Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Grape Canes Extraction
2.2. Characterization of Grape Cane Extracts
2.3. Identification and Quantification of Phenolic Compounds
2.4. Antioxidant Power
2.5. Cytotoxicity Evaluation
2.6. Antimicrobial Activity
3. Materials and Methods
3.1. Chemicals
3.2. Extraction of Phenolic Compounds
3.3. Characterization of the Extracts
3.3.1. Total Phenolic Content
3.3.2. Total Ortho-Diphenolic Content
3.3.3. Total Flavonoid Content
3.3.4. Total Tannin Content
3.3.5. Hydrolysable and Condensed Tannin Content
3.3.6. Reversed-Phase High-Performance Liquid Chromatography-Ultraviolet (RP-HPLC–UV) and HPLC-Electrospray Ionization Multistage Ion Trap Mass Spectrometry (HPLC-ESI-ITMSn) Analyses
3.3.7. Quantification by RP–HPLC–DAD
3.4. Antioxidant Activity
3.4.1. Free-Radical Scavenging Capacity
3.4.2. Ferric Reducing Antioxidant Power
3.5. Antimicrobial Activity Analysis
3.5.1. Bacterial and Fungal Growth
3.5.2. Antibacterial Activity Assay
3.5.3. Antifungal Activity Assay
3.5.4. Cell Culture and Viruses
Cytotoxicity Assay
Virus Entry Assays
- (a)
- Co-treatment assay. A preliminary assay to assess if the compound has antiviral activity. Vero cells were seeded (3 × 105 cells/well) in 12-well plates and incubated overnight at 37 °C/5% CO2. The day after, the extracts and HSV-1 or HSV-2 were added simultaneously to the cell monolayer at multiplicity of infection (MOI) of 0.01 for 1 h at 37 °C.
- (b)
- Virus pre-treatment assay. The assay allows us to evaluate if the extract affects HSV infectivity acting directly on the viral particles. The extracts were incubated in the presence of HSV-1 or HSV-2 (MOI 0.1) at 37 °C for 1 h. Then, the mixtures were diluted with medium and were titrated on Vero cell monolayers.
- (c)
- Cell pre-treatment assay. To assess if the extracts could act on the target cells, pre-chilled Vero cells were incubated with the samples for 1 h at 4 °C. Subsequently, they were removed and the cells were infected with HSV-1 or HSV-2 (MOI 0.01) for 1 h at 37 °C.
- (d)
- Post-treatment assay. The assay allows us to assess if the extract acts on HSV replication. For this purpose, Vero cell monolayers were firstly incubated with HSV-1 or HSV-2 (MOI 0.01) for 1 h at 37 °C. Then, the extracts were added for an additional incubation period of 1 h at 37 °C.
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Toopa, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle-developing a circular economy in agriculture. Energy Procedia 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Maurelli, L.; Ionata, E.; La Cara, F.; Morana, A. Chestnut Shell as Unexploited Source of Fermentable Sugars: Effect of Different Pretreatment Methods on Enzymatic Saccharification. Appl. Biochem. Biotechnol. 2013, 170, 1104–1118. [Google Scholar] [CrossRef] [PubMed]
- Morana, A.; Squillaci, G.; Paixão, S.M.; Alves, L.; La Cara, F.; Moura, P. Development of an Energy Biorefinery Model for Chestnut (Castanea Sativa Mill.) Shells. Energies 2017, 10, 1504. [Google Scholar] [CrossRef] [Green Version]
- Bertran, E.; Sort, X.; Soliva, M.; Trillas, I. Composting winery waste: Sludges and grape stalks. Bioresour. Technol. 2004, 95, 203–208. [Google Scholar] [CrossRef]
- Miralles, N.; Valderrama, C.; Casas, I.; Martínez, M.; Florido, A. Cadmium and Lead Removal from Aqueous Solution by Grape Stalk Wastes: Modeling of a Fixed-Bed Column. J. Chem. Eng. Data 2010, 55, 3548–3554. [Google Scholar] [CrossRef] [Green Version]
- Burčová, Z.; Kreps, F.; Schmidt, S.; Strižincová, P.; Jablonský, M.; Kyselka, J.; Ház, A.; Šurina, I. Antioxidant Activity and the Tocopherol and Phenol Contents of Grape Residues. BioResources 2019, 14, 4146–4156. [Google Scholar] [CrossRef]
- Istat Istituto Nazionale di Statistica. Available online: http://dati.istat.it/ (accessed on 28 April 2021).
- Jiménez, L.; Angulo, V.; Ramos, E.; De la Torre, M.J.; Ferrer, J.L. Comparison of various pulping processes for producing pulp from vine shoots. Ind. Crops Prod. 2006, 23, 122–130. [Google Scholar] [CrossRef]
- Nabais, J.M.V.; Laginhas, C.; Carrott, P.J.M.; Carrott, M.M.L.R. Thermal Conversion of a Novel Biomass Agricultural Residue (Vine Shoots) into Activated Carbon Using Activation with CO2. J. Anal. Appl. Pyrol. 2010, 87, 8–13. [Google Scholar] [CrossRef]
- Cortés-Camargo, S.; Pérez-Rodríguez, N.; de Souza Oliveira, R.P.; Huerta, B.E.B.; Domínguez, J.M. Production of Biosurfactants from Vine-Trimming Shoots Using the Halotolerant Strain Bacillus Tequilensis ZSB10. Ind. Crops Prod. 2016, 79, 258–266. [Google Scholar] [CrossRef]
- Malinowska, M.A.; Billet, K.; Drouet, S.; Munsch, T.; Unlubayir, M.; Tungmunnithum, D.; Giglioli-Guivarc’h, N.; Hano, C.; Lanoue, A. Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules 2020, 25, 2203. [Google Scholar] [CrossRef]
- Zhang, A.; Fang, Y.; Wang, H.; Li, H.; Zhang, Z. Free-Radical Scavenging Properties and Reducing Power of Grape Cane Extracts from 11 Selected Grape Cultivars Widely Grown in China. Molecules 2011, 16, 10104–10122. [Google Scholar] [CrossRef]
- Denaro, M.; Smeriglio, A.; Trombetta, D. Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion. Antioxidants 2021, 10, 140. [Google Scholar] [CrossRef]
- Mattos, G.N.; Tonon, R.V.; Furtado, A.A.L.; Cabral, L.M.C. Grape By-Product Extracts against Microbial Proliferation and Lipid Oxidation: A Review. J. Sci. Food Agric. 2017, 97, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial Activity and Composition Profile of Grape (Vitis vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.M.; Barroso, M.F.; Vasconcellos Porto, J.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Jesus, M.S.; Ballesteros, L.F.; Pereira, R.N.; Genisheva, Z.; Carvalho, A.C.; Pereira-Wilson, C.; Teixeira, J.A.; Domingues, L. Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chem. 2020, 316, 126298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO, World Health Organization. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 28 April 2021).
- Roizman, B.; Knipe, D.M.; Whitley, R.J. Herpes simplex viruses. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, B., Straus, S.E., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 2501–2602. [Google Scholar]
- WHO, World Health Organization. Massive Proportion of World’s Population Are Living with Herpes Infection. Available online: https://www.who.int/news/item/01-05-2020-massive-proportion-world-population-living-with-herpes-infection (accessed on 28 April 2021).
- Cavalli, R.; Donalisio, M.; Bisazza, A.; Civra, A.; Ranucci, E.; Ferruti, P.; Lembo, D. Enhanced Antiviral Activity of Acyclovir Loaded into Nanoparticles. Methods Enzymol. 2012, 509, 1–19. [Google Scholar] [CrossRef]
- Abu-Lafi, S.; Al-Natsheh, M.S.; Yaghmoor, R.; Al-Rimawi, F. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities. Evid. Based Complement. Altern. Med. 2017. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Zhou, R.; Yang, Y.; Li, J.; Liang, X.; Chen, L.; Huang, L.; Zhang, S. Antimicrobial Activity-Guided Identification of Compounds from the Deciduous Leaves of Malus doumeri by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Res. 2019, 17, 2515–2520. [Google Scholar] [CrossRef]
- Yu, H.; Yang, G.; Sato, M.; Yamaguchi, T.; Nakano, T.; Xi, Y. Antioxidant Activities of Aqueous Extract from Stevia Rebaudiana Stem Waste to Inhibit Fish Oil Oxidation and Identification of Its Phenolic Compounds. Food Chem. 2017, 232, 379–386. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 12, 1231–1246. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Rutkowska, M.; Owczarek, K.; Tobiszewski, M.; Namieśnik, J. Extraction with Environmentally Friendly Solvents. TrAC Trends Anal. Chem. 2017, 91, 12–25. [Google Scholar] [CrossRef]
- Squillaci, G.; Giorio, L.A.; Cacciola, N.A.; La Cara, F.; Morana, A. Effect of temperature and time on the phenolic extraction from grape canes. In Wastes-Solutions, Treatments and Opportunities III; Vilarinho, C., Castro, F., Conçalves, M., Fernando, A.L., Eds.; CRC Press, Taylor & Francis Group: Abingdon, UK, 2020; pp. 34–40. [Google Scholar] [CrossRef]
- Rajha, H.N.; Jaoude, N.A.; Louka, N.; Maroun, R.G.; Vorobiev, E. Industrial Byproducts Valorization through Energy Saving Processes. Alkaline Extraction of Polyphenols from Vine Shoots. In Proceedings of the International Conference on Renewable Energies for Developing Countries, REDEC 2014, Beirut, Lebanon, 26–27 November 2014; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2014; pp. 89–94. [Google Scholar] [CrossRef]
- Lucarini, M.; Pedulli, G.F.; Guerra, M. A critical evaluation of the factors determining the effect of intramolecular hydrogen bonding on the O-H bond dissociation enthalpy of catechol and of flavonoid antioxidants. Chem. Eur. J. 2004, 10, 933–939. [Google Scholar] [CrossRef]
- Ferreyra, S.G.; Antoniolli, A.; Bottini, R.; Fontana, A. Bioactive compounds and total antioxidant capacity of cane residues from different grape varieties. J. Sci. Food Agric. 2020, 100, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef] [Green Version]
- Fujii, F.; He, Y.H.; Terashima, K.; Takaya, Y.; Niwa, M. Three new stilbene oligomers from the roots of Vitis vinifera ‘Kyohou’. Heterocycles 2005, 65, 2461–2469. [Google Scholar] [CrossRef]
- Billet, K.; Houillé, B.; Dugé de Bernonville, T.; Besseau, S.; Oudin, A.; Courdavault, V.; Delanoue, G.; Guérin, L.; Clastre, M.; Giglioli-Guivarch, N.; et al. Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. Front. Plant Sci. 2018, 9, 798. [Google Scholar] [CrossRef] [PubMed]
- El Gengaihi, S.; Aboul Ella, F.M.; Emad, M.H.; Shalaby, E.; Doha, H. Antioxidant activity of phenolic compounds from different grape wastes. J. Food Process. Technol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Passos, C.P.; Cardoso, S.M.; Domingues, M.R.M.; Domingues, P.; Silva, C.M.; Coimbra, M.A. Evidence for galloylated type-A procyanidins in grape seeds. Food Chem. 2007, 105, 1457–1467. [Google Scholar] [CrossRef]
- Thorat, I. Antioxidants, Their Properties, Uses in Food Products and Their Legal Implications. Int. J. Food Stud. 2013, 2, 81–104. [Google Scholar] [CrossRef]
- Dorosh, O.; Moreira, M.M.; Rodrigues, F.; Peixoto, A.F.; Freire, C.; Morais, S.; Delerue-Matos, C. Vine-Canes Valorisation: Ultrasound-Assisted Extraction from Lab to Pilot Scale. Molecules 2020, 25, 1739. [Google Scholar] [CrossRef]
- Zielińska, D.; Zieliński, H.; Laparra-Llopis, J.M.; Szawara-Nowak, D.; Honke, J.; Giménez-Bastida, J.A. Caffeic Acid Modulates Processes Associated with Intestinal Inflammation. Nutrients 2021, 13, 554. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Gálvez, M.Á.; González-Sarrías, A.; Espín, J.C. In Vitro Research on Dietary Polyphenols and Health: A Call of Caution and a Guide on How to Proceed. J. Agric. Food Chem. 2018, 66, 7857–7858. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind. Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
- Leary, J.J.; Wittrock, R.; Sarisky, R.T.; Weinberg, A.; Levin, M.J. Susceptibilities of Herpes Simplex Viruses to Penciclovir and Acyclovir in Eight Cell Lines. Antimicrob. Agents Chemother. 2002. [Google Scholar] [CrossRef] [Green Version]
- Konowalchuk, J.; Speirs, J.I. Virus inactivation by grapes and wines. Appl. Environ. Microbiol. 1976, 32, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yoon, K.D.; Lee, M.; Cho, Y.; Choi, G.; Jang, H.; Kim, B.S.; Jung, D.; Oh, J.G.; Kim, G.W.; et al. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br. J. Pharmacol. 2016, 173, 191–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiao, H.; Liu, T.; Yang, Z.; Xu, L.; Xu, Y.; Ge, H.M.; Tan, R.X.; Li, E. Inhibition of herpes simplex virus infection by oligomeric stilbenoids through ROS generation. Antivir. Res. 2012, 95, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G.C.; Novellino, E. Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: An Overview. Viruses 2018, 10, 473. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A.J. Colorometry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Arnow, L.E. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 1937, 118, 531–537. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant Activities of the Extracts from Chestnut Flower, Leaf, Skins and Fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Peri, C.; Pompei, C. Estimation of Different Phenolic Groups in Vegetable Extracts. Phytochemistry 1971, 10, 2187–2189. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in Wood: Comparison of Different Estimation Methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Freire, M.S.; Antorrena, G.; Pereira, J.A.; Gonzàlez-Alvarez, J. Effect of the extraction technique and operational conditions on the recovery of bioactive compounds from chestnut (Castanea sativa) bur and shell. Separ. Sci. Technol. 2014, 49, 267–277. [Google Scholar] [CrossRef]
- Pignataro, D.; Foglia, F.; Della Rocca, M.T.; Melardo, C.; Santella, B.; Folliero, V.; Shinde, S.; Pafundi, P.C.; Sasso, F.C.; Iovene, M.R.; et al. Methicillin-resistant Staphylococcus aureus: Epidemiology and antimicrobial susceptibility experiences from the University Hospital ‘Luigi Vanvitelli’ of Naples. Pathog. Glob. Health 2020, 114, 451–456. [Google Scholar] [CrossRef]
- Zannella, C.; Shinde, S.; Vitiello, M.T.; Falanga, A.; Galdiero, E.; Fahmi, A.; Santella, B.; Nucci, L.; Gasparro, R.; Galdiero, M.; et al. Antibacterial Activity of Indolicidin-Coated Silver Nanoparticles in Oral Disease. Appl. Sci. 2020, 10, 1837. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Zannella, C.; Folliero, V.; Di Girolamo, R.; Bajardi, F.; Chianese, A.; Altucci, L.; Damasco, A.; Del Sorbo, M.R.; Imperatore, C.; et al. Combating Actions of Green 2D-Materials on Gram Positive and Negative Bacteria and Enveloped Viruses. Front. Bioeng. Biotechnol. 2020, 8, 569967. [Google Scholar] [CrossRef] [PubMed]
- Piret, J.; Lamontagne, J.; Bestman-Smith, J.; Roy, S.; Gourde, P.; Désormeaux, A.; Omar, R.F.; Juhász, J.; Bergeron, M.G. In Vitro and in Vivo Evaluations of Sodium Lauryl Sulfate and Dextran Sulfate as Microbicides against Herpes Simplex and Human Immunodeficiency Viruses. J. Clin. Microbiol. 2000, 38, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Franci, G.; Falanga, A.; Zannella, C.; Folliero, V.; Martora, F.; Galdiero, M.; Galdiero, S.; Morelli, G.; Galdiero, M. Infectivity inhibition by overlapping synthetic peptides derived from the gH/gL heterodimer of herpes simplex virus type 1. J. Pept. Sci. 2017, 23, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak | RT | [M-H]− m/z | MSn Ions m/z | Identified Compound | pH 1.00 | pH 7.00 | pH 13.00 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | F | G | A | F | G | A | F | G | |||||
1 | 3.98 | 149 | MS2 [149]: 87 | Tartaric acid | + | + | + | + | + | + | + | + | + |
2 | 5.26 | 133 | MS2 [133]: 115 | Malic acid | + | + | + | - | + | + | + | + | + |
3 | 5.94 | 337 | MS2 [337]: 191, 173, 163 | Coumaroylquinic acid | + | + | - | + | + | + | + | - | - |
4 | 7.43 | 191 | MS2 [191]: 173 | Quinic acid | + | + | + | + | + | + | + | - | + |
5 | 14.48 | 331 | MS2 [331]: 169 | Galloyl glucose isomer | + | - | + | - | - | + | - | - | - |
6 | 14.99 | 169 | MS2 [169]: 125 | Gallic acid | - | + | + | + | + | + | - | - | + |
7 | 15.03 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | + | - | - | - | - | - | - | - | - |
8 | 18.05 | 435 | MS2 [435]: 273 | Afzelechin hexoside | + | + | + | + | + | + | + | + | + |
9 | 18.48 | 331 | MS2 [331]: 169 | Galloyl glucose isomer | + | + | + | + | + | + | + | - | + |
10 | 20.43 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | + | + | + | + | + | + | + | + | - |
11 | 21.42 | 315 | MS2 [315]: 153 | Protocatechuic acid glucoside | + | + | + | + | + | + | + | + | + |
12 | 21.59 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | - | - | + | - | - | - | - | - | - |
13 | 21.64 | 575 | MS2 [575]: 449, 407, 289, 287, 285 | Procyanidin dimer A-type isomer | - | - | - | - | + | + | - | - | - |
14 | 23.51 | 331 | MS2 [331]: 169 | Galloyl glucose isomer | + | + | + | + | + | - | + | - | + |
15 | 23.52 | 879 | MS2 [879]: 727, 709, 547 | Procyanidin dimer digallate A-type isomer | - | - | + | - | - | - | - | - | - |
16 | 24.11 | 593 | MS2 [593]: 575, 467, 423, 305 | (Epi)catechin-(epi)gallocatechin | - | - | - | + | - | - | - | - | - |
17 | 24.50 | 315 | MS2 [315]: 153 | Protocatechuic acid glucoside | + | - | - | + | - | - | + | - | - |
18 | 24.73 | 879 | MS2 [879]: 727, 709, 547 | Procyanidin dimer digallate A-type isomer | - | - | + | - | - | + | - | - | - |
19 | 25.44 | 879 | MS2 [879]: 727, 709, 547 | Procyanidin dimer digallate A-type isomer | - | - | - | - | - | + | - | - | - |
20 | 25.57 | 359 | MS2 [359]: 197 | Syringic acid hexoside | + | + | + | + | + | + | + | + | + |
21 | 26.12 | 593 | MS2 [593]: 575, 467, 423, 305 | (Epi)catechin-(epi)gallocatechin | - | - | - | + | - | - | - | - | - |
22 | 27.98 | 311 | MS2 [311]: 179, 149 | Trans-caffeoyltartaric acid (caftaric acid) | + | + | + | + | + | + | + | + | + |
23 | 28.90 | 593 | MS2 [593]: 575, 467, 423, 305 | (Epi)catechin-(epi)gallocatechin | + | - | + | + | - | + | + | - | + |
24 | 30.27 | 1153 | MS2 [1153]: 1027, 1001, 983, 865, 863, 577, 575 | Procyanidin tetramer B-type isomer | - | - | - | + | + | - | - | - | - |
25 | 30.56 | 1153 | MS2 [1153]: 1027, 1001, 983, 865, 863, 577, 575 | Procyanidin tetramer B-type isomer | - | - | - | + | - | + | - | - | - |
26 | 30.62 | 577 | MS2 [577]: 425, 407, 289 | Procyanidin dimer B-type isomer | + | + | + | + | + | + | - | - | - |
27 | 31.37 | 613 | MS2 [613]: 451, 289 | (Epi)catechin-3-O-dihexoside | + | - | + | - | - | - | - | - | - |
28 | 32.37 | 577 465 | MS2 [577]: 425, 407, 289 MS2 [465]: 303 | Procyanidin dimer B-type isomer Dihydroquercetin hexoside | + + | - - | + + | + + | + - | + - | - + | - - | - + |
29 | 32.72 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | - | - | - | + | + | + | - | - | - |
30 | 33.85 | 325 | MS2 [325]: 163 | p-Coumaric acid glucoside | - | - | + | - | - | - | - | - | - |
31 | 34.54 | 289 | MS2 [289]: 245, 205, 179, 125 | Catechin | + | + | + | + | + | + | + | + | + |
32 | 34.92 | 1153 | MS2 [1153]: 1027, 1001, 983, 865, 863, 577, 575 | Procyanidin tetramer B-type isomer | - | - | - | + | + | - | - | - | - |
33 | 35.08 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | + | - | + | + | + | + | - | - | - |
34 | 35.20 | 295 | MS2 [295]: 163 | trans-Coumaroyltartaric acid (coutaric acid) | + | - | - | - | - | - | - | - | - |
35 | 36.07 | 1153 | MS2 [1153]: 1027, 1001, 983, 865, 863, 577, 575 | Procyanidin tetramer B-type isomer | - | - | - | - | - | + | - | - | - |
36 | 35.99 | 577 | MS2 [577]: 425, 407, 289 | Procyanidin dimer B-type isomer | - | - | - | + | - | + | - | - | - |
37 | 36.64 | 879 | MS2 [879]: 727, 709, 547 | Procyanidin dimer digallate A-type isomer | - | - | - | - | + | + | - | - | - |
38 | 37.76 | 577 | MS2 [577]: 425, 407, 289 | Procyanidin B2 | + | + | + | + | + | + | + | - | - |
39 | 38.03 | 449 | MS2 [449]: 287, 269, 259 | Dihydrokaempferol hexoside or Eriodictyol hexoside | + | - | - | + | - | - | + | - | - |
40 | 38.19 | 1153 | MS2 [1153]: 1027, 1001, 983, 865, 863, 577, 575 | Procyanidin tetramer B-type isomer | - | - | - | + | - | - | - | - | - |
41 | 39.26 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | - | - | - | - | - | + | - | - | - |
42 | 39.27 | 521 | MS2 [521]: 359, 223 | Rosmarinic acid hexoside | + | + | + | + | + | - | - | - | - |
43 | 39.68 | 1153 | MS2 [1153]: 1027, 1001, 983, 865, 863, 577, 575 | Procyanidin tetramer B-type isomer | - | - | - | - | - | + | - | - | - |
44 | 40.66 | 289 | MS2 [289]: 245, 205, 179, 125 | Epicatechin | + | + | + | + | + | + | + | - | - |
45 | 41.59 | 389 | MS2 [389]: 299, 269 MS3 [269]: 241, 175, 163 | Resveratrol-C-glucoside | + | + | + | + | + | + | + | + | + |
46 | 42.14 | 729 | MS2 [729]: 603, 577, 559, 451, 441, 425, 407, 289 | Procyanidin dimer monogallate B-type isomer | - | - | - | - | - | + | - | - | - |
47 | 42.59 | 879 | MS2 [879]: 727, 709, 547 | Procyanidin dimer digallate A-type isomer | - | - | - | + | - | + | - | - | - |
48 | 42.68 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | + | - | + | + | + | + | - | - | - |
49 | 43.72 | 1153 | MS2 [1153]: 1027, 1001, 983, 865, 863, 577, 575 | Procyanidin tetramer B-type isomer | - | - | - | + | + | + | - | - | - |
50 | 43.88 | 729 | MS2 [729]: 603, 577, 559, 451, 441, 425, 407, 289 | Procyanidin dimer monogallate B-type isomer | - | - | - | + | + | + | - | - | - |
51 | 46.38 | 433 | MS2 [433]: 301 MS3 [301]: 284, 257, 229, 185 | Ellagic acid pentoside | - | - | - | + | + | + | + | + | + |
52 | 48.02 | 575 | MS2 [575]: 449, 407, 289, 287, 285 | Procyanidin dimer A-type isomer | + | + | + | - | - | - | - | - | - |
53 | 49.80 | 609 419 | MS2 [609]: 447, 301 MS2 [419]: 287, 269 | Rutin (quercetin-3-O-rutinoside) Dihydrokaempferol-O-pentoside or Eriodictyol pentoside | + + | - + | - + | - - | - - | - - | - - | - - | - - |
54 | 49.82 | 301 | MS2 [301]: 257, 229, 185 | Ellagic acid | - | - | - | + | - | - | + | + | + |
55 | 50.66 | 389 | MS2 [389]: 289, 227 | Resveratrol-O-glucoside (Piceid) | + | + | - | + | - | - | + | + | + |
56 | 50.98 | 865 | MS2 [865]: 695, 577, 575, 407, 543, 739, 713, 449, 587, 289 | Procyanidin trimer B-type isomer | - | - | - | - | + | + | - | - | - |
57 | 50.99 | 449 | MS2 [449]: 287, 269, 259 | Dihydrokaempferol hexoside or Eriodictyol hexoside | + | - | - | + | - | + | - | - | - |
58 | 51.21 | 575 | MS2 [575]: 449, 407, 289, 287, 285 | Procyanidin dimer A-type isomer | - | - | + | - | - | - | - | - | - |
59 | 51.32 | 463 | MS2 [463]: 301 MS3 [301]: 179, 151 | Isoquercitrin (quercetin-3-O-glucoside) | + | + | + | + | + | + | - | - | - |
60 | 52.78 | 449 | MS2 [449]: 287, 269, 259 | Dihydrokaempferol hexoside or Eriodictyol hexoside | - | - | - | + | - | + | - | - | - |
61 | 53.54 | 469 | MS2 [469]: 451, 411, 375 | Resveratrol dimer | + | - | - | - | - | - | - | - | - |
62 | 54.46 | 477 | MS2 [477]: 301 MS3 [301]: 179, 151 | Quercetin 3-glucuronide | + | + | - | + | + | + | + | - | - |
63 | 55.80 | 469 | MS2 [469]: 451, 363, 375 MS3 [451]: 423, 357 MS4 [357]: 329, 263 MS3 [363]: 345, 269 MS4 [345]: 330, 327 | Resveratrol dimer (caraphenol) | + | - | + | + | + | + | + | + | + |
64 | 57.89 | 433 | MS2 [433]: 271 MS3 [271]: 177, 151 | Naringenin-O-hexoside | + | - | - | + | - | - | + | - | - |
65 | 59.97 | 575 | MS2 [575]: 449, 407, 289, 287, 285 | Procyanidin dimer A-type isomer | - | + | + | - | - | - | - | - | - |
66 | 61.54 | 453 | MS2 [453]: 435, 359 | Resveratrol dimer | - | - | - | - | - | - | + | - | - |
67 | 66.48 | 227 | MS2 [227]: 185, 183, 159, 157 | Resveratrol | + | + | + | + | + | + | + | + | + |
68 | 69.15 | 923 | MS2 [923]: 905, 881, 801, 783, 707, 689 MS3 [805]: 863, 783 MS4 [863]: 821, 741 | Viniferol E | + | + | + | + | + | + | + | + | + |
69 | 70.35 | 905 | MS2 [905]: 811, 717, 451, 357 MS3 [811]: 717 MS4 [717]: 675, 611 | Resveratrol tetramer | + | - | - | + | + | + | + | + | + |
70 | 72.30 | 453 | MS2 [453]: 435, 411, 369, 359, 347, 253 | ε-Viniferin | + | + | + | + | + | + | + | + | + |
71 | 72.61 | 905 | MS2 [905]: 811, 799, 545, 451, 359 MS3 [811]: 793, 717, 705 | Resveratrol tetramer | - | - | - | - | - | - | + | - | + |
72 | 72.82 | 905 | MS2 [905]: 811, 799, 545, 451, 359 MS3 [811]: 793, 717, 705 | Resveratrol tetramer | - | - | - | - | - | - | + | - | - |
73 | 72.98 | 453 | MS2 [453]: 435, 411, 369, 359, 347, 253 | Resveratrol dimer | - | - | - | - | - | - | + | + | + |
Number of compounds detected in the individual extracts | 42 | 27 | 37 | 48 | 37 | 46 | 33 | 18 | 24 |
Identified Compound (µg Equivalent/g DE) | Aglianico | pH 1.00 Fiano | Greco | Aglianico | pH 7.00 Fiano | Greco | Aglianico | pH 13.00 Fiano | Greco |
---|---|---|---|---|---|---|---|---|---|
a Coumaroylquinic acid | 145.62 ± 0.77 a | 171.23 ± 47.38 d | 163.61 ± 8.25 f | 397.37 ± 32.23 a | 367.28 ± 14.20 d | 302.54 ± 60.28 f | 290.20 ± 23.48 a | n.d. | 185.12 ± 9.65 f |
b Galloyl glucose isomer | 1210.42 ± 165.80 a | n.d. | 1738.51 ± 64.63 f | n.d. | n.d. | 54.60 ± 3.96 g | n.d. | n.d. | n.d. |
b Gallic acid | n.d. | 2143.61 ± 139.10 d | n.m. | 4209.78 ± 376.14 | 4492.14 ± 531.24 e | 4057.35 ± 143.12 f | n.d. | n.d. | 2460.78 ± 160.31 g |
c Procyanidin trimer B-type isomer | n.m. | n.m. | n.m. | n.m. | n.m. | 745.82 ± 67.05 | n.m. | n.m. | n.d. |
d Protocatechuic acid glucoside | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. | 630.71 ± 18.50 | n.m. | 356.12 ± 2.82 |
b Galloyl glucose isomer | n.m. | n.m. | n.m. | n.m. | 407.65 ± 38.38 | n.d. | n.m. | n.d. | 119.56 ± 26.68 |
c Procyanidin dimer digallate A-type | n.d. | n.d. | n.m. | n.d. | n.d. | 499.38 ± 38.57 | n.d. | n.d. | n.d. |
f Syringic acid hexoside | n.m. | n.m. | n.m. | n.m. | n.m. | 55.12 ± 1.85 f | 68.12 ± 11.27 | 43.29 ± 11.34 | 82.66 ± 10.52 f |
e trans-caffeoyltartaric acid (caftaric acid) | 200.17 ± 49.42 a | 170.93 ± 5.56 d | 136.67 ± 11.22 f | 792.32 ± 27.58 b | 2465.38 ± 86.23 e | 466.41 ± 3.89 f | 89.06 ±20.49 a | 472.62 ± 33.27 d | 144.80 ± 20.31 f |
c (epi)catechin- (epi)gallocatechin | 203.17 ± 21.44 a | n.d. | 152.47 ± 42.30 | 1806.99 ± 254.51 b | n.d. | n.m. | 32.25 ± 2.65 a | n.d. | n.m. |
c Procyanidin tetramer B-type isomer | n.d. | n.d. | n.d. | 1059.04 ± 217.77 | 1747.51 ± 362.76 | 1308.36 ± 63.98 | n.d. | n.d. | n.d. |
c Procyanidin dimer B-type isomer | 786.64 ± 60.58 a | 217.05 ± 12.76 d | 124.90 ± 7.09 f | 2852.34 ± 352.60 b | 1133.51 ± 234.94 e | 2571.94 ±3 35.22 g | n.d. | n.d. | n.d. |
c (Epi)catechin- 3-O-dihexoside | 375.57 ± 51.74 | n.d. | 342.74 ± 36.90 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
c Procyanidin dimer B-type isomer | 495.09 ± 20.70 a | n.d. | 339.46 ± 15.40 f | 3056.73 ± 563.63 b. | 1337.50 ± 410.72 | 2010.59 ± 408.81 g | n.d. | n.d. | n.d. |
g Dihydroquercetin hexoside | n.m. | n.d. | 53.39 ± 8.16 f | n.m. | n.m. | n.d. | 128.87 ± 3.72 | n.d. | 135.05 ± 14.52 f |
c Procyanidin trimer B-type isomer | n.d. | n.d. | n.d. | 2226.55 ± 428.60 | 444.30 ± 114.2 | 935.60 ± 144.07 | n.d. | n.d. | n.d. |
c Catechin | 1344.16 ± 11.36 a | 439.87 ± 71.51 d | n.m. | 3354.62 ± 474.37 b | 4195.19 ± 475.23 e | 4248.00 ± 6.96 f | 406.52 ± 90.26 c | 151.33 ± 45.66 d | 478.19 ± 9.13 g |
c Procyanidin tetramer B-type isomer | n.d. | n.d. | n.d. | 533.83 ± 22.84 | n.d. | n.d. | n.d. | n.d. | n.d. |
c Procyanidin trimer B-type isomer | 257.00 ± 9.60 | n.d. | n.m. | n.m. | 1331.38 ± 314.18 | 3438.21 ± 435.31 | n.d. | n.d. | n.d. |
c Procyanidin tetramer B-type isomer | n.d. | n.d. | n.d. | n.d. | 713.08 ± 160.91 | 1675.82 ± 624.35 | n.d. | n.d. | n.d. |
c Procyanidin dimer B-type isomer | n.d. | n.d. | n.d. | 610.46 ± 176.26 | n.d. | 140.14 ± 14.31 | n.d. | n.d. | n.d. |
c Procyanidin dimer digallate A-type | n.d. | n.d. | n.d. | n.d. | 1806.73 ± 338.36 | 1573.46 ± 292.54 | n.d. | n.d. | n.d. |
c Procyanidin B2 | 475.98 ± 105.43 a | n.m. | n.m. | 1346.41 ± 4.35 b | 1706.31 ± 355.72 | 2185.02 ± 243.37 | 516.84 ± 62.75 a | n.d. | n.d. |
g Dihydrokaempferol hexoside or Eriodictyol hexoside | 16.62 ± 2.54 a | n.d. | n.d. | 140.14 ± 14.31 a | n.d. | n.d. | 107.62 ± 12.54 a | n.d. | n.d. |
c Procyanidin trimer B-type isomer | n.d. | n.d. | n.d. | n.d. | n.d. | 1423.23 ± 507.39 | n.d. | n.d. | n.d. |
h Rosmarinic acid hexoside | 276.14 ± 21.12 | 67.43 ± 13.12 d | 314.92 ± 13.80 | n.m. | 3005.53 ± 128.41 e | n.d. | n.d. | n.d. | n.d. |
c Procyanidin tetramer B-type isomer | n.d. | n.d. | n.d. | n.d. | n.d. | 1435.38 ± 397.16 | n.d. | n.d. | n.d. |
c Epicatechin | 26.41 ± 5.69 a | 534.06 ± 11.51 d | 706.44 ± 179.01 f | 1127.47 ± 139.79 b | 2670.85 ± 546.41 e | 5399.49 ± 135.21 g | 967.32 ± 37.50 b | n.d. | n.d. |
i Resveratrol-C-glucoside | 207.93 ± 13.27 a | 88.75 ± 4.75 d | 112.57 ± 19.00 f | 464.39 ± 23.42 a | 326.22 ± 25.20 d | 396.78 ± 21.80 f | 147.17 ± 3.50 a | 87.72 ± 3.54 d | 111.63 ± 9.14 f |
c Procyanidin dimer digallate A-type | n.d. | n.d. | n.d. | 81.50 ± 2.21 | n.d. | n.m. | n.d. | n.d. | n.d. |
c Procyanidin trimer B-type isomer | 130.74 ± 3.22 a | n.d. | 154.66 ± 77.71 f | 576.81 ± 113.12 b | 641.05 ± 46.07 | 2205.38 ± 169.12 g | n.d. | n.d. | n.d. |
c Procyanidin tetramer B-type isomer | n.d. | n.d. | n.d. | 203.92 ± 39.80 | 336.33 ± 20.87 | n.m. | n.d. | n.d. | n.d. |
c Procyanidin dimer monogallate | n.d. | n.d. | n.d. | 255.99 ± 18.36 | 379.53 ± 136.64 | 3151.48 ± 163.54 | n.d. | n.d. | n.d. |
j Ellagic acid pentoside | n.d. | n.d. | n.d. | 174.86 ± 0.66 a | 39.64 ± 10.26 d | 159.41 ± 2.05 f | 354.44 ± 3.80 a | 181.97 ± 9.71 d | 95.75 ± 18.77 f |
c Procyanidin dimer A-type | 187.88 ± 3.76 | 40.87 ± 7.29 | 152.61 ± 8.44 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
k Rutin (quercetin-3-O-rutinoside) | 69.18 ± 5.04 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
g Dihydrokaempferol-O-pentoside or Eriodictyol pentoside | n.m. | 18.65 ± 2.03 | 54.92 ± 1.59 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
j Ellagic acid | n.d. | n.d. | n.d. | n.m. | n.d. | n.d. | n.m. | 173.39 ± 12.47 | 259.21 ± 12.85 |
i Resveratrol-O-glucoside (Piceid) | 46.30 ± 3.15 a | 28.52 ± 0.63 d | n.d. | 141.92 ± 9.03 a | n.d. | n.d. | 219.31 ± 22.65 a | 105.66 ± 12.08 d | 301.47 ± 24.61 |
c Procyanidin trimer B-type isomer | n.d. | n.d. | n.d. | n.d. | n.m. | 174.86 ± 0.66 | n.d. | n.d. | n.d. |
g Dihydrokaempferol hexoside or Eriodictyol hexoside | 71.64 ± 3.59 | n.d. | n.d. | n.m. | n.d. | 371.64 ± 42.16 | n.d. | n.d. | n.d. |
g Isoquercitrin (quercetin-3-O-glucoside) | 12.70 ± 3.38 a | n.m. | n.m. | 204.62 ± 0.78 a | n.m. | 227.82 ± 16.61 | n.d. | n.d. | n.d. |
g Dihydrokaempferol hexoside or Eriodictyol hexoside | n.d. | n.d. | n.d. | 150.86 ± 25.44 | n.d. | 190.54 ± 19.13 | n.d. | n.d. | n.d. |
i Resveratrol dimer | 51.80 ± 5.64 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
g Quercetin 3-glucuronide | 12.83 ± 1.38 a | n.m. | n.d. | 194.33 ± 2.43 a | n.m. | 42.98 ± 5.15 | 64.57 ± 6.29 a | n.d. | n.d. |
i Resveratrol dimer (caraphenol) | 120.65 ± 7.16 a | 14.93 ± 3.01 d | 193.97 ± 2.16 f | 248.50 ± 7.12 a,b | 86.33 ± 21.56 d | 501.89 ± 27.40 f,g | 561.79 ± 29.03 b | 187.09 ± 10.06 d | 1050.47 ± 36.03 g |
g Naringenin-O-hexoside | 132.93 ± 3.35 a | n.d. | n.d. | 275.35 ± 2.87 a | n.d. | n.d. | 165.61 ± 4.31 a | n.d. | n.d. |
c Procyanidin dimer A-type | n.d. | n.m. | 140.89 ± 4.74 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
i Resveratrol dimer | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 94.08 ± 14.40 | n.d. | n.d. |
i Resveratrol | 220.43 ± 16.84 a | 51.51 ± 3.68 d | 136.79 ± 43.31 f | 746.78 ± 32.08 b | 195.51 ± 15.99 d | 679.61 ± 28.58 g | 1741.01 ± 62.45 c | 580.42 ± 0.33 e | 1398.06 ± 23.58 h |
i Viniferol E | 14.27 ± 1.31 a | 5.29 ± 1.50 d | 63.79 ± 9.69 f | 15.76 ± 1.80 a | 42.70 ± 2.72 d | 38.82 ± 3.73 f | 166.18 ± 7.53 b | 191.56 ± 29.59 e | 53.57 ± 2.44 f |
i Resveratrol tetramer | 25.98 ± 8.90 a | n.d. | n.d. | 73.78 ± 1.42 a | 75.06 ± 3.00 d | 72.11 ± 0.93 f | 270.51 ± 1.86 a | 232.36 ± 36.53 e | 37.14 ± 2.22 f |
i ε-viniferin | 16.42 ± 2.98 a | 21.01 ± 3.69 d | 23.83 ± 0.18 f | 44.39 ± 1.73 a | 40.12 ± 6.81 d | 127.69 ± 6.76 g | 1657.60 ± 18.80 b | 1617.56 ± 199.55 e | 1543.28 ± 97.67 h |
i Resveratrol tetramer | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 24.88 ± 6.80 | n.d. | 165.91 ± 2.14 |
i Resveratrol dimer | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 169.04 ± 9.96 | 181.66 ± 16.13 | n.m. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squillaci, G.; Zannella, C.; Carbone, V.; Minasi, P.; Folliero, V.; Stelitano, D.; Cara, F.L.; Galdiero, M.; Franci, G.; Morana, A. Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities. Molecules 2021, 26, 2746. https://doi.org/10.3390/molecules26092746
Squillaci G, Zannella C, Carbone V, Minasi P, Folliero V, Stelitano D, Cara FL, Galdiero M, Franci G, Morana A. Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities. Molecules. 2021; 26(9):2746. https://doi.org/10.3390/molecules26092746
Chicago/Turabian StyleSquillaci, Giuseppe, Carla Zannella, Virginia Carbone, Paola Minasi, Veronica Folliero, Debora Stelitano, Francesco La Cara, Massimiliano Galdiero, Gianluigi Franci, and Alessandra Morana. 2021. "Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities" Molecules 26, no. 9: 2746. https://doi.org/10.3390/molecules26092746
APA StyleSquillaci, G., Zannella, C., Carbone, V., Minasi, P., Folliero, V., Stelitano, D., Cara, F. L., Galdiero, M., Franci, G., & Morana, A. (2021). Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities. Molecules, 26(9), 2746. https://doi.org/10.3390/molecules26092746