(Poly)phenols in Inflammatory Bowel Disease and Irritable Bowel Syndrome: A Review
Abstract
:1. Introduction
2. (Poly)phenols, Inflammatory Bowel Disease, and Irritable Bowel Syndrome
2.1. (Poly)phenols and Symptoms in Inflammatory Bowel Disease and Irritable Bowel Syndrome
2.2. (Poly)phenols and Inflammatory Markers in Inflammatory Bowel Disease and Irritable Bowel Syndrome
2.3. (Poly)phenols and Health-Related Quality of Life in Inflammatory Bowel Disease and Irritable Bowel Syndrome
2.4. Habitual (Poly)phenol Consumption on Incidence of Inflammatory Bowel and Irritable Bowel Syndrome
2.5. (Poly)phenols and Intestinal Permeability in Inflammatory Bowel Disease and Irritable Bowel Syndromee
2.6. (Poly)phenols and Endoscopic Response in Inflammatory Bowel Disease
2.7. (Poly)phenols and Oxidative Stress in Inflammatory Bowel Disease
3. Limitations and Strengths of the Current Evidence
4. Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Arch. Toxicol. 2014, 88, 1803–1853. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Ziauddeen, N.; Rosi, A.; Del Rio, D.; Amoutzopoulos, B.; Nicholson, S.; Page, P.; Scazzina, F.; Brighenti, F.; Ray, S.; Mena, P. Dietary intake of (poly)phenols in children and adults: Cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008–2014). Eur. J. Nutr. 2019, 58, 3183–3198. [Google Scholar] [CrossRef] [PubMed]
- Rolfe, V.; Mackonochie, M.; Mills, S.; MacLennan, E. Turmeric/curcumin and health outcomes: A meta-review of systematic reviews. Eur. J. Integr. Med. 2020, 40, 101252. [Google Scholar] [CrossRef]
- Shapiro, H.; Singer, P.; Halpern, Z.; Bruck, R. Polyphenols in the treatment of inflammatory bowel disease and acute pancreatitis. Gut 2007, 56, 426–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roudsari, N.M.; Lashgari, N.-A.; Momtaz, S.; Farzaei, M.H.; Marques, A.M.; Abdolghaffari, A.H. Natural polyphenols for the prevention of irritable bowel syndrome: Molecular mechanisms and targets; a comprehensive review. DARU 2019, 27, 755–780. [Google Scholar] [CrossRef]
- Sairenji, T.; Collins, K.L.; Evans, D.V. An Update on Inflammatory Bowel Disease. Prim. Care 2017, 44, 673–692. [Google Scholar] [CrossRef]
- Alatab, S.; Sepanlou, S.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.; Abdoli, A.; Abolhassani, H.; et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Di Stasi, L.C. Coumarin Derivatives in Inflammatory Bowel Disease. Molecules 2021, 26, 422. [Google Scholar] [CrossRef]
- Baumgart, D.C.; Sandborn, W.J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 2007, 369, 1641–1657. [Google Scholar] [CrossRef]
- Vecchi Brumatti, L.; Marcuzzi, A.; Tricarico, P.M.; Zanin, V.; Girardelli, M.; Bianco, A.M. Curcumin and inflammatory bowel disease: Potential and limits of innovative treatments. Molecules 2014, 19, 21127–21153. [Google Scholar] [CrossRef] [Green Version]
- Roberti, R.; Iannone, L.F.; Palleria, C.; De Sarro, C.; Spagnuolo, R.; Barbieri, M.A.; Vero, A.; Manti, A.; Pisana, V.; Fries, W.; et al. Safety profiles of biologic agents for inflammatory bowel diseases: A prospective pharmacovigilance study in Southern Italy. Curr. Med. Res. Opin. 2020, 36, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Knight-Sepulveda, K.; Kais, S.; Santaolalla, R.; Abreu, M.T. Diet and Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2015, 11, 511–520. [Google Scholar]
- Eaton, S.B.; Konner, M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 1985, 312, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.R.; Shepherd, S.J. Personal view: Food for thought—western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Aliment. Pharmacol. Ther. 2005, 21, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.R.; Shepherd, S.J. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J. Gastroenterol. Hepatol. 2010, 25, 252–258. [Google Scholar] [CrossRef]
- Gibson, P.R. Use of the low-FODMAP diet in inflammatory bowel disease. J. Gastroenterol. Hepatol. 2017, 32, 40–42. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Clin. Nutr. 2017, 36, 321–347. [Google Scholar] [CrossRef] [Green Version]
- Lacy, B.E.; Mearin, F.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407.e1395. [Google Scholar] [CrossRef] [Green Version]
- Lacy, B.E.; Patel, N.K. Rome Criteria and a Diagnostic Approach to Irritable Bowel Syndrome. J. Clin. Med. 2017, 6, 99. [Google Scholar] [CrossRef]
- Palsson, O.; Whitehead, W.; Tilburg, M.V.; Chang, L.; Chey, W.; Crowell, M.; Keefer, L.; Lembo, A.; Parkman, H.; Rao, S.S.C.; et al. Development and Validation of the Rome IV Diagnostic Questionnaire for Adults. Gastroenterology 2016, 150, 1481–1491. [Google Scholar] [CrossRef]
- Occhipinti, K.; Smith, J.W. Irritable bowel syndrome: A review and update. Clin. Colon. Rectal. Surg. 2012, 25, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Barbara, G.; De Giorgio, R.; Stanghellini, V.; Cremon, C.; Corinaldesi, R. A role for inflammation in irritable bowel syndrome? Gut 2002, 51, i41. [Google Scholar] [CrossRef]
- McKenzie, Y.; Bowyer, R.; Leach, H.; Gulia, P.; Horobin, J.; O’Sullivan, N.; Pettitt, C.; Reeves, L.; Seamark, L.; Williams, M.; et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 2016, 29. [Google Scholar] [CrossRef] [Green Version]
- Hookway, C.; Buckner, S.; Crosland, P.; Longson, D. Irritable bowel syndrome in adults in primary care: Summary of updated NICE guidance. BMJ 2015, 350, h701. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Weiser, K.; De Lee, R. The treatment of irritable bowel syndrome. Ther. Adv. Gastroenterol. 2009, 2, 221–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, V.S.; Kanthlal, S.K.; Linda, G. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions. J. Food Biochem. 2020, 44, e13369. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiang, L.; He, J. Beverage intake and risk of Crohn disease: A meta-analysis of 16 epidemiological studies. Medicine 2019, 98, e15795. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Wang, X.; Chen, Z.; He, A.; Zheng, Z.; Liu, G. Efficacy of adjuvant curcumin therapy in ulcerative colitis: A meta-analysis of randomized controlled trials. J. Gastroenterol. Hepatol. 2020, 35, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Chandan, S.; Mohan, B.P.; Chandan, O.C.; Ahmad, R.; Challa, A.; Tummala, H.; Singh, S.; Dhawan, P.; Ponnada, S.; Singh, A.B.; et al. Curcumin use in ulcerative colitis: Is it ready for prime time? A systematic review and meta-analysis of clinical trials. Ann. Gastroenterol. 2020, 33, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kaulmann, A.; Bohn, T. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases-Promises, Perspectives, and Pitfalls. Oxid. Med. Cell. Longev. 2016, 2016, 9346470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biasi, F.; Astegiano, M.; Maina, M.; Leonarduzzi, G.; Poli, G. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr. Med. Chem. 2011, 18, 4851–4865. [Google Scholar] [CrossRef]
- Nunes, S.; Danesi, F.; Del Rio, D.; Silva, P. Resveratrol and inflammatory bowel disease: The evidence so far. Nutr. Res. Rev. 2018, 31, 85–97. [Google Scholar] [CrossRef]
- Martin, D.A.; Bolling, B.W. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct. 2015, 6, 1773–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapira, S.; Arber, N.; Leshno, A.; Hevroni, G.; Jean-David, M.; Kraus, S.; Galazan, L.; Aroch, I.; Kazanov, D.; Moshkowitz, M.; et al. Of mice and men: A novel dietary supplement for the treatment of ulcerative colitis. Ther. Adv. Gastroenterol. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Hanai, H.; Iida, T.; Takeuchi, K.; Watanabe, F.; Maruyama, Y.; Andoh, A.; Tsujikawa, T.; Fujiyama, Y.; Mitsuyama, K.; Sata, M.; et al. Curcumin maintenance therapy for ulcerative colitis: Randomized, multicenter, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 2006, 4, 1502–1506. [Google Scholar] [CrossRef]
- Lang, A.; Salomon, N.; Kopylov, U.; Lahat, A.; Har-Noy, O.; Avidan, B.; Eliakim, R.; Ben-Horin, S.; Gamus, D.; Wu, J.C.Y.; et al. Curcumin in Combination With Mesalamine Induces Remission in Patients With Mild-to-Moderate Ulcerative Colitis in a Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. 2015, 13, 1444. [Google Scholar] [CrossRef]
- Masoodi, M.; Mahdiabadi, M.A.; Mokhtare, M.; Agah, S.; Kashani, A.H.F.; Rezadoost, A.M.; Sabzikarian, M.; Talebi, A.; Sahebkar, A. The efficacy of curcuminoids in improvement of ulcerative colitis symptoms and patients’ self-reported well-being: A randomized double-blind controlled trial. J. Cell. Biochem. 2018, 119, 9552–9559. [Google Scholar] [CrossRef]
- Sadeghi, N.; Mansoori, A.; Shayesteh, A.; Hashemi, S.J. The effect of curcumin supplementation on clinical outcomes and inflammatory markers in patients with ulcerative colitis. Phytother. Res. 2020, 34, 1123–1133. [Google Scholar] [CrossRef]
- Kedia, S.; Bhatia, V.; Thareja, S.; Garg, S.; Mouli, V.P.; Bopanna, S.; Tiwari, V.; Makharia, G.; Ahuja, V. Low dose oral curcumin is not effective in induction of remission in mild to moderate ulcerative colitis: Results from a randomized double blind placebo controlled trial. World J. Gastrointest Pharm. 2017, 8, 147–154. [Google Scholar] [CrossRef]
- Singla, V.; Pratap Mouli, V.; Garg, S.K.; Rai, T.; Choudhury, B.N.; Verma, P.; Deb, R.; Tiwari, V.; Rohatgi, S.; Dhingra, R.; et al. Induction with NCB-02 (curcumin) enema for mild-to-moderate distal ulcerative colitis-a randomized, placebo-controlled, pilot study. J. Crohn’s Colitis 2014, 8, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Holt, P.R.; Katz, S.; Kirshoff, R. Curcumin therapy in inflammatory bowel disease: A pilot study. Dig. Dis. Sci. 2005, 50, 2191–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biedermann, L.; Mwinyi, J.; Scharl, M.; Frei, P.; Zeitz, J.; Kullak-Ublick, G.A.; Vavricka, S.R.; Fried, M.; Weber, A.; Humpf, H.-U.; et al. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis-an open pilot study. J. Crohn’s Colitis 2013, 7, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Dryden, G.W.; Lam, A.; Beatty, K.; Qazzaz, H.H.; McClain, C.J. A pilot study to evaluate the safety and efficacy of an oral dose of (-)-epigallocatechin-3-gallate-rich polyphenon E in patients with mild to moderate ulcerative colitis. Inflamm. Bowel Dis. 2013, 19, 1904–1912. [Google Scholar] [CrossRef] [PubMed]
- Morshedzadeh, N.; Hekmatdoost, A.; Mirmiran, P.; Shahrokh, S.; Aghdaei, H.A.; Amin Pourhoseingholi, M.; Chaleshi, V.; Zali, M.R.; Karimi, S. Effects of flaxseed and flaxseed oil supplement on serum levels of inflammatory markers, metabolic parameters and severity of disease in patients with ulcerative colitis. Complement. Ther. Med. 2019, 46, 36–43. [Google Scholar] [CrossRef]
- Morvaridi, M.; Jafarirad, S.; Seyedian, S.S.; Alavinejad, P.; Cheraghian, B. The effects of extra virgin olive oil and canola oil on inflammatory markers and gastrointestinal symptoms in patients with ulcerative colitis. Eur. J. Clin. Nutr. 2020, 74, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah-Bodaghi, M.; Hekmatdoost, A.; Maleki, I.; Agah, S. Zingiber officinale and oxidative stress in patients with ulcerative colitis: A randomized, placebo-controlled, clinical trial. Complement. Ther. Med. 2019, 43, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rastegarpanah, M.; Malekzadeh, R.; Vahedi, H.; Elahi, E.; Chaharmahali, M.; Safarnavadeh, T.; Abdollahi, M.; Mohammadi, M. A randomized, double blinded, placebo-controlled clinical trial of silymarin in ulcerative colitis. Chin. J. Integr. Med. 2015, 21, 902–906. [Google Scholar] [CrossRef]
- Samsami-Kor, M.; Daryani, N.E.; Asl, P.R.; Hekmatdoost, A. Anti-Inflammatory Effects of Resveratrol in Patients with Ulcerative Colitis: A Randomized, Double-Blind, Placebo-controlled Pilot Study. Arch. Med Res. 2015, 46, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Samsamikor, M.; Daryani, N.E.; Asl, P.R.; Hekmatdoost, A. Resveratrol Supplementation and Oxidative/Anti-Oxidative Status in Patients with Ulcerative Colitis: A Randomized, Double-Blind, Placebo-controlled Pilot Study. Arch. Med. Res. 2016, 47, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Venancio, V.P.; Fang, C.; Talcott, S.T.; Mertens-Talcott, S.U.; Dupont, A.W. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr. Res. 2020, 75, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Swanson, G.R.; Tieu, V.; Shaikh, M.; Forsyth, C.; Keshavarzian, A. Is moderate red wine consumption safe in inactive inflammatory bowel disease? Digestion 2011, 84, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, K.; Ikeya, K.; Bamba, S.; Andoh, A.; Yamasaki, H.; Mitsuyama, K.; Nasuno, M.; Tanaka, H.; Matsuura, A.; Kato, M.; et al. Highly bioavailable curcumin derivative ameliorates Crohn’s disease symptoms: A randomized, double-blind, multicenter study. J. Crohns Colitis 2020. [Google Scholar] [CrossRef] [PubMed]
- Belcaro, G.; Gizzi, G.; Pellegrini, L.; Feragalli, B.; Cotellese, R.; Cacchio, M.; Corsi, M. Pycnogenol® supplementation improves the control of irritable bowel syndrome symptoms. Panminerva Med. 2018, 60, 65–69. [Google Scholar] [CrossRef]
- Cremon, C.; Stanghellini, V.; Barbaro, M.R.; Cogliandro, R.F.; Bellacosa, L.; Santos, J.; Vicario, M.; Pigrau, M.; Alonso Cotoner, C.; Lobo, B.; et al. Randomised clinical trial: The analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2017, 45, 909–922. [Google Scholar] [CrossRef]
- Jalili, M.; Hekmatdoost, A.; Vahedi, H.; Poustchi, H.; Khademi, B.; Saadi, M.; Zemestani, M.; Janani, L. Co-Administration of soy isoflavones and Vitamin D in management of irritable bowel disease. PLoS ONE 2016, 11, e0158545. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Vahedi, H.; Poustchi, H.; Hekmatdoost, A. Soy isoflavones and cholecalciferol reduce inflammation, and gut permeability, without any effect on antioxidant capacity in irritable bowel syndrome: A randomized clinical trial. Clin. Nutr. Espen 2019, 34, 50–54. [Google Scholar] [CrossRef]
- Jalili, M.; Hekmatdoost, A.; Vahedi, H.; Poustchi, H.; Malekzadeh, R.; Janani, L. Soy isoflavones supplementation for patients with irritable bowel syndrome: A randomized double blind clinical trial. Middle East. J. Dig. Dis. 2015, 7, 170–176. [Google Scholar]
- Mangel, A.W.; Chaturvedi, P. Evaluation of crofelemer in the treatment of diarrhea-predominant irritable bowel syndrome patients. Digestion 2008, 78, 180–186. [Google Scholar] [CrossRef]
- Nee, J.; Salley, K.; Ludwig, A.G.; Sommers, T.; Ballou, S.; Takazawa, E.; Duehren, S.; Singh, P.; Iturrino, J.; Katon, J.; et al. Randomized Clinical Trial: Crofelemer Treatment in Women With Diarrhea-Predominant Irritable Bowel Syndrome. Clin. Transl. Gastroenterol. 2019, 10, e00110. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Scribano, M.L.L.; Kohn, A.; Caporaso, N.; Festi, D.; Campanale, M.C.; Di Rienzo, T.; Guarino, M.; Taddia, M.; et al. Curcumin and Fennel Essential Oil Improve Symptoms and Quality of Life in Patients with Irritable Bowel Syndrome. J. Gastrointest. Liver Dis. 2016, 25, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Trifan, A.; Burta, O.; Tiuca, N.; Petrisor, D.C.; Lenghel, A.; Santos, J. Efficacy and safety of Gelsectan for diarrhoea-predominant irritable bowel syndrome: A randomised, crossover clinical trial. United Eur. Gastroenterol. J. 2019, 7, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- van Tilburg, M.A.L.; Palsson, O.S.; Ringel, Y.; Whitehead, W.E. Is ginger effective for the treatment of irritable bowel syndrome? A double blind randomized controlled pilot trial. Complement. Ther. Med. 2014, 22, 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glabska, D.; Galazka, K.; Guzek, D.; Lech, G. Therapeutic potential of proanthocyanidins in ulcerative colitis in remission. J. Clin. Med. 2020, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Gląbska, D.; Guzek, D.; Grudzińska, D.; Lech, G. Influence of dietary isoflavone intake on gastrointestinal symptoms in ulcerative colitis individuals in remission. World J. Gastroenterol. 2017, 23, 5356–5363. [Google Scholar] [CrossRef] [PubMed]
- Ohfuji, S.; Fukushima, W.; Hirota, Y.; Watanabe, K.; Yamagami, H.; Sasaki, S.; Nagahori, M.; Watanabe, M. Pre-illness isoflavone consumption and disease risk of ulcerative colitis: A multicenter case-control study in Japan. PLoS ONE 2014, 9, e110270. [Google Scholar] [CrossRef]
- Skolmowska, D.; Głąbska, D.; Guzek, D.; Lech, G. Association between Dietary Isoflavone Intake and Ulcerative Colitis Symptoms in Polish Caucasian Individuals. Nutrients 2019, 11, 1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.C.; Tang, W.; Ching, J.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Leong, R.W.; Ko, Y.; Chen, M.; Hu, P.; et al. Environmental risk factors in inflammatory bowel disease: A population-based case-control study in Asia-Pacific. Gut 2015, 64, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zamora-Ros, R.; Chan, S.; Cross, A.J.; Ward, H.; Jakszyn, P.; Luben, R.; Opstelten, J.L.; Oldenburg, B.; Hallmans, G.; et al. Dietary Polyphenols in the Aetiology of Crohn’s Disease and Ulcerative Colitis-A Multicenter European Prospective Cohort Study (EPIC). Inflamm. Bowel Dis. 2017, 23, 2072–2082. [Google Scholar] [CrossRef] [Green Version]
- Al Saadi, T.; Turk, T.; Alkhatib, M.; Idris, A. Epidemiology and risk factors of uninvestigated dyspepsia, irritable bowel syndrome, and gastroesophageal reflux disease among students of Damascus University, Syria. J. Epidemiol. Glob. Health 2016, 6, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Ligaarden, S.C.; Farup, P.G.; Lydersen, S. Diet in subjects with irritable bowel syndrome: A cross-sectional study in the general population. BMC Gastroenterol. 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Siah, K.T.H.; Wong, R.K.; Ho, K.Y.; Gwee, K.A.; Chan, Y.H. Prevalence of irritable bowel syndrome in Singapore and its association with dietary, lifestyle, and environmental factors. J. Neurogastroenterol. Motil. 2016, 22, 670–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simren, M.; Abrahamsson, H.; Bjornsson, E.S.; Mansson, A.; Langkilde, A.M.; Svedlund, J.; Bengtsson, U. Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion 2001, 63, 108–115. [Google Scholar] [CrossRef]
- Sutherland, L.R.; Martin, F.; Greer, S.; Robinson, M.; Greenberger, N.; Saibil, F.; Martin, T.; Sparr, J.; Prokipchuk, E.; Borgen, L. 5-Aminosalicylic acid enema in the treatment of distal ulcerative colitis, proctosigmoiditis, and proctitis. Gastroenterology 1987, 92, 1894–1898. [Google Scholar] [CrossRef]
- Schroeder, K.W.; Tremaine, W.J.; Ilstrup, D.M. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N. Engl. J. Med. 1987, 317, 1625–1629. [Google Scholar] [CrossRef]
- Lewis, J.D.; Chuai, S.; Nessel, L.; Lichtenstein, G.R.; Aberra, F.N.; Ellenberg, J.H. Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, R.S.; Ayres, R.C.S.; Pounder, R.E.; Allan, R.N. A simple clinical colitis activity index. Gut 1998, 43, 29. [Google Scholar] [CrossRef] [Green Version]
- Rachmilewitz, D. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: A randomised trial. BMJ 1989, 298, 82–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedlund, J.; Sjödin, I.; Dotevall, G. GSRS--a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig. Dis. Sci. 1988, 33, 129–134. [Google Scholar] [CrossRef]
- Best, W.R.; Becktel, J.M.; Singleton, J.W.; Kern, F., Jr. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 1976, 70, 439–444. [Google Scholar]
- Francis, C.Y.; Morris, J.; Whorwell, P.J. The irritable bowel severity scoring system: A simple method of monitoring irritable bowel syndrome and its progress. Aliment. Pharm. 1997, 11, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724. [Google Scholar] [CrossRef]
- Tradtrantip, L.; Namkung, W.; Verkman, A.S. Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol. Pharm. 2010, 77, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Vermeire, S.; Van Assche, G.; Rutgeerts, P. Laboratory markers in IBD: Useful, magic, or unnecessary toys? Gut 2006, 55, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Vermeire, S.; Van Assche, G.; Rutgeerts, P. C-Reactive Protein as a Marker for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2004, 10, 661–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sands, B.E.; Kaplan, G.G. The Role of TNFα in Ulcerative Colitis. J. Clin. Pharmacol. 2007, 47, 930–941. [Google Scholar] [CrossRef]
- Gough, D.J.; Levy, D.E.; Johnstone, R.W.; Clarke, C.J. IFNγ signaling—Does it mean JAK–STAT? Cytokine Growth Factor Rev. 2008, 19, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, O.; Helvaci, K.; Başar, O.; Köklü, S.; Caner, S.; Helvaci, N.; Abayli, E.; Altiparmak, E. An overlooked indicator of disease activity in ulcerative colitis: Mean platelet volume. Platelets 2009, 20, 277–281. [Google Scholar] [CrossRef]
- Öztürk, Z.A.; Dag, M.S.; Kuyumcu, M.E.; Cam, H.; Yesil, Y.; Yilmaz, N.; Aydinli, M.; Kadayifci, A.; Kepekci, Y. Could platelet indices be new biomarkers for inflammatory bowel diseases? Eur. Rev. Med. Pharm. Sci. 2013, 17, 334–341. [Google Scholar]
- Røseth, A.G.; Schmidt, P.N.; Fagerhol, M.K. Correlation between Faecal Excretion of Indium-111-Labelled Granulocytes and Calprotectin, a Granulocyte Marker Protein, in Patients with Inflammatory Bowel Disease. Scand. J. Gastroenterol. 1999, 34, 50–54. [Google Scholar] [CrossRef]
- Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.; Marteau, P.; Doré, J. Low Counts of Faecalibacterium prausnitzii in Colitis Microbiota. Inflamm. Bowel Dis. 2009, 15, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. The gut microbiota manages host metabolism. Nat. Rev. Endocrinol. 2014, 10, 74–76. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.-S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyatt, G.; Mitchell, A.; Irvine, E.J.; Singer, J.; Williams, N.; Goodacre, R.; Tompkins, C. A new measure of health status for clinical trials in inflammatory bowel disease. Gastroenterology 1989, 96, 804–810. [Google Scholar] [CrossRef]
- Irvine, E.J.; Zhou, Q.; Thompson, A.K. The Short Inflammatory Bowel Disease Questionnaire: A quality of life instrument for community physicians managing inflammatory bowel disease. CCRPT Investigators. Canadian Crohn’s Relapse Prevention Trial. Am. J. Gastroenterol. 1996, 91, 1571–1578. [Google Scholar]
- Alcalá, M.J.; Casellas, F.; Fontanet, G.; Prieto, L.; Malagelada, J.R. Shortened questionnaire on quality of life for inflammatory bowel disease. Inflamm. Bowel Dis. 2004, 10, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Zhong, L.-H.; Wen, Y.; Liu, T.-W.; Li, X.-Y.; Hou, Z.-K.; Hu, Y.; Mo, C.-W.; Liu, F.-B. Inflammatory bowel disease-specific health-related quality of life instruments: A systematic review of measurement properties. Health Qual. Life Outcomes 2017, 15, 177. [Google Scholar] [CrossRef]
- Patrick, D.L.; Drossman, D.A.; Frederick, I.O.; DiCesare, J.; Puder, K.L. Quality of life in persons with irritable bowel syndrome: Development and validation of a new measure. Dig. Dis. Sci. 1998, 43, 400–411. [Google Scholar] [CrossRef]
- Wu, M.L.; Whittemore, A.S.; Jung, D.L. Errors in reported dietary intakes. II. Long-term recall. Am. J. Epidemiol. 1988, 128, 1137–1145. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhadi, A.; Keshavarzian, A.; Holmes, E.W.; Fields, J.; Zhang, L.; Banan, A. Gas chromatographic method for detection of urinary sucralose: Application to the assessment of intestinal permeability. J. Chromatogr B Anal. Technol. Biomed. Life Sci. 2003, 784, 145–154. [Google Scholar] [CrossRef]
- Anderson, A.D.; Poon, P.; Greenway, G.M.; MacFie, J. A simple method for the analysis of urinary sucralose for use in tests of intestinal permeability. Ann. Clin. Biochem. 2005, 42, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Gecse, K.; Róka, R.; Ferrier, L.; Leveque, M.; Eutamene, H.; Cartier, C.; Ait-Belgnaoui, A.; Rosztóczy, A.; Izbéki, F.; Fioramonti, J.; et al. Increased faecal serine protease activity in diarrhoeic IBS patients: A colonic lumenal factor impairing colonic permeability and sensitivity. Gut 2008, 57, 591. [Google Scholar] [CrossRef]
- Bernardi, S.; Del Bo’, C.; Marino, M.; Gargari, G.; Cherubini, A.; Andrés-Lacueva, C.; Hidalgo-Liberona, N.; Peron, G.; González-Dominguez, R.; Kroon, P.; et al. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. J. Agric. Food Chem. 2020, 68, 1816–1829. [Google Scholar] [CrossRef] [PubMed]
- Guglielmetti, S.; Bernardi, S.; Del Bo’, C.; Cherubini, A.; Porrini, M.; Gargari, G.; Hidalgo-Liberona, N.; Gonzalez-Dominguez, R.; Peron, G.; Zamora-Ros, R.; et al. Effect of a polyphenol-rich dietary pattern on intestinal permeability and gut and blood microbiomics in older subjects: Study protocol of the MaPLE randomised controlled trial. Bmc Geriatr. 2020, 20, 77. [Google Scholar] [CrossRef] [Green Version]
- Paine, E.R. Colonoscopic evaluation in ulcerative colitis. Gastroenterol. Rep. 2014, 2, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Yeom, Y.; Kim, Y. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression. J. Cancer Prev. 2015, 20, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Hollman, P.C. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch. Biochem. Biophys. 2014, 559, 100–105. [Google Scholar] [CrossRef]
- Singh, S.; Feuerstein, J.D.; Binion, D.G.; Tremaine, W.J. AGA Technical Review on the Management of Mild-to-Moderate Ulcerative Colitis. Gastroenterology 2019, 156, 769. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Subject Description | Product | Dosage/Duration of Intake | Main Findings |
---|---|---|---|---|
Shapira et al. [36] | 16 men and women with active mild-to-moderate UC | Curcumin and green tea | 1000 mg curcumin, 500 mg green tea/8 weeks | - 4.2 point improvement in mean CAI score ** |
- Reduction in CRP and ESR | ||||
- 0.68 reduction in mean endoscopic Mayo score * | ||||
Hanai et al. [37] | 83 men and women with UC with confirmed remission | Curcumin | Control dose 0 mg, curcumin 2000 mg/6 months | - Improvement in mean CAI score * |
- Improvement in Rachmilewitz endoscopic index score ** | ||||
Lang et al. [38] | 50 men and women with mild-to-moderate UC | Curcumin | Control dose 0 mg, Curcumin 3000 mg/1 month | - Reduction of ≥1 in partial Mayo score ** |
- 56% of subjects achieved a SCCAI score ≤ 2 ** | ||||
- Clinical remission based on endoscopy * | ||||
- Reduction of ≥3 points in SCCAI score ** | ||||
Masoodi et al. [39] | 56 men and women with mild-to-moderate UC | Curcuminoids nanomicelles | Control dose 0 mg, curcuminoids 240 mg/4 weeks | - No difference in frequency of defecation or blood in stools |
- Reduction in faecal urgency * | ||||
- Reduction in mean SCCAI score * | ||||
- Improvement in wellbeing score * | ||||
Sadeghi et al. [40] | 70 men and women with mild-to-moderate UC | Curcumin | Control dose 0 mg, 1500 mg curcumin/8 weeks | - Reduction of ≥3 points in SCCAI score ** |
- 83.9% of subjects achieved SCCAI score ≤ 2 ** | ||||
- 27% increase in mean IBDQ-9 score ** | ||||
- Decrease in ESR * and serum hs-CRP * | ||||
- Improvement in platelet level ** and mean platelet volume * | ||||
- No change in TNF-α | ||||
Kedia et al. [41] | 41 men and women with mild-to-moderate UC | Curcumin | Control dose 0 mg, 450 mg curcumin/8 weeks | - No difference in UCDAI or mucosal healing |
- No difference in ESR | ||||
Singla et al. [42] | 45 men and women with mild-moderate UC | Curcumin | Control dose 0 mg, 140 mg Curcumin enema/8 weeks | - Reduction in UCDAI score by ≥3 ** |
- UCDAI score ≤ 3 * | ||||
- Decrease in mucosal appearance score of UCDAI by ≥1 * | ||||
Holt et al. [43] | 5 men and women with UC | Curcumin | 1100 mg curcumin/1 month then 1650 mg/1 month | - Improvement in UC judged by global score * |
- Reduction of endoscopic score in 40% of subjects | ||||
Biedermann et al. [44] | 11 men and women with active mild-to-moderate UC | Bilberry-anthocyanin | Control dose 0 g, 160 g bilberry corresponding to 840 mg anthocyanin/6 weeks | - Improvement in mean CAI score * |
- Reduction in the endoscopic Mayo score * and complete Mayo score ** | ||||
- Reduction in faecal calprotectin * | ||||
- No relevant changes in serum markers of inflammation | ||||
Dryden et al. [45] | 15 men and women with mild-to-moderate UC | Green tea polyphenols-EGCG | Control dose 0 mg, cohort 1400 mg, cohort 2800 mg EGCG/8 weeks | - Reduction in UCDAI score * |
- 53% of subjects achieved a UCDAI score < 2 | ||||
- Increase in IBDQ score | ||||
- Subjects with reduction in UCDAI score exhibited a reduction in their endoscopic score | ||||
Morshedzadeh et al. [46] | 75 men and women with mild-to-moderate UC | Flaxseed or Flaxseed oil | Control dose 0 g, 30 g ground flaxseed, or 10 g flaxseed oil/12 weeks | - Reduction in the serum levels of ESR **, IFN-γ ** and IL-6 ** |
- Increase in the TGF-β * and IBDQ-9 score ** | ||||
- Reduction in faecal calprotectin ** and Mayo score ** | ||||
Morvaridi et al. [47] | 32 men and women with mild-to-moderate or in remission UC | Extra virgin olive oil | Control dose 50 mL canola oil, 50 mL extra virgin olive oil/20 days | - Reduction in ESR *, hs-CRP ** |
- No change in TNF-α | ||||
- No change in Mayo score | ||||
- Reduction in bloating *, constipation **, faecal urgency **, and incomplete defecation * | ||||
-Reduction in GSRS ** | ||||
Nikkhah-Bodaghi et al. [48] | 46 men and women with mild-to-moderate UC | Ginger powder | Control dose 0 mg, 200 mg ginger powder/12 weeks | - Reduced MDA ** |
- Improved SCCAI and IBD-Q * | ||||
- No difference in TAC total antioxidant capacity | ||||
Rastegarpanah et al. [49] | 80 men and women with UC in remission | Silymarin | Control dose 0 mg, 140 mg silymarin/6 months | - Improvement in ESR *, DAI * |
Samsami-kor et al. [50,51] | 49 men and women with mild-to-moderate UC | Pure trans-resveratrol | Control dose 0 mg, 500 mg pure trans-resveratrol/6 weeks | - Reduction in hs-CRP **, TNF-α **, NF-κB p65 **, MDA **, TAC **, and SOD ** |
- Increase in IBDQ-9 ** | ||||
- Decreased in SCCAI ** | ||||
Kim et al. [52] | 7 men and women with UC | Mango | 200–400 g mango pulp corresponding to 95.18–190.36 mg of pro-gallic acid/8 weeks | - No effect on SIBDQ or TNF-α |
- Decreased in SCCAI * | ||||
- Lower production of IL-8, GRO, GM-CSF * LPS * | ||||
- Increased Lactobacillus * (L.plantarum **, L.lactis ** and L.reuteri *) and butyric acid * | ||||
Swanson et al. [53] | 8 men and women with UC in remission | Red wine | 1–3 glasses red wine/1 week | - No change in CRP, UCAI, L/M ratio |
- Reduction in faecal calprotectin ** | ||||
- Increased urinary sucralose excretion * |
Reference | Subject Description | Product | Dosage/Duration of Intake | Main Findings |
---|---|---|---|---|
Holt et al. [43] | Four men and women with CD | Curcumin | 1080 mg curcumin/1 months then 5760 mg/2 months | - Reduction in CDAI and ESR |
Sugimoto et al. [54] | 17 men and women with mil-to-moderate CD | Theracurmin (curcumin) | Control dose 0 mg, 360 mg Theracurmin/12 weeks | - Reduction in CDAI *, SESCD * stool frequency * and abdominal pain |
- Reduction in anal lesions * | ||||
- No difference in CRP, SESCD ≤ 4 | ||||
Swanson et al. [53] | Six men and women with CD | Red wine | 1–3 glasses red wine/1 week | - No change in CDAI, CRP, urinary sucralose |
- Reduction in faecal calprotectin ** | ||||
- Increase in L/M ratio * | ||||
Kim et al. [52] | Three men and women with CD | Mango | 200–400 g mango pulp/8 weeks | - No effect on SIBDQ or TNF-α |
- Decreased in SCCAI * | ||||
- Lower production of IL-8 *, GRO *, GM-CSF * LPS * | ||||
- Increased Lactobacillus * (L.plantarum **, L.lactis ** and L.reuteri *) and butyric acid * |
Reference | Subject Description | Product | Dosage/Duration of Intake | Main Findings |
---|---|---|---|---|
Belcaro et al. [55] | 77 men and women IBS | Pycnogenol (Maritime pine bark) | Control dose 0 mg, 150 mg Pycnogenol/4 weeks | - No difference in painful attacks |
- Decrease in mild pain on manual abdominal pressure * | ||||
- Relief of distension/abdominal bowel movements * | ||||
- Reduced use of rescue medication * | ||||
Cremon et al. [56] | 54 men and women with IBS | Palmithoylethanolamide/polydatin | Control dose 0 mg, 200 mg palmithoylethanolamide, 20 mg polydatin/12 weeks | - No difference in mast cell count over time |
- Improved abdominal pain severity * | ||||
Jalili et al. [57,58] | 100 women with IBS | Soy isoflavones (with vitamin D) | Control dose 0 mg, 20 mg of daidzein, 17 mg of genistein, and 3 mg of glycitein/6 weeks | - Lower IBS-SSS ** |
- Reduction in TNF-α ** and abdominal pain duration ** and life disruption ** | ||||
- Lower NF-κB ** and serine protease activity ** | ||||
- Increased satisfaction of bowel habits –Improved IBS-QOL ** | ||||
- No difference in abdominal distention | ||||
Jalili et al. [59] | 45 women with IBS | Soy isoflavones | Control dose 0 mg, 20 mg of daidzein, 17 mg of genistein, and 3 mg of glycitein/6 weeks | - No difference in IBS-SSS |
- Improved IBS-QOL score ** | ||||
- Reduction in score of IBS as VAS ** | ||||
Mangel et al. [60] | 241 men and women with IBS | Crofelemer (oligomeric proanthocyanidins) | Control dose 0 mg, 125 mg, 250 mg, or 500 mg proanthocyanidins (crofelemer)/12 weeks | - No difference in stool consistency or frequency, faecal urgency, or adequate relief |
- Increase in pain and discomfort free days in female subjects with 500 mg crofelemer ** | ||||
Nee et al. [61] | 237 women with IBS | Crofelemer (oligomeric proanthocyanidins) | Control dose 0 mg, 250 mg proanthocyanidins (crofelemer)/12 weeks | - No difference in pain/discomfort free days, pain/discomfort score, stools consistency or frequency, faecal urgency, or adequate relief |
Portincasa et al. [62] | 116 men and women with IBS | Curcumin and fennel essential oil | Control dose 0 mg, 84 mg curcumin, 50 mg fennel essential oil/30 days | - Decrease in mean IBS-SSS ** |
- Increase in IBS-QOL score | ||||
Trifan et al. [63] | 60 men and women with IBS | Gelsectan (Tannins, xyloglucan, pea protein) | Control dose 2 placebo capsules, 2 capsules/4 weeks | - Increase in Bristol stool form scale type 3–4 ** |
- Improvement in abdominal pain, bloating, IBS-QOL score, and EQ-5D-3L score | ||||
Van Tilberg et al. [64] | 44 men and women with IBS | Ginger | Control dose 0 mg, 1000 mg, or 2000 mg ginger/4 weeks | - Reduction in IBS-SSS with placebo and 1 g ginger ** |
- No difference in reports of adequate relief |
Reference | Study Population | Type of PP/PP Food | Dietary Intake Assessment | Main Findings |
---|---|---|---|---|
Glabska et al. [65] | 55 men and women with UC with confirmed remission | Proanthocyanidins | 3 day self-reported dietary record | - No difference with abdominal pain, presence of blood or pus in stool, flatulence, or tenesmus |
- Increase mucus in stool and constipation with higher proanthocyanidin intake * | ||||
Glabska et al. [66] | 56 men and women with UC with confirmed remission | Isoflavones | 3 day self-reported dietary record | - Correlation between higher intakes of daidzein ** and total isoflavones * with lack of abdominal pain |
- No correlation between isoflavones intake and bowel movements, flatulence, or tenesmus | ||||
- Correlation between lower glycitein intake and lack of constipation * | ||||
Ohfuji et al. [67] | 126 men and women with new diagnosed UC | Isoflavones | Self-administered diet history questionnaire—1 month of habits | - Increased OR for UC in highest tertile of isoflavone, daidzein, and genistein intake * |
- Increased OR for disease reaching the cecum or ileum * | ||||
Skolmowska et al. [68] | 56 men and women with UC in remission | Isoflavones | 3 day self-reported dietary record | - No difference in presence of faecal blood |
- Higher intake of daidzein and total isoflavones associated with lack of faecal mucus | ||||
- Higher intake of daidzein associated with lack of faecal pus | ||||
Ng et al. [69] | 186 men and women with CD, 256 men and women with UC | Tea and coffee | International organisation of IBD environmental factor questionnaire—food habits | - Daily tea and coffee reduced odds of UC ** |
- No difference in odds of CD with daily coffee intake | ||||
- Tea reduced odds of CD * | ||||
Lu et al. [70] | 110 men and women with CD, 244 men and women with UC | (Poly)phenols | Food frequency questionnaire | - Lower OR for UC in third quartile of flavonols intake * |
- Reduced OR for CD with increased flavones and resveratrol intake * | ||||
- No association with total polyphenols and odds of CD or UC | ||||
Al Saadi et al. [71] | 302 men and women | Tea and coffee | Questionnaire—lifestyle factors | - Increased OR for IBS with consumption of 3 cups of coffee per day * |
- No difference in odds of IBS with tea intake | ||||
Ligaarden et al. [72] | 388 men and women | Tea | Food frequency questionnaire | - Increased OR for IBS with consumption of 100 mL tea per day * |
Siah et al. [73] | 297 men and women | Coffee | Dietary questionnaire | - Increased OR for IBS in non-coffee drinkers ** |
Simren et al. [74] | 330 men and women with IBS | Coffee and chocolate | Food questionnaire | - 39% of subjects reported coffee intake produced symptoms of IBS |
- 28% of subjects reported chocolate intake produced symptoms of IBS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagan, M.; Hayee, B.H.; Rodriguez-Mateos, A. (Poly)phenols in Inflammatory Bowel Disease and Irritable Bowel Syndrome: A Review. Molecules 2021, 26, 1843. https://doi.org/10.3390/molecules26071843
Hagan M, Hayee BH, Rodriguez-Mateos A. (Poly)phenols in Inflammatory Bowel Disease and Irritable Bowel Syndrome: A Review. Molecules. 2021; 26(7):1843. https://doi.org/10.3390/molecules26071843
Chicago/Turabian StyleHagan, Marilyn, Bu' Hussain Hayee, and Ana Rodriguez-Mateos. 2021. "(Poly)phenols in Inflammatory Bowel Disease and Irritable Bowel Syndrome: A Review" Molecules 26, no. 7: 1843. https://doi.org/10.3390/molecules26071843
APA StyleHagan, M., Hayee, B. H., & Rodriguez-Mateos, A. (2021). (Poly)phenols in Inflammatory Bowel Disease and Irritable Bowel Syndrome: A Review. Molecules, 26(7), 1843. https://doi.org/10.3390/molecules26071843