Pressurized-Liquid Extraction as an Efficient Method for Valorization of Thymus serpyllum Herbal Dust towards Sustainable Production of Antioxidants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Experiment
2.2. RSM Study
2.3. Total Extraction Yield (Y) and Total Phenols Yield (TP)
2.4. Antioxidant Activity of T. serpyllum Extracts
2.5. Process Optimization and Experimental Verification
2.6. Polyphenols Profile
3. Materials and Methods
3.1. Sample
3.2. Chemicals
3.3. PLE
3.4. Determination of Y and TP
3.5. Antioxidant Activity of Extracts
3.6. Q Exactive Hybrid Quadrupole-Orbitrap LC-MS/MS Analysis
3.7. Design of Experiments and Statistical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jarić, S.; Mitrović, M.; Pavlović, P. Review of ethnobotanical, phytochemical, and pharmacological study of Thymus serpyllum L. Evid. Based Complement. Altern. Med. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasooli, I.; Mirmostafa, S.A. Antibacterial properties of Thymus pubescens and Thymus serpyllum essential oils. Fitoterapia 2002, 73, 244–250. [Google Scholar] [CrossRef]
- Mihailovic-Stanojevic, N.; Belščak-Cvitanović, A.; Grujić-Milanović, J.; Ivanov, M.; Jovović, D.; Bugarski, D.; Miloradović, Z. Antioxidant and Antihypertensive Activity of Extract from Thymus serpyllum L. in Experimental Hypertension. Plant Foods Hum. Nutr. 2013, 68, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Miron, T.L.; Plaza, M.; Bahrim, G.; Ibáñez, E.; Herrero, M. Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J. Chromatogr. A 2011, 1218, 4918–4927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Kulišić, T.; Dragović-Uzelac, V.; Miloš, M. Antioxidant activity of aqueous tea infusions prepared from oregano, thyme and wild thyme. Food Technol. Biotechnol. 2006, 44. [Google Scholar]
- Panić, M.; Radić Stojković, M.; Kraljić, K.; Škevin, D.; Radojčić Redovniković, I.; Gaurina Srček, V.; Radošević, K. Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef]
- Pavlić, B.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cindrić, M.; Zeković, Z. Subcritical water extraction of sage (Salvia officinalis L.) by-products—Process optimization by response surface methodology. J. Supercrit. Fluids 2016, 116, 36–45. [Google Scholar] [CrossRef]
- Naffati, A.; Vladić, J.; Pavlić, B.; Radosavljević, R.; Gavarić, A.; Vidović, S. Recycling of filter tea industry by-products: Application of subcritical water extraction for recovery of bioactive compounds from A. uva-ursi herbal dust. J. Supercrit. Fluids 2017, 121, 1–9. [Google Scholar] [CrossRef]
- Gavaric, A.; Ramic, M.; Vladic, J.; Pavlic, B.; Radosavljevic, R.; Vidovic, S. Recovery of antioxidant compounds from aronia filter tea factory by -product: Novel versus conventional extraction approaches. Acta Chim. Slov. 2018, 65, 438–447. [Google Scholar] [CrossRef]
- Zizovic, I.; Stamenic, M.; Orlovic, A.; Skala, D. Energy saving in the supercritical carbon dioxide extraction of essential oils from species of the Lamiaceae family. Chem. Ind. Chem. Eng. Q. 2006, 12, 164–167. [Google Scholar] [CrossRef]
- Đukić, D.; Mašković, P.; Kurćubić, V.; Milijašević, M.; Babić, J. Conventional and unconventional extraction methods applied to the plant, Thymus serpyllum L. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Zlatibor, Serbia, 1–4 October 2017; Volume 85. [Google Scholar] [CrossRef]
- Nutrizio, M.; Pataro, G.; Carullo, D.; Carpentieri, S.; Mazza, L.; Ferrari, G.; Chemat, F.; Banović, M.; Režek Jambrak, A. High Voltage Electrical Discharges as an Alternative Extraction Process of Phenolic and Volatile Compounds from Wild Thyme (Thymus serpyllum L.): In Silico and Experimental Approaches for Solubility Assessment. Molecules 2020, 25, 4131. [Google Scholar] [CrossRef]
- Jovanović, A.; Skrt, M.; Petrović, P.; Častvan, I.; Zdunić, G.; Šavikin, K.; Bugarski, B. Ethanol Thymus serpyllum extracts: Evaluation of extraction conditions via total polyphenol content and radical scavenging activity. Lek. Sirovine 2019, 39, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Komaki, A.; Hoseini, F.; Shahidi, S.; Baharlouei, N. Study of the effect of extract of Thymus vulgaris on anxiety in male rats. J. Tradit. Complement. Med. 2016, 6, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef]
- Ammann, A.; Hinz, D.C.; Addleman, R.S.; Wai, C.M.; Wenclawiak, B.W. Superheated water extraction, steam distillation and SFE of peppermint oil. Fresenius. J. Anal. Chem. 1999, 364, 650–653. [Google Scholar] [CrossRef]
- Ollanketo, M.; Peltoketo, A.; Hartonen, K.; Hiltunen, R.; Riekkola, M.L. Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Antioxidant activity of the extracts. Eur. Food Res. Technol. 2002, 215, 158–163. [Google Scholar] [CrossRef]
- Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E. Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J. Chromatogr. A 2010, 1217, 2512–2520. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Rado, E.; Wianowska, D.; Mardarowicz, M.; Gawdzik, J. Application of PLE for the determination of essential oil components from Thymus vulgaris L. Talanta 2008, 76, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trac. Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Hossain, M.B.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Application of response surface methodology to optimize pressurized liquid extraction of antioxidant compounds from sage (Salvia officinalis L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.). Food Funct. 2010, 1, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Zeković, Z.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cvejin, A.; Elgndi, M.A.; Pavlić, B. Optimization of subcritical water extraction of antioxidants from Coriandrum sativum seeds by response surface methodology. J. Supercrit. Fluids 2014, 95, 560–566. [Google Scholar] [CrossRef]
- Zgórka, G. Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species. Talanta 2009, 79, 46–53. [Google Scholar] [CrossRef]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Cindrić, M.; Jovanov, P.; Sakač, M.; Mandić, A.; Vidović, S. Subcritical water extraction of wild garlic (Allium ursinum L.) and process optimization by response surface methodology. J. Supercrit. Fluids 2017, 128, 79–88. [Google Scholar] [CrossRef]
- Vakula, A.; Šumić, Z.; Zeković, Z.; Tepić Horecki, A.; Pavlić, B. Screening, influence analysis and optimization of ultrasound-assisted extraction parameters of cornelian cherries (Cornus mas L.). J. Food Process. Preserv. 2019, 43, e14226. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Boros, B.; Jakabová, S.; Dörnyei, Á.; Horváth, G.; Pluhár, Z.; Kilár, F.; Felinger, A. Determination of polyphenolic compounds by liquid chromatography-mass spectrometry in Thymus species. J. Chromatogr. A 2010, 1217, 7972–7980. [Google Scholar] [CrossRef]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef]
- Milevskaya, V.V.; Temerdashev, Z.A.; Butyl’skaya, T.S.; Kiseleva, N.V. Determination of phenolic compounds in medicinal plants from the Lamiaceae family. J. Anal. Chem. 2017, 72, 342–348. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of Total Phenolics with Phosphomolybdic- Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pavlić, B.; Kaplan, M.; Bera, O.; Oktem Olgun, E.; Canli, O.; Milosavljević, N.; Antić, B.; Zeković, Z. Microwave-assisted extraction of peppermint polyphenols—Artificial neural networks approach. Food Bioprod. Process. 2019, 118, 258–269. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
Run | Input Parameters | Responses | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1: Temperature [°C] | X2: Extraction Time [min] | X3: Ethanol Concentration [%] | X4: Cell Flush Volume [%] | X5: Cycle | Y [%] | TP [g GAE/100 g] | DPPH [mM TE/g] | ||||||
1 | −1 | 80 | −1 | 5 | 1 | 80 | 1 | 100 | E2 | 3 | 10.97 | 3.3438 | 0.1382 |
2 | −1 | 80 | −1 | 5 | 1 | 80 | −1 | 50 | E1 | 1 | 8.30 | 2.1234 | 0.0700 |
3 | 1 | 150 | 1 | 20 | −1 | 40 | −1 | 50 | E2 | 3 | 28.87 | 5.9828 | 0.2224 |
4 | 1 | 150 | −1 | 5 | 1 | 80 | 1 | 100 | E1 | 1 | 16.08 | 4.1972 | 0.1651 |
5 | −1 | 80 | −1 | 5 | −1 | 40 | 1 | 100 | E1 | 1 | 13.98 | 3.7593 | 0.1503 |
6 | −1 | 80 | 1 | 20 | 1 | 80 | 1 | 100 | E1 | 1 | 11.21 | 2.8085 | 0.1257 |
7 | 1 | 150 | −1 | 5 | 1 | 80 | −1 | 50 | E2 | 3 | 17.38 | 4.3582 | 0.1802 |
8 | 1 | 150 | 1 | 20 | 1 | 80 | 1 | 100 | E2 | 3 | 20.60 | 4.7363 | 0.1838 |
9 | −1 | 80 | 1 | 20 | −1 | 40 | 1 | 100 | E2 | 3 | 17.60 | 4.5528 | 0.1785 |
10 | −1 | 80 | 1 | 20 | −1 | 40 | −1 | 50 | E1 | 1 | 14.03 | 4.0213 | 0.1656 |
11 | 1 | 150 | 1 | 20 | −1 | 40 | 1 | 100 | E1 | 1 | 23.74 | 5.4550 | 0.2105 |
12 | −1 | 80 | −1 | 5 | −1 | 40 | −1 | 50 | E2 | 3 | 15.11 | 3.8978 | 0.1358 |
13 | 1 | 150 | −1 | 5 | −1 | 40 | 1 | 100 | E2 | 3 | 22.65 | 5.3127 | 0.2059 |
14 | 1 | 150 | 1 | 20 | 1 | 80 | −1 | 50 | E1 | 1 | 18.08 | 4.6315 | 0.1875 |
15 | −1 | 80 | 1 | 20 | 1 | 80 | −1 | 50 | E2 | 3 | 12.19 | 2.9095 | 0.1323 |
16 | 1 | 150 | −1 | 5 | −1 | 40 | −1 | 50 | E1 | 1 | 20.81 | 4.6689 | 0.1936 |
Run | Input Parameters | Responses | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1: Temperature [°C] | X2: Extraction Time [min] | X3: Ethanol Concentration [%] | Y [%] | TP [g GAE/100 g] | DPPH [mM TE/g] | FRAP [mM Fe2+/g] | ABTS [mM TE/g] | ||||
1 | 1 | 170 | −1 | 10 | −1 | 30 | 28.21 | 6.2186 | 0.2824 | 0.8429 | 0.6011 |
2 | 0 | 150 | 0 | 20 | 0 | 45 | 23.46 | 5.4063 | 0.2733 | 0.7969 | 0.6011 |
3 | 1 | 170 | 1 | 30 | 1 | 60 | 27.33 | 6.6454 | 0.2914 | 0.9357 | 0.6391 |
4 | −1 | 130 | −1 | 10 | −1 | 30 | 19.80 | 4.0400 | 0.2506 | 0.7156 | 0.5078 |
5 | 0 | 150 | −1 | 10 | 0 | 45 | 21.68 | 4.5379 | 0.2605 | 0.7205 | 0.5186 |
6 | 1 | 170 | 1 | 30 | −1 | 30 | 32.54 | 6.5480 | 0.2903 | 0.9327 | 0.6482 |
7 | 1 | 170 | 0 | 20 | 0 | 45 | 28.26 | 6.0240 | 0.2818 | 0.7975 | 0.6228 |
8 | 0 | 150 | 0 | 20 | 1 | 60 | 21.10 | 5.4924 | 0.2767 | 0.7969 | 0.5540 |
9 | −1 | 130 | 1 | 30 | 1 | 60 | 18.56 | 4.7512 | 0.2561 | 0.6726 | 0.5005 |
10 | 0 | 150 | 0 | 20 | −1 | 30 | 24.31 | 5.3090 | 0.2710 | 0.7532 | 0.5838 |
11 | 1 | 170 | −1 | 10 | 1 | 60 | 23.61 | 5.2940 | 0.2773 | 0.8296 | 0.5494 |
12 | −1 | 130 | 0 | 20 | 0 | 45 | 19.76 | 4.5154 | 0.2603 | 0.7532 | 0.4860 |
13 | 0 | 150 | 0 | 20 | 0 | 45 | 23.22 | 5.5935 | 0.2720 | 0.7623 | 0.5476 |
14 | 0 | 150 | 0 | 20 | 0 | 45 | 23.34 | 5.0657 | 0.2824 | 0.7872 | 0.5340 |
15 | 0 | 150 | 0 | 20 | 0 | 45 | 23.46 | 5.1967 | 0.2739 | 0.7841 | 0.5404 |
16 | 0 | 150 | 0 | 20 | 0 | 45 | 22.28 | 4.8972 | 0.2567 | 0.7726 | 0.4896 |
17 | 0 | 150 | 1 | 30 | 0 | 45 | 25.41 | 4.7438 | 0.2810 | 0.8163 | 0.5304 |
18 | 0 | 150 | 0 | 20 | 0 | 45 | 23.68 | 5.0657 | 0.2769 | 0.7865 | 0.4842 |
19 | −1 | 130 | −1 | 10 | 1 | 60 | 16.17 | 4.1336 | 0.2431 | 0.6962 | 0.4362 |
20 | −1 | 130 | 1 | 30 | −1 | 30 | 21.64 | 5.1218 | 0.2693 | 0.8029 | 0.4960 |
Response | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Y | Model | 263.27 | 7 | 37.6100 | 212.94 | <0.0001 |
Residual | 2.1200 | 12 | 0.1766 | |||
Lack of Fit | 0.8917 | 7 | 0.1274 | 0.5188 | 0.7922 | |
Pure Error | 1.2300 | 5 | 0.2456 | |||
Cor Total | 265.3900 | 19 | ||||
R2 = 0.992 | ||||||
CV = 1.8% | ||||||
TP | Model | 8.86 | 7 | 1.2700 | 15.46 | < 0.0001 |
Residual | 0.9826 | 12 | 0.0819 | |||
Lack of Fit | 0.6576 | 7 | 0.0939 | 1.4400 | 0.3542 | |
Pure Error | 0.3251 | 5 | 0.0650 | |||
Cor Total | 9.8400 | 19 | ||||
R2 = 0.900 | ||||||
CV = 5.47% | ||||||
DPPH | Model | 0.0027 | 7 | 0.0004 | 9.35 | 0.0005 |
Residual | 0.0005 | 12 | 0.0000 | |||
Lack of Fit | 0.0001 | 7 | 0.0000 | 0.2527 | 0.9496 | |
Pure Error | 0.0004 | 5 | 0.0001 | |||
Cor Total | 0.0032 | 19 | ||||
R2 = 0.845 | ||||||
CV = 2.38% | ||||||
FRAP | Model | 0.071 | 9 | 0.0079 | 6.24 | 0.0042 |
Residual | 0.0126 | 10 | 0.0013 | |||
Lack of Fit | 0.0119 | 5 | 0.0024 | 15.9000 | 0.0043 | |
Pure Error | 0.0007 | 5 | 0.0001 | |||
Cor Total | 0.0836 | 19 | ||||
R2 = 0.849 | ||||||
CV = 4.51% | ||||||
ABTS | Model | 0.0517 | 7 | 0.0074 | 8.34 | 0.0008 |
Residual | 0.0106 | 12 | 0.0009 | |||
Lack of Fit | 0.0015 | 7 | 0.0002 | 0.1142 | 0.9936 | |
Pure Error | 0.0092 | 5 | 0.0018 | |||
Cor Total | 0.0623 | 19 | ||||
R2 = 0.829 | ||||||
CV = 5.47% |
Response | Model Equation |
---|---|
Y | |
TP | |
DPPH | |
FRAP | |
ABTS |
Input and Output Parameters | Goal | Lower Limit | Upper Limit | Predicted Values | Experimental Values |
---|---|---|---|---|---|
Optimal Conditions | |||||
Temperature [°C] | is in range | 130 | 170 | 170 | |
Extraction time [min] | is in range | 10 | 30 | 30 | |
Ethanol concentration [%] | is in range | 30 | 60 | 30 | |
Y [%] | maximize | 16.17 | 32.54 | 32.32 | 32.14 |
TP [g GAE/100 g] | maximize | 4.0400 | 6.6454 | 6.6560 ± 0.4595 | 6.7464 ± 0.1860 |
DPPH [mM TE/g] | maximize | 0.2431 | 0.2914 | 0.2900 ± 0.0115 | 0.3173 ± 0.0035 |
FRAP [mM Fe2+/g] | maximize | 0.6726 | 0.9357 | 0.9290 ± 0.0706 | 0.8587 ± 0.0032 |
ABTS [mM TE/g] | maximize | 0.4362 | 0.6482 | 0.6430 ± 0.0528 | 0.6943 ± 0.0204 |
Retention Time [min] | Compound | Sample PLE-CP | Sample PLE-OPT |
---|---|---|---|
Measured Mass [m/z]/Error [mDa] | |||
12.67 | Monogalloyl-glucose | 331.07/0.39 | ND |
14.14 | Gallic acid | 169.01/−0.17 | 169.01/0.28 |
16.15 | Vanillic acid | 167.03/−0.41 | 167.03/−0.32 |
19.28 | Protocatechuic acid | 153.02/−0.08 | 153.02/0.62 |
34.67 | trans-Piceatannol | ND | 243.07/0.33 |
37.61 | 3-p-Coumaroylquinic acid | 337.09/0.65 | 337.09/0.38 |
37.61 | 4-p-Coumaroylquinic acid | 337.09/0.65 | 337.09/0.38 |
39.33 | (+)-Catechin | 289.07/0.38 | ND |
39.33 | (−)-Epicatechin | 289.07/0.38 | ND |
39.53 | Coumaric acid hexoside isomer-1 | 325.09/0.02 | 325.09/0.49 |
39.53 | Coumaric acid hexoside isomer-2 | 325.09/0.02 | 325.09/0.49 |
39.53 | Coumaric acid hexoside isomer-3 | 325.09/0.02 | 325.09/0.49 |
39.53 | p-Coumaric acid | 163.04/0.18 | 163.04/0.28 |
43.32 | Dihydroxycoumarin | 177.02/−0.33 | 177.02/0.36 |
44.46 | Caffeic acid | 179.03/−0.21 | 179.03/−0.29 |
66.28 | Quercetin hexoside isomer-1 | 463.09/0.32 | 463.09/0.72 |
66.28 | Quercetin hexoside isomer-2 | 463.09/0.32 | 463.09/0.72 |
66.28 | Quercetin-3-O-galactoside | 463.09/0.32 | 463.09/0.72 |
66.28 | Quercetin-3-O-glucoside | 463.09/0.32 | 463.09/0.72 |
66.61 | Kaempferol-3-rutinoside | 593.15/−0.52 | 593.15/0.71 |
72.90 | Naringenin-7-O-glucoside | 433.11/0.20 | 433.11/0.27 |
76.06 | Quercetin-3-O-rutinoside | 609.15/0.01 | 609.15/0.81 |
76.37 | Quercetin glucuronide | 477.07/1.69 | 477.07/1.69 |
76.45 | Kaempferol-3-galactoside | 447.09/−0.25 | 447.09/0.10 |
76.45 | Kaempferol-3-glucoside | 447.09/−0.25 | 447.09/0.10 |
76.52 | Isorhamnetin-3-O-galactoside | 477.10/0.07 | 477.10/−0.76 |
76.83 | Eriodictyol | 287.06/0.89 | 287.06/0.68 |
77.27 | Naringenin | ND | 271.06/0.86 |
77.54 | (−)-Epicatechin-3-O-gallate | ND | 441.08/3.97 |
78.10 | Kaempferol | 285.04/0.02 | 285.04/0.13 |
78.10 | Luteolin | 285.04/0.02 | 285.04/0.13 |
78.68 | Biochanin A | 283.06/−0.15 | 283.06/0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrkonjić, Ž.; Rakić, D.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Pressurized-Liquid Extraction as an Efficient Method for Valorization of Thymus serpyllum Herbal Dust towards Sustainable Production of Antioxidants. Molecules 2021, 26, 2548. https://doi.org/10.3390/molecules26092548
Mrkonjić Ž, Rakić D, Kaplan M, Teslić N, Zeković Z, Pavlić B. Pressurized-Liquid Extraction as an Efficient Method for Valorization of Thymus serpyllum Herbal Dust towards Sustainable Production of Antioxidants. Molecules. 2021; 26(9):2548. https://doi.org/10.3390/molecules26092548
Chicago/Turabian StyleMrkonjić, Živan, Dušan Rakić, Muammer Kaplan, Nemanja Teslić, Zoran Zeković, and Branimir Pavlić. 2021. "Pressurized-Liquid Extraction as an Efficient Method for Valorization of Thymus serpyllum Herbal Dust towards Sustainable Production of Antioxidants" Molecules 26, no. 9: 2548. https://doi.org/10.3390/molecules26092548
APA StyleMrkonjić, Ž., Rakić, D., Kaplan, M., Teslić, N., Zeković, Z., & Pavlić, B. (2021). Pressurized-Liquid Extraction as an Efficient Method for Valorization of Thymus serpyllum Herbal Dust towards Sustainable Production of Antioxidants. Molecules, 26(9), 2548. https://doi.org/10.3390/molecules26092548