cells. PLoS ONE 2017, 12, e0187934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatsumi, Y.; Kato, A.; Sango, K.; Himeno, T.; Kondo, M.; Kato, Y.; Kamiya, H.; Nakamura, J.; Kato, K. Omega-3 Polyunsaturated Fatty Acids Exert Anti-Oxidant Effects through the Nuclear Factor (Erythroid-Derived 2)-Related Factor 2 Pathway in Immortalized Mouse Schwann Cells. J. Diabetes Investig. 2019, 10, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef]
- Warburton, A.; Vasieva, O.; Quinn, P.; Stewart, J.P.; Quinn, J.P. Statistical Analysis of Human Microarray Data Shows that Dietary Intervention With n -3 Fatty Acids, Flavonoids and Resveratrol Enriches for Immune Response and Disease Pathways. Br. J. Nutr. 2018, 119, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, T.-C. The Combination Index (CI <1) as the Definition of Synergism and of Synergy Claims. Synergy 2018, 7, 49–50. [Google Scholar] [CrossRef]
- Panossian, A.; Seo, E.-J.; Efferth, T. Synergy Assessments of Plant Extracts Used in the Treatment of Stress and Aging-Related Disorders. Synergy 2018, 7, 39–48. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Iglesias, A.; Quesada, H.; Díaz, S.; Pajuelo, D.; Bladé, C.; Arola, L.; Josepa Salvadó, M.; Mulero, M. Sensitizes Fao Cells to Tert-BHP-Induced Oxidative Effects. Protective Role of EGCG. Food Chem. Toxicol. 2013, 62, 750–757. [Google Scholar] [CrossRef]
- Pallarès, V.; Calay, D.; Cedó, L.; Castell-Auví, A.; Raes, M.; Pinent, M.; Ardévol, A.; Arola, L.; Blay, M. Enhanced Anti-Inflammatory Effect of Resveratrol and EPA in Treated Endotoxin-Activated RAW 264.7 Macrophages. Br. J. Nutr. 2012, 108, 1562–1573. [Google Scholar] [CrossRef] [Green Version]
- Schwager, J.; Richard, N.; Riegger, C.; Salem, N. ω -3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. Biomed Res. Int. 2015, 2015, 535189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila, P.R.M.; Marques, S.O.; Luciano, T.F.; Vitto, M.F.; Engelmann, J.; Souza, D.R.; Pereira, S.V.; Pinho, R.A.; Lira, F.S.; De Souza, C.T.; et al. Resveratrol and Fish Oil Reduce Catecholamine-Induced Mortality in Obese Rats: Role of Oxidative Stress in the Myocardium and Aorta. Br. J. Nutr. 2013, 110, 1580–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez, L.; Muñoz, S.; Miralles-Pérez, B.; Nogués, M.R.; Ramos-Romero, S.; Torres, J.L.; Medina, I. Modulation of the Liver Protein Carbonylome by the Combined Effect of Marine Omega-3 PUFAs and Grape Polyphenols Supplementation in Rats Fed an Obesogenic High Fat and High Sucrose Diet. Mar. Drugs 2019, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Casanova, E.; Baselga-Escudero, L.; Ribas-Latre, A.; Cedó, L.; Arola-Arnal, A.; Pinent, M.; Bladé, C.; Arola, L.; Salvadó, M.J. Chronic Intake of Proanthocyanidins and Docosahexaenoic Acid Improves Skeletal Muscle Oxidative Capacity in Diet-Obese Rats. J. Nutr. Biochem. 2014, 25, 1003–1010. [Google Scholar] [CrossRef]
- Hosoyamada, Y.; Yamada, M. Effects of Dietary Fish Oil and Apple Polyphenol on the Concentration Serum Lipids and Excretion of Fecal Bile Acids in Rats. J. Nutr. Sci. Vitaminol. (Tokyo) 2017, 63, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Dasilva, G.; Pazos, M.; García-Egido, E.; Gallardo, J.M.; Ramos-Romero, S.; Torres, J.L.; Romeu, M.; Nogués, M.-R.R.; Medina, I. A lipidomic Study on the Regulation of Inflammation and Oxidative Stress Targeted by Marine ω-3 PUFA and Polyphenols in High-Fat High-Sucrose Diets. J. Nutr. Biochem. 2017, 43, 53–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taltavull, N.; Miralles-Pérez, B.; Nogués, M.R.; Ramos-Romero, S.; Méndez, L.; Medina, I.; Torres, J.L.; Romeu, M. Effects of Fish Oil and Grape Seed Extract Combination on Hepatic Endogenous Antioxidants and Bioactive Lipids in Diet-Induced Early Stages of Insulin Resistance in Rats. Mar. Drugs 2020, 18, 318. [Google Scholar] [CrossRef]
- Méndez, L.; Ciordia, S.; Fernández, M.S.; Juárez, S.; Ramos, A.; Pazos, M.; Gallardo, J.M.; Torres, J.L.; Nogués, M.R.; Medina, I. Changes in Liver Proteins of Rats Fed Standard and High-Fat and Sucrose Diets Induced by Fish Omega-3 PUFAs and their Combination with Grape Polyphenols according to Quantitative Proteomics. J. Nutr. Biochem. 2017, 41, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Romero, S.; Molinar-Toribio, E.; Pérez-Jiménez, J.; Taltavull, N.; Dasilva, G.; Romeu, M.; Medina, I.; Torres, J.L. The Combined Action of Omega-3 Polyunsaturated Fatty Acids and Grape Proanthocyanidins on a Rat Model of Diet-Induced Metabolic Alterations. Food Funct. 2016, 7, 3516–3523. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Shikov, A.N.; Kosman, V.M.; Selezneva, A.I.; Urakova, I.N.; Makarova, M.N.; Makarov, V.G. Immunomodulatory and Antioxidants Properties of Fixed Combination of Fish Oil with Plant Extracts. Synergy 2015, 2, 19–24. [Google Scholar] [CrossRef]
- Airanthi, M.K.W.A.W.-A.; Sasaki, N.; Iwasaki, S.; Baba, N.; Abe, M.; Hosokawa, M.; Miyashita, K. Effect of Brown Seaweed Lipids on Fatty Acid Composition and Lipid Hydroperoxide Levels of Mouse Liver. J. Agric. Food Chem. 2011, 59, 4156–4163. [Google Scholar] [CrossRef] [PubMed]
- Oszkiel, H.; Wilczak, J.; Jank, M. Biologically Active Substances-Enriched Diet Regulates Gonadotrope Cell Activation Pathway in Liver of Adult and Old Rats. Genes Nutr. 2014, 9, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verschuren, L.; Wielinga, P.Y.; van Duyvenvoorde, W.; Tijani, S.; Toet, K.; van Ommen, B.; Kooistra, T.; Kleemann, R. A Dietary Mixture Containing Fish Oil, Resveratrol, Lycopene, Catechins, and Vitamins E and C Reduces Atherosclerosis in Transgenic Mice. J. Nutr. 2011, 141, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Kosman, V.M.; Demchenko, D.V.; Pozharitskaya, O.N.; Shikov, A.N.; Selesneva, A.I.; Makarov, V.G.; Makarova, M.N. [Cardioprotective Effect of New Functional Food Containing Salmon Oil with Motherwort Oil Extract]. Vopr. Pitan. 2017, 86, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Della Pepa, G.; Vetrani, C.; Vitale, M.; Bozzetto, L.; Costabile, G.; Cipriano, P.; Mangione, A.; Patti, L.; Riccardi, G.; Rivellese, A.A.; et al. Effects of a Diet Naturally Rich in Polyphenols on Lipid Composition of Postprandial Lipoproteins in High Cardiometabolic Risk Individuals: An Ancillary Analysis of a Randomized Controlled Trial. Eur. J. Clin. Nutr. 2020, 74, 183–192. [Google Scholar] [CrossRef]
- Annuzzi, G.; Bozzetto, L.; Costabile, G.; Giacco, R.; Mangione, A.; Anniballi, G.; Vitale, M.; Vetrani, C.; Cipriano, P.; Della Corte, G.; et al. Diets Naturally Rich in polyphenols improve fasting and postprandial dyslipidemia and Reduce Oxidative Stress: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2014, 99, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzetto, L.; Annuzzi, G.; Pacini, G.; Costabile, G.; Vetrani, C.; Vitale, M.; Griffo, E.; Giacco, A.; De Natale, C.; Cocozza, S.; et al. Polyphenol-Rich Diets Improve Glucose Metabolism in People at high Cardiometabolic Risk: A Controlled Randomised Intervention Trial. Diabetologia 2015, 58, 1551–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondia-Pons, I.; Pöhö, P.; Bozzetto, L.; Vetrani, C.; Patti, L.; Aura, A.-M.M.; Annuzzi, G.; Hyötyläinen, T.; Rivellese, A.A.; Orešič, M. Differing in their n-3 Fatty Acid and Polyphenol Content Reflect Different Plasma and HDL-Fraction Lipidomic Profiles in Subjects at High Cardiovascular Risk. Mol. Nutr. Food Res. 2014, 58, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Javid, A.Z.; Maghsoumi-Norouzabad, L.; Ashrafzadeh, E.; Yousefimanesh, H.A.; Zakerkish, M.; Ahmadi Angali, K.; Ravanbakhsh, M.; Babaei, H. Impact of Cranberry Juice Enriched with Omega-3 Fatty Acids Adjunct with Nonsurgical Periodontal Treatment on Metabolic Control and Periodontal Status in Type 2 Patients with Diabetes with Periodontal Disease. J. Am. Coll. Nutr. 2018, 37, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Griffo, E.; Di Marino, L.; Patti, L.; Bozzetto, L.; Annuzzi, G.; Cipriano, P.; Mangione, A.; Della Pepa, G.; Cocozza, S.; Riccardi, G.; et al. Test Meals Rich in Marine Long-Chain n-3 Polyunsaturated Fatty Acids Increase Postprandial Chylomicron Response. Nutr. Res. 2014, 34, 661–666. [Google Scholar] [CrossRef]
- Sut, A.; Chiżyński, K.; Różalski, M.; Golański, J.G. Omega-3 Fatty Acids and Low Omega-6/Omega-3 Ratio but not Polyphenols in Diet Decrease Inflammatory Markers in Men with Chronic Coronary Syndrome Treated with Percutaneous Coronary Intervention. Kardiol. Pol. 2019. [Google Scholar] [CrossRef]
- Vetrani, C.; Maukonen, J.; Bozzetto, L.; Della Pepa, G.; Vitale, M.; Costabile, G.; Riccardi, G.; Rivellese, A.A.; Saarela, M.; Annuzzi, G. Diets Naturally rich in Polyphenols and/or Long-Chain n-3 Polyunsaturated Fatty Acids Differently Affect Microbiota Composition in High-Cardiometabolic-Risk Individuals. Acta Diabetol. 2020, 57, 853–860. [Google Scholar] [CrossRef]
- Scolaro, B.; Nogueira, M.S.; Paiva, A.; Bertolami, A.; Barroso, L.P.; Vaisar, T.; Heffron, S.P.; Fisher, E.A.; Castro, I.A. Statin Dose Reduction with Complementary Diet Therapy: A Pilot Study of Personalized Medicine. Mol. Metab. 2018, 11, 137–144. [Google Scholar] [CrossRef]
- Dahlberg, C.J.; Ou, J.J.; Babish, J.G.; Lamb, J.J.; Eliason, S.; Brabazon, H.; Gao, W.; Kaadige, M.R.; Tripp, M.L. A 13-Week Low Glycemic Load Diet and Lifestyle Modification Program Combining Low Glycemic Load Protein Shakes and Targeted Nutraceuticals Improved Weight Loss and Cardio-Metabolic Risk Factors. Can. J. Physiol. Pharmacol. 2017, 95, 1414–1425. [Google Scholar] [CrossRef]
- Damiot, A.; Demangel, R.; Noone, J.; Chery, I.; Zahariev, A.; Normand, S.; Brioche, T.; Crampes, F.; de Glisezinski, I.; Lefai, E.; et al. A Nutrient Cocktail Prevents Lipid Metabolism Alterations Induced by 20 Days of daily steps reduction and Fructose Overfeeding: Result from a Randomized Study. J. Appl. Physiol. 2019, 126, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Amato, B.; Compagna, R.; Amato, M.; Gallelli, L.; de Franciscis, S.; Serra, R. Aterofisiol® in Carotid Plaque Evolution. Drug Des. Devel. Ther. 2015, 3877. [Google Scholar] [CrossRef] [Green Version]
- Mendrick, D.L.; Diehl, A.M.; Topor, L.S.; Dietert, R.R.; Will, Y.; La Merrill, M.A.; Bouret, S.; Varma, V.; Hastings, K.L.; Schug, T.T.; et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol. Sci. 2018, 162, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadad, N.; Levy, R. Combination of EPA with Carotenoids and Polyphenol Synergistically Attenuated the Transformation of Microglia to M1 Phenotype Via Inhibition of NF-κB. NeuroMolecular Med. 2017, 19, 436–451. [Google Scholar] [CrossRef]
- Yammine, A.; Nury, T.; Vejux, A.; Latruffe, N.; Vervandier-Fasseur, D.; Samadi, M.; Greige-Gerges, H.; Auezova, L.; Lizard, G. Prevention of 7-Ketocholesterol-Induced Overproduction of Reactive Oxygen Species, Mitochondrial Dysfunction and Cell Death with Major Nutrients (Polyphenols, ω3 and ω9 Unsaturated Fatty Acids) of the Mediterranean Diet on N2a Neuronal Cells. Molecules 2020, 25, 2296. [Google Scholar] [CrossRef]
- Thomas, J.; Garg, M.L.; Smith, D.W. Dietary Supplementation with Resveratrol and/or Docosahexaenoic Acid Alters Hippocampal Gene Expression in Adult C57Bl/6 Mice. J. Nutr. Biochem. 2013, 24, 1735–1740. [Google Scholar] [CrossRef]
- Fernández-Fernández, L.; Comes, G.; Bolea, I.; Valente, T.; Ruiz, J.; Murtra, P.; Ramirez, B.; Anglés, N.; Reguant, J.; Morelló, J.R.; et al. LMN Diet, Rich in Polyphenols and Polyunsaturated Fatty Acids, Improves Mouse Cognitive Decline Associated with Aging and Alzheimer’s Disease. Behav. Brain Res. 2012, 228, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, L.; Esteban, G.; Giralt, M.; Valente, T.; Bolea, I.; Solé, M.; Sun, P.; Benítez, S.; Morelló, J.R.; Reguant, J.; et al. Catecholaminergic and Cholinergic Systems of Mouse Brain are Modulated by LMN Diet, Rich in Theobromine, Polyphenols and Polyunsaturated Fatty Acids. Food Funct. 2015, 6, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Salberg, S.; Yamakawa, G.; Christensen, J.; Kolb, B.; Mychasiuk, R. Assessment of a Nutritional Supplement Containing Resveratrol, Prebiotic Fiber, and Omega-3 Fatty Acids for the Prevention and Treatment of Mild Traumatic Brain Injury in Rats. Neuroscience 2017, 365, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Madireddy, S.; Madireddy, S. Most Effective Combination of Nutraceuticals for Improved Memory and Cognitive Performance in the House Cricket, Acheta domesticus. Nutrients 2021, 13, 362. [Google Scholar] [CrossRef]
- Fiala, M.; Halder, R.C.; Sagong, B.; Ross, O.; Sayre, J.; Porter, V.; Bredesen, D.E. ω-3 Supplementation Increases Amyloid-β Phagocytosis and Resolvin D1 in Patients with Minor Cognitive Impairment. FASEB J. 2015, 29, 2681–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, C.; Scotto di Palumbo, A.; Bramham, J.; Moran, A.; Rooney, B.; De Vito, G.; Egan, B. Effects of a Six-Month Multi-Ingredient Nutrition Supplement Intervention of Omega-3 Polyunsaturated Fatty Acids, Vitamin D, Resveratrol, and Whey Protein on Cognitive Function in Older Adults: A Randomised, Double-Blind, Controlled Trial. J. Prev. Alzheimer’s Dis. 2018, 1–9. [Google Scholar] [CrossRef]
- Roberts, S.B.; Franceschini, M.A.; Silver, R.E.; Taylor, S.F.; de Sa, A.B.; Có, R.; Sonco, A.; Krauss, A.; Taetzsch, A.; Webb, P.; et al. Effects of Food Supplementation on Cognitive Function, Cerebral Blood Flow, and Nutritional Status in Young Children at Risk of Undernutrition: Randomized Controlled Trial. BMJ 2020, m2397. [Google Scholar] [CrossRef]
- Kim, E.; Davidson, L.A.; Zoh, R.S.; Hensel, M.E.; Salinas, M.L.; Patil, B.S.; Jayaprakasha, G.K.; Callaway, E.S.; Allred, C.D.; Turner, N.D.; et al. Rapidly cycling Lgr5+ stem cells are exquisitely sensitive to extrinsic dietary factors that Modulate Colon Cancer Risk. Cell Death Dis. 2016, 7, e2460. [Google Scholar] [CrossRef] [Green Version]
- Martínez, N.; Herrera, M.; Frías, L.; Provencio, M.; Pérez-Carrión, R.; Díaz, V.; Morse, M.; Crespo, M.C. A Combination of Hydroxytyrosol, Omega-3 Fatty Acids and Curcumin Improves Pain and Inflammation Among Early Stage Breast Cancer Patients Receiving Adjuvant Hormonal Therapy: Results of a Pilot Study. Clin. Transl. Oncol. 2019, 21, 489–498. [Google Scholar] [CrossRef]
- Russo, G.I.; Solinas, T.; Urzì, D.; Privitera, S.; Campisi, D.; Cocci, A.; Carini, M.; Madonia, M.; Cimino, S.; Morgia, G. Adherence to Mediterranean Diet and Prostate Cancer Risk in Sicily: Population-Based Case–Control Study. Int. J. Impot. Res. 2019, 31, 269–275. [Google Scholar] [CrossRef]
- Lawler, J.M.; Garcia-Villatoro, E.L.; Guzzoni, V.; Hord, J.M.; Botchlett, R.; Holly, D.; Lawler, M.S.; Janini Gomes, M.; Ryan, P.; Rodriguez, D.; et al. Effect of Combined Fish Oil & Curcumin on Murine Skeletal Muscle Morphology and Stress Response Proteins During Mechanical Unloading. Nutr. Res. 2019, 65, 17–28. [Google Scholar] [CrossRef]
- Capó, X.; Martorell, M.; Busquets-Cortés, C.; Sureda, A.; Riera, J.; Drobnic, F.; Tur, J.A.; Pons, A. Effects of Dietary Almond- and Olive Oil-Based Docosahexaenoic Acid- and Vitamin E-Enriched Beverage Supplementation On Athletic Performance and Oxidative Stress Markers. Food Funct. 2016, 7, 4920–4934. [Google Scholar] [CrossRef]
- Capó, X.; Martorell, M.; Sureda, A.; Riera, J.; Drobnic, F.; Tur, J.A.; Pons, A. Effects of Almond- and Olive Oil-Based Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated to Exercise and Age. Nutrients 2016, 8, 619. [Google Scholar] [CrossRef]
- Arc-Chagnaud, C.; Py, G.; Fovet, T.; Roumanille, R.; Demangel, R.; Pagano, A.F.; Delobel, P.; Blanc, S.; Jasmin, B.J.; Blottner, D.; et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Koskela, A.; Reinisalo, M.; Petrovski, G.; Sinha, D.; Olmiere, C.; Karjalainen, R.; Kaarniranta, K. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells. Nutrients 2016, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Ivanescu, A.A.; Fernández-Robredo, P.; Heras-Mulero, H.; Sádaba-Echarri, L.M.; García-García, L.; Fernández-García, V.; Moreno-Orduna, M.; Redondo-Exposito, A.; Recalde, S.; García-Layana, A. Modifying Choroidal Neovascularization Development with a Nutritional Supplement in Mice. Nutrients 2015, 7, 5423–5442. [Google Scholar] [CrossRef] [Green Version]
- Witzel-Rollins, A.; Murphy, M.; Becvarova, I.; Werre, S.R.; Cadiergues, M.-C.C.; Meyer, H. Non-Controlled, Open-Label Clinical Trial to Assess the Effectiveness of a Dietetic Food on Pruritus and Dermatologic Scoring in Atopic Dogs. BMC Vet. Res. 2019, 15, 220. [Google Scholar] [CrossRef]
- Acevedo, N.; Frumento, P.; Harb, H.; Alashkar Alhamwe, B.; Johansson, C.; Eick, L.; Alm, J.; Renz, H.; Scheynius, A.; Potaczek, D.P.; et al. Histone Acetylation of Immune Regulatory Genes in Human Placenta in Association with Maternal Intake of Olive Oil and Fish Consumption. Int. J. Mol. Sci. 2019, 20, 1060. [Google Scholar] [CrossRef] [Green Version]
- García-Mantrana, I.; Selma-Royo, M.; González, S.; Parra-Llorca, A.; Martínez-Costa, C.; Collado, M.C. Distinct Maternal Microbiota Clusters are Associated with Diet during Pregnancy: Impact on Neonatal Microbiota and Infant Growth during the First 18 Months of Life. Gut Microbes 2020, 11, 962–978. [Google Scholar] [CrossRef] [Green Version]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt Signaling in Cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef]
- Serini, S.; Cassano, R.; Corsetto, P.A.; Rizzo, A.M.; Calviello, G.; Trombino, S. Omega-3 PUFA Loaded in Resveratrol-Based Solid Lipid Nanoparticles: Physicochemical Properties and Antineoplastic Activities in Human Colorectal Cancer Cells In Vitro. Int. J. Mol. Sci. 2018, 19, 586. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, D.; Hu, J.; Liu, G.; Chen, J.; Sun, L.; Jiang, Z.; Zhang, X.; Chen, Q.; Ji, B. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols. J. Agric. Food Chem. 2015, 63, 9295–9305. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Endo, A.; Tsujikado, K.; Inukai, T. Involvement of Resveratrol and ω-3 Polyunsaturated Fatty Acids on Sirtuin 1 Gene Expression in THP1 Cells. Am. J. Med. Sci. 2017, 354, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Crauste, C.; Vigor, C.; Brabet, P.; Picq, M.; Lagarde, M.; Hamel, C.; Durand, T.; Vercauteren, J. Synthesis and Evaluation of Polyunsaturated Fatty Acid-Phenol Conjugates as Anti-Carbonyl-Stress Lipophenols. European J. Org. Chem. 2014, 2014, 4548–4561. [Google Scholar] [CrossRef]
- Medina, S.; Domínguez-Perles, R.; Auñón, D.; Moine, E.; Durand, T.; Crauste, C.; Ferreres, F.; Gil-Izquierdo, Á. Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. J. Agric. Food Chem. 2020, 68, 7789–7799. [Google Scholar] [CrossRef] [PubMed]
- Fotiadou, R.; Chatzikonstantinou, A.V.; Hammami, M.A.; Chalmpes, N.; Moschovas, D.; Spyrou, K.; Polydera, A.C.; Avgeropoulos, A.; Gournis, D.; Stamatis, H. Green Synthesized Magnetic Nanoparticles as Effective Nanosupport for the Immobilization of Lipase: Application for the Synthesis of Lipophenols. Nanomaterials 2021, 11, 458. [Google Scholar] [CrossRef]
- Hu, X.-P.; Yin, F.-W.; Zhou, D.-Y.; Xie, H.-K.; Zhu, B.-W.; Ma, X.-C.; Tian, X.-G.; Wang, C.; Shahidi, F. Stability of Resveratrol Esters with Caprylic Acid during Simulated In Vitro Gastrointestinal Digestion. Food Chem. 2019, 276, 675–679. [Google Scholar] [CrossRef]
- Yin, F.; Hu, X.; Zhou, D.; Ma, X.; Tian, X.; Huo, X.; Rakariyatham, K.; Shahidi, F.; Zhu, B. Hydrolysis and Transport Characteristics of Tyrosol Acyl Esters in Rat Intestine. J. Agric. Food Chem. 2018, 66, 12521–12526. [Google Scholar] [CrossRef]
- Marzocchi, S.; Caboni, M.F. Study of the Effect of Tyrosyl Oleate on Lipid Oxidation in a Typical Italian Bakery Product. J. Agric. Food Chem. 2018, 66, 12555–12560. [Google Scholar] [CrossRef]
- Yin, F.; Wang, X.; Hu, Y.; Xie, H.; Liu, X.; Qin, L.; Zhang, J.; Zhou, D.; Shahidi, F. Evaluation of Absorption and Plasma Pharmacokinetics of Tyrosol Acyl Esters in Rats. J. Agric. Food Chem. 2020, 68, 1248–1256. [Google Scholar] [CrossRef]
- Rosell, M.; Giera, M.; Brabet, P.; Shchepinov, M.S.; Guichardant, M.; Durand, T.; Vercauteren, J.; Galano, J.-M.; Crauste, C. Bis-allylic Deuterated DHA Alleviates Oxidative Stress in Retinal Epithelial Cells. Antioxidants 2019, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- Cubizolle, A.; Cia, D.; Moine, E.; Jacquemot, N.; Guillou, L.; Rosell, M.; Angebault-Prouteau, C.; Lenaers, G.; Meunier, I.; Vercauteren, J.; et al. Isopropyl-phloroglucinol-DHA Protects Outer Retinal Cells Against Lethal Dose of All-Trans-Retinal. J. Cell. Mol. Med. 2020, 24, 5057–5069. [Google Scholar] [CrossRef] [Green Version]
- Moine, E.; Brabet, P.; Guillou, L.; Durand, T.; Vercauteren, J.; Crauste, C. New Lipophenol Antioxidants Reduce Oxidative Damage in Retina Pigment Epithelial Cells. Antioxidants 2018, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Moine, E.; Boukhallat, M.; Cia, D.; Jacquemot, N.; Guillou, L.; Durand, T.; Vercauteren, J.; Brabet, P.; Crauste, C. New Lipophenols Prevent Carbonyl and Oxidative Stresses Involved in Macular Degeneration. Free Radic. Biol. Med. 2021, 162, 367–382. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.N.; Ziaullah; Rupasinghe, H.P.V. Long Chain Fatty Acid Esters of Quercetin-3-O-glucoside Attenuate H2O2-induced Acute Cytotoxicity in Human Lung Fibroblasts and Primary Hepatocytes. Molecules 2016, 21, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnakulasuriya, S.N.; Ziaullah; Rupasinghe, H.P.V.P.V. Novel Long Chain Fatty Acid Derivatives of Quercetin-3-O-glucoside Reduce Cytotoxicity Induced by Cigarette Smoke Toxicants in Human Fetal Lung Fibroblasts. Eur. J. Pharmacol. 2016, 781, 128–138. [Google Scholar] [CrossRef]
- Shamseddin, A.; Crauste, C.; Durand, E.; Villeneuve, P.; Dubois, G.; Pavlickova, T.; Durand, T.; Vercauteren, J.; Veas, F. Resveratrol-Linoleate Protects from Exacerbated Endothelial Permeability Via a Drastic Inhibition of the MMP-9 Activity. Biosci. Rep. 2018, 38, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taveau, N.; Cubizolle, A.; Guillou, L.; Pinquier, N.; Moine, E.; Cia, D.; Kalatzis, V.; Vercauteren, J.; Durand, T.; Crauste, C.; et al. Preclinical Pharmacology of a Lipophenol in a Mouse Model of Light-Induced Retinopathy. Exp. Mol. Med. 2020, 52, 1090–1101. [Google Scholar] [CrossRef]
- Fernando, W.; Coombs, M.R.P.; Hoskin, D.W.; Rupasinghe, H.P.V.P.V. Docosahexaenoic Acid-Acylated Phloridzin, a Novel Polyphenol Fatty Acid Ester Derivative, is Cytotoxic to Breast Cancer Cells. Carcinogenesis 2016, 37, 1004–1013. [Google Scholar] [CrossRef]
- Fernando, W.; Coyle, K.; Marcato, P.; Vasantha Rupasinghe, H.P.P.; Hoskin, D.W. Phloridzin Docosahexaenoate, a Novel Fatty Acid Ester of a Plant Polyphenol, Inhibits Mammary Carcinoma Cell Metastasis. Cancer Lett. 2019, 465, 68–81. [Google Scholar] [CrossRef] [PubMed]
Bioactive | Dose | Model | Health Effects of the Combination | Reference |
---|---|---|---|---|
| ||||
Epigallocatechin-3-gallate (EGCG) from green tea and DHA. | EGCG, DHA or EGCG + DHA (50 µM) 1 h. | FaO cells (H4-11-E-C3 rat hepatoma). | Less lipid peroxidation levels More GSH/GSSG and less catalase EGCG impairs DHA-related Nrf2 nuclear translocation and decreases HO-1 protein levels. | [39] |
Resveratrol and EPA. | Resveratrol (25 mg/mL); EPA (30 mM); 19 h. | RAW 264.7 murine macrophage. | Enhanced anti-inflammatory effect Decreased NO levels; Modulating P-SAPK/JNK; Down-regulation of proinflammatory; genes (IL, chemokines, transcription factors); Up-regulation antioxidant genes. | [40] |
Resveratrol and EPA. | Resveratrol(25 µmol/L); EPA (20 µmol/L). | Human peripheral blood leukocytes (PBLs); Normal human articular chondrocytes from knee (NHAC-kn). | Synergistic effects on CCL5/RANTES; Additive effects on IL-6 or CXCL8/IL-8. | [41] |
| ||||
Resveratrol and fish oil. | 20 mg resveratrol/kg/day; 0·4 g fish oil (54% EPA, 10% DHA)/kg per day; 2 months. | Obese male Wistar rats. | Activation of the Nrf2/Keap1 pathway; Increases survival of obese rats because of less oxidative stress in the aorta and myocardium. | [42] |
Grape seed proanthocyanidins extract and fish oil. | Proanthocyanidin rich grape seed extract (GSPE, 0.8 g kg−1 feed) EPA/DHA 1:1 (16.6 g kg−1 feed); 24-weeks. | Prediabetic female Wistar–Kyoto rats. | Both additive and synergistic effects on total and specific protein carbonylation in liver; Effects strongly depended on the background diet; Results correlated with improved insulin sensitivity and antioxidant status. | [43] |
Grape seed proanthocyanidins extract and oil rich in DHA. | GSPE (25 mg/kg body weight); 500 mg oil-rich DHA (38.8%)/kg body weight; 21 days. | Obese male Wistar rats. | Activation of muscle β-oxidation More mitochondrial functionality and oxidative capacity; Up-regulation of AMPK phosphorylation, PPARα and Ucp2. | [44] |
Apple polyphenols and fish oil. | 1.5% apple polypheno l10% fish oil (27% EPA, 11% DHA); 4 weeks. | Male Sprague–Dawley rats. | Synergistic effects: lower posterior abdominal fat wall and testicle peripheral fat; Additive effects: lower cholesterol and FFA; lower adiponectin than in fish oil and more than in polyphenols; less oxidative stress than in polyphenols but more than in fish oil. | [45] |
Grape seed proanthocyanidins extract and fish oil. | GSPE(0.8 g kg−1 feed) EPA/DHA 1:1 (16.6 g kg−1 feed); 24-weeks. | Prediabetic female Wistar–Kyoto rats. | Complementary effects: Lower omega-6/-3 ratio; Lower production of ARA proinflammatory lipid mediators; Up-regulation desaturases towards omega-3. Additive effects: Down-regulation Δ5D and COX activities on ARA; Enhancing the antioxidant enzymes decreasing total FFA in plasma. | [46] |
Grape seed proanthocyanidins extract and fish oil. | GSPE(0.8 g kg−1 feed) EPA/DHA 1:1 (16.6 g kg−1 feed); 24 weeks. | Prediabetic female Wistar–Kyoto rats. | Synergistic effect of GPx activity; Higher amount of MUFA and PUFA-containing DAG and long-chain fatty acid-containing ceramides. | [47] |
Grape seed proanthocyanidins extract and fish oil. | GSPE(0.8 g kg−1 feed) EPA/DHA 1:1 (16.6 g kg−1 feed). 24 weeks. | Prediabetic female Wistar–Kyoto rats. | Additive effects on the regulation of proteins involved in insulin signaling, glycolysis, fatty acid beta-oxidation, and endoplasmic reticulum stress. | [48] |
Grape seed proanthocyanidins extract and fish oil. | GSPE(0.8 g kg−1 feed) EPA/DHA 1:1 (16.6 g kg−1 feed); 24 weeks. | Prediabetic female Wistar–Kyoto rats. | Additive effect on insulin, leptin, and triglycerides levels in prediabetic rats. | [49] |
Plant oil extracts (tocopherols, cholecalciferol, retinol, lignans, coumarins and dicyclo esters) and fish oil. | Daily oral gavage of salmon oil (1365 mg/kg body weight) supplemented with Schisandra chinensis oil extract and Matricaria chamomilla oil extract at growing doses of plant extract from 1365, 2730 to 5460 mg/kg body weight; 21 days. | Male Balb/c mice. | Synergistic antioxidant effect as free radical scavengers; Better immunomodulatory activity at highest plant extract doses without any toxicity. | [50] |
Brown seaweed lipids. | 0.5% or 2.0% seaweed lipids; 4 weeks. | Female KK-Ay mice. | Less lipid peroxidation in the liver; Hepatic enrichment in DHA and ARA. | [51] |
Anti-inflammatory dietary mixture (AIDM) (resveratrol, lycopene, catechin, vitamins E and C, and fish oil) | AIDM; 6 weeks. | Female ApoE*3Leiden transgenic mice. | Decreased CRP and fibrinogen expression. Decreased plasma cholesterol, TG, serum amyloid Aβ, vascular inflammation markers, and adhesion molecules | [52] |
Biologically active substances-enriched diet (BASE-diet) (polyphenols, b-carotene, probiotics, and omega-3 and -6 PUFAs). | BASE-diet; 3 vs. 14 months | Adult male Sprague–Dawley rats. | Regulation of gonadotrope cell activation pathway and guanylate cyclase pathway, mast cell activation, gap junction regulation, melanogenesis, and apoptosis. | [53] |
Functional food of salmon oil (omega-3 and omega-6 PUFAs, vitamins A, E and D3) with oil extract of motherwort (flavonoids and iridoids). | Daily intragastric administration of functional food (salmon oil:motherwort oil extract in 8:2 ratio) at the doses of 2340 and 1170 mg/kg body weight; 14 days. | Rats. | Increased left ventricular pressure after ischemia; Normalized contraction/relaxation of left ventricle; Decreased aspartate amino transferase and creatine kinase activity; Cardioprotective effect without any toxicity. | [54] |
| ||||
Polyphenols from green tea and coffee, vegetables, fruits, dark chocolates, and extra-virgin olive oil; Omega-3 PUFAs from salmon, dentex, and anchovies. | Diet naturally rich/or not in omega-3 PUFAs (4 g/day) and/or polyphenols (2.861 mg/day); 8 weeks | Humans at high metabolic risk. | Reduction of the postprandial lipid VLDL; Increases IDL; LDL richer and HDL poorer in TG. | [55] |
Polyphenols from green tea and coffee, vegetables, fruits, dark chocolates, and extra-virgin olive oil; Omega-3 PUFAs from salmon, dentex, and anchovies. | Diet naturally rich/or not in omega-3 PUFAs (4 g/day) and/or polyphenols (2.861 mg/day); 8 weeks. | Humans at high metabolic risk. | Additive effects of polyphenols (less TG, large VLDL, and urinary 8-isoprostanes) and of fish oils (less postprandial chylomicron cholesterol and VLDL apolipoprotein B-48); Correlation lipoprotein changes and 8-isoprostanes. | [56] |
Polyphenols from green tea and coffee, vegetables, fruits, dark chocolates, and extra-virgin olive oil; Omega-3 PUFAs from salmon, dentex, and anchovies. | Diet naturally rich/or not in omega-3 PUFAs (4 g/day) and/or polyphenols (2.861 mg/day); 8 weeks | Humans at high metabolic risk. | Additive effects of polyphenols (less plasma glucose and increased early insulin secretion) and of fish oils (reduced beta-cell function and GLP-1). | [57] |
Polyphenols from green tea and coffee, vegetables, fruits, dark chocolates, and extra-virgin olive oil; Omega-3 PUFAs from salmon, dentex, and anchovies. | Diet naturally rich/or not in omega-3 PUFAs (4 g/day) and/or polyphenols (2.861 mg/day); 8 weeks. | Humans at high metabolic risk. | Lipid rearrangements (in phospholipids fatty acid profiles of HDL). | [58] |
Cranberry polyphenols; EPA and DHA. | 200 mL of the cranberry; 1 g omega-3 fatty acid capsule, 180 mg EPA and 120 mg DHA, twice daily; 8 weeks. | Humans with diabetes and periodontal disease. | Decreased glycated hemoglobin; Increased HDL-C; Improve periodontal status. | [59] |
Polyphenols from green tea and coffee, vegetables, fruits, dark chocolates, and extra-virgin olive oil; Omega-3 PUFAs from salmon, dentex, and anchovies. | Diet naturally rich/or not in omega-3 PUFAs (4 g/day) and/or polyphenols (2.861 mg/day); Blood samples taken before and up to 6 h after the test meal. | Humans at high metabolic risk. | Change in levels of chylomicron cholesterol and triglycerides due to omega-3; Response to nutraceuticals depends on acute or chronic supplementation. | [60] |
Diet rich in polyphenols and omega-3; PUFAs. | Retrospective study; June 2017 to December 2018; Łódź, Poland. | Middle-age patients after percutaneous coronary intervention. | PLR and NLR depending on the omega-6/omega-3 ratio. | [61] |
Polyphenols from green tea and coffee, vegetables, fruits, dark chocolates, and extra-virgin olive oil; Omega-3 PUFAs from salmon, dentex, and anchovies. | Diet naturally rich/or not in omega-3 PUFAs (4 g/day) and/or polyphenols (2.861 mg/day); 8 weeks. | Human at high metabolic risk. | Change in gut microbiota associated with changes in glucose/lipid metabolism. | [62] |
Fish oil; Chocolate containing plant sterols and green tea. | Fish oil (1.7 g EPA + DHA/day); Chocolate containing plant sterols (2.2 g/day); Green tea (two sachets/day); 6 weeks. | Patients suffering from type 2 diabetes. | Both nutraceuticals combined with statin therapy significantly reduced LDL-C and CRP. | [63] |
Mix of phytosterols, antioxidants, probiotics, fish oil, berberine, and vegetable proteins (PROG) + proprietary lifestyle. | PROG plan daily; 13 weeks. | Healthy overweight people with cardiometabolic syndrome. | Less body and fat mass; Improved plasma lipid profiles and inflammation markers. | [64] |
Nutraceutical cocktail (polyphenols, omega-3 fatty acids, vitamin E, and selenium). | Nutraceutical cocktail daily; 10–20 days. | People with sedentary behaviors and fructose overfeeding. | Less alterations on lipid metabolism; No effect in preventing insulin resistance. | [65] |
Aterofisiol® (EPA, DHA, oligomeric proanthocyanidinsand resveratrol, vitamins K2, B6, and B12). | Aterofisiol®; 1 tablet every 24 h starting 30 days before the surgery and stopping 5 days before it. | Patients with carotid stenosis who underwent endarterectomy. | Alteration of atherosclerotic plaque composition; More prevention from neurological events associated. | [66] |
Bioactive | Dose | Model | Health Effects of the Combination | Reference |
---|---|---|---|---|
Neurodegenerative Diseases | ||||
| ||||
EPA, Lyc-O-mato, carnosic acid, and lutein. | 0.125 µM EPA, 0.1 µM Lyc-O-mato, 0.2 µM carnosic acid and 0.2 µM lutein. | BV-2 immortalized murine microglial cell line. | Synergistic inhibition of the production of proinflammatory mediators: Inhibition redox-sensitive NF-κB activation; Inhibition of superoxide production; Upregulation COX-2 and iNOS; More release of PGE2 and NO; Attenuation IL-6 and CD40. | [68] |
Polyphenols (resveratrol, quercetin, and apigenin), omega-3 and omega-9 fatty acids (α-ALA, EPA, DHA, and OA) and α-tocopherol. | Polyphenols: 1.5 to 6.25 µM; Fatty acids: 6.25 to 50 µM. α-Tocopherol: 400 µM. | N2a Neuronal cells. | Cytoprotective against 7-Ketocholesterol-induced neurotoxicity. | [69] |
| ||||
Resveratrol and DHA. | 50 mg/kg/day of each supplement (alone and combined); 6 weeks. | Adult C57Bl/6 mice. | Modulation of steroid hormone biosynthesis, JAK-STAT signaling pathway, ribosome, graft-versus-host disease pathways in the hippocampus; Decreased IL-6 and Apolipoprotien E (ApoE) expression. | [70] |
LMN diet rich in polyphenols and PUFAs. | LMN diet; 5 months. | Tg2576 male and female mice as a model of AD. | Delays the Aβ plaque formation and decreases Aβ1–40 and Aβ1–42 plasma levels in adult mice. | [71] |
LMN diet rich in polyphenols and PUFAs. | LMN diet; 10, 20, 30, or 40 days. | 129S1/SvImJ adult male mice. | Enhancement of cholinergic and catecholaminergic transmissions; Nrf2 activation and increased protein levels of SOD-1 and GPx. | [72] |
Resveratrol, prebiotic fiber, and DHA. | Resveratrol 50 mg/L drinking water; DHA and prebiotics in powdered food (100 g of prebiotic, 300 g of DHA, and 600 g of standard diet per 1 kg of food); Administration from post-natal day 21 to 43. | Adolescent male and female Sprague–Dawley rats suffering from mild traumatic brain injury. | Modify premorbid characteristics Prevented injury-related deficits in longer-term behavior measures, medial prefrontal cortex spine density, and levels of Aqp4, Gfap, Igf1, Nfl, and Sirt1 expression in the prefrontal cortex. | [73] |
Multivitamins, zinc, polyphenols, omega-3 fatty acids, and probiotics. | Bioactive mixture for 2 two weeks; 48 days. | Crickets. | A combination of multivitamins, zinc, and omega-3 fatty acids was the most effective for improving memory and cognitive performance. | [74] |
| ||||
Smartfish® (omega-3 EPA and DHA, and resveratrol, vitamin D, and whey protein). | 200 mL/day Smartfish® drink containing 1000 mg DHA, 1000 mg EPA, pomegranate and chokeberry, 10 mg vitamin D3 and resveratrol, whey protein, fiber, and fruit juice; 4–17 months. | Patients with minor cognitive impairment (MCI), with pre-MCI, or with Alzheimer disease (AD). | Increase amyloid-β phagocytosis and resolvin D1 in patients with MCI. | [75] |
Smartfish® (omega-3 EPA and DHA, and resveratrol, vitamin D, and whey protein). | 200 mL/day Smartfish® drink containing 1500 mg DHA and 1500 mg EPA, 10 μg vitamin D3, 150 mg resveratrol, and 8 g whey protein isolate; 6 months. | Older adults (68–83 years) without any specific pathology. | Limited beneficial effects improving cognitive function. | [76] |
NEWSUP (high in plant polyphenols and omega-3 fatty acids, high fortification of micronutrients, and high protein content). | NEWSUP; 23 weeks. | Children aged 15 months to 7 years; primary population: children younger than 4. | Increased working memory, hemoglobin concentration among children with anemia, decreased body mass index z score gainm, and increased lean tissue accretion with less fat; Increased index of cerebral blood flow (CBFi). | [77] |
Cancer | ||||
| ||||
Curcumin and fish oil. | 1% (w/w) curcumin; 4% (w/w) menhaden fish oil; 3 weeks nutraceutical supplementation + genotoxic carcinogen injections + 17 weeks. | Lgr5-EGFP-IREScreERT2 knock-in mice. | Only fish oils + curcumin reduced nuclear β-catenin in aberrant crypt foci and synergistically increased targeted apoptosis in DNA damaged Lgr5+ stem cells; Only fish oils + curcumin up-regulated p53 signaling in Lgr5+ stem cells from mice exposed to a carcinogen. | [78] |
| ||||
PureVida™ (EPA/DHA/hydroxytyrosol/curcumin). | 3 capsules of PureVida™/day; Each capsule: 460 mg of fish oil (EPA and DHA), 125 mg of Hytolive® powder (12.5 mg of natural hydroxytyrosol), and 50 mg extract of curcumin (47.5 mg curcuminoids); 1 month. | Post-menopausal breast cancer patients. | Decrease in CRP; Reduction of pain from aromatase inhibitors of hormonal therapies. | [79] |
Mediterranean diet. | Mediterranean-type dietary pattern; Population-based case–control study; January 2015 to December 2016; Catania, Italy. | Prostate cancer (PCa) cases and controls. | High adherence to diet inversely associated with the likelihood of prostate cancer: PCa cases consume a lower amount of vegetables, legumes, and fish. | [80] |
Exercise and physical activity | ||||
| ||||
Fish oil and curcumin. | 5% fish oil (EPA: 13.2%; DHA: 8.6%; DPA: 4.9%), 1% curcumin in diet; 10 days supplement + 7 day hindlimb unloading. | C57BI/6 mice. | Decreased loss of muscle cross-sectional area; An enhanced abundance of HSP70 and anabolic signaling (Akt phosphorylation, p70S6K phosphorylation) while reducing Nox2. | [81] |
| ||||
Beverages based on almonds and olive oil and enriched with α-tocopherol and DHA. | 1 L daily supplementation of almond and olive oil and α-tocopherol based beverage enriched with a DHA functional beverage five days a week; 5 weeks. | Young/senior male athletes. | Increased PUFAs and reduced SFAs in plasma; Increased DHA in erythrocyte; Increased blood cell polyphenol concentration in senior athletes; Protects against oxidative damage but enhances nitrative damage in young athletes; Gene expression of antioxidant enzymes in peripheral blood mononuclear cells after exercise in young athletes (GPx, CAT, and Cu–Zn SOD). | [82] |
Beverages based on almonds and olive oil and enriched with α-tocopherol and DHA. | 1 L daily supplementation of almond and olive oil and α-tocopherol based beverage enriched with a DHA functional beverage five days a week; 5 weeks. | Young/senior male athletes. | Increased TNFα levels depending on age and exercise;Attenuated the increase in plasma NEFAs, sICAM3 and sL-Selectin induced by exercise; Exercise increased PGE2 plasma levels in supplemented young athletes; Exercise increased NFkβ-activated levels in PBMCs mainly in supplemented young athletes. | [83] |
Antioxidant/anti-inflammatory cocktail (polyphenols, vitamin E, selenium, and omega-3). | Daily antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 μg of selenium, and 2.1 g of omega-3); 60 days of hypoactivity. | Healthy, active male subjects. | Ineffectiveness regarding oxidative muscle damage, mitochondrial content, and protein balance and a disturbance of essential signaling pathways (protein balance and mitochondriogenesis) during the remobilization period. | [84] |
Age-related eye disease | ||||
| ||||
Resvega (30 mg of trans resveratrol and 665 mg of omega-3 EPA and DHA, among other nutrients). | 288 ng of Resvega (30 mg of trans resveratrol and 665 mg of omega-3, among other nutrients); 48 h. | ARPE-19 cells. | Induced autophagy by increased autolysosome formation and autophagy flux; Change p62 and LC3 protein levels; Cytoprotection under proteasome inhibition | [85] |
| ||||
Resvega (30 mg of trans resveratrol and 665 mg of omega-3, among other nutrients). | 100 µL of Resvega once a day; 38 days. | C57BL6/J mice. | Less vascular endothelial growth factor (VEGF) protein expression levels and less MMP-9 activity; Mitigate choroidal neovascularization and retinal disease. | [86] |
Others | ||||
Dermatologic food (EPA + DHA + polyphenols). | Dermatologic food; 8 weeks. | Adult atopic dog. | Reductions in clinical scores of atopic dermatitis. | [87] |
Olive oil polyphenols and fish oil. | Prospective birth cohort Assessment of Lifestyle and Allergic Disease During INfancy (ALADDIN) Families recruited: September 2004–November 2007; Stockholm area, Sweden. | Placentas. | Altered histone acetylation in placentas. | [88] |
Omega-3 fatty acids, and polyphenols, fiber. | Mother–neonate pairs from the prospective and observational MAMI birth cohort. Recruited: 2015–2017 Spanish–Mediterranean area; 18 months. | Gut microbiota from mother–neonate pairs. | Higher abundance of the Ruminococcus species in maternal gut microbiota; Higher relative abundance of Faecalibacterium prausnitzii considered as a biomarker of colonic health, associated with anti-inflammatory properties; Modulation of neonatal microbiota. | [89] |
Lipophenol | Dose | Model | Health Effects of the Combination | Reference |
---|---|---|---|---|
| ||||
Isopropyl-phloroglucinol (IP)-DHA; IP–D2-DHA; IP–D4-DHA. | 0–80 µM for 1 h. | ARPE-19 cells. | Reduced radical lipid peroxidation status on cells under oxidative conditions as a model of age-related macular degeneration and Stargardt’s disease. | [101] |
IP-DHA. | 0–80 µM for 1 h. | Primary rat RPE, mouse neural retina and human ARPE-19 cells. | Both polyphenol and PUFAs are needed for anti-carbonyl and anti-oxidative capacities; Protection against a lethal dose of all-trans-retinal; Long term protection effects. | [102] |
Quercetin conjugated to DHA (Q-3-DHA). | 0–80 µM for 1 h. | ARPE-19 cells. | Less toxicity that quercetin alone and better anti-carbonyl capacity. | [103] |
Q-3-DHA-7OiP (quercetin-isopropyl DHA). | 0–80 µM for 1 h. | ARPE-19 cells. | Highly capacity against carbonyl and oxidative stresses. | [104] |
Quercetin-3-O-glucoside (Q3G)-EPA and -DHA. | 1 mM for 48 h at 37 °C. | Normal diploid human fetal lung fibroblast cell line (WI-38); Fresh human normal primary hepatocytes (h-NHEPS™). | Greater cell viability upon H2O2 exposure in lung and liver; Lower production of lipid hydroperoxides under induced oxidative stress. | [105] |
Quercetin-3-O-glucoside (Q3G)-EPA and -DHA. | 1 mM for 48 h at 37 °C. | Normal diploid human fetal lung fibroblast cell line (WI-38). | Protection against nicotine- and Cr(VI)-induced cell death and membrane lipid peroxidation; A less inflammatory response (lesser COX-2 and PGE2). | [106] |
DHA linked to resveratrol (RES-DHA). | 10, 20, 40, or 80 μM for 72 h. | THP-1 monocytes. | Capacity for inhibiting MMP-9. | [107] |
| ||||
IP-DHA. | An intravenous injection at doses from 5 to 30 mg/kg body weight; An orally gavaged administration at doses from 40 to 150 mg/kg body weight. | Albino Abca4−/− mice. | A dose-dependently decreased light-induced photoreceptor degeneration and preserved visual sensitivity by reducing carbonyl stress in the retina;Long term protection effects. | [108] |
Acylated phloridzin-DHA (PZ-DHA). | In vitro: 10, 50, 100 µM for 24 h at 37 °C; In vivo: 5 intra-tumoral injections of PZ-DHA: 0.75 mg/kg; 15-days. | Mammary carcinoma (MDA-MB-231, MDA-MB-468, 4T1, MCF-7 and T-47D) cells; Female non-obese diabetic severe combined immunodeficient (NOD-SCID) mice. | Selectively cytotoxic to breast cancer cells in vitro and in vivo. | [109] |
Acylated phloridzin-DHA (PZ-DHA). | In vitro: 10 µM for 24 h at 37 °C; In vivo: Intraperitoneal injection of PZ-DHA (100 mg/kg body weight) every second day for 9 days; 17-days. | Mammary carcinoma (MDA-MB-231, MDA-MB-468, 4T1, MCF-7 and T-47D) cells; BALB/c and NOD-SCID female mice. | Potential prevention or inhibition of triple-negative breast cancer (TNBC). | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez, L.; Medina, I. Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects. Molecules 2021, 26, 2438. https://doi.org/10.3390/molecules26092438
Méndez L, Medina I. Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects. Molecules. 2021; 26(9):2438. https://doi.org/10.3390/molecules26092438
Chicago/Turabian StyleMéndez, Lucía, and Isabel Medina. 2021. "Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects" Molecules 26, no. 9: 2438. https://doi.org/10.3390/molecules26092438
APA StyleMéndez, L., & Medina, I. (2021). Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects. Molecules, 26(9), 2438. https://doi.org/10.3390/molecules26092438