A Novel N-Tert-Butyl Derivatives of Pseudothiohydantoin as Potential Target in Anti-Cancer Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry and in Vitro Studies
2.2. The Analysis of the Bioavailability of 2-Tert-Butylaminothiazol-4(5H)-One Derivatives Based on Physicochemical Parameters
3. Materials and Methods
3.1. General Informations
3.2. Reagents and Solvents
3.3. Synthesis of Compound 3a, 3f–3g–General Procedure
3.4. Synthesis of Compound 3b–3e–General Procedure
3.5. Synthesis of Compound 3h–3i–General Procedure
3.6. Inhibition of 11β-HSD1 Assays
3.7. Inhibition of 11β-HSD2 Assays
3.8. Determination of IC50
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends-An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H.; Cho, Y.S. Selection and optimization of MCF-7 cell line for screening selective inhibitors of 11beta-hydroxysteroid dehydrogenase 2. Cell Biochem. Funct. 2010, 28, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Seckl, J.R.; Walker, B.R. 11beta-hydroxysteroid dehydrogenase type 1 as a modulator of glucocorticoid action: From metabolism to memory. Trends Endocrinol. Metab. 2004, 15, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Venkatakrishnan, R.; James, S.; Šućurović, S.; Mulac-Jericevic, B.; Lucas, E.S.; Takeda, S.; Shmygol, A.; Brosens, J.J.; Quenby, S. Elevated periimplantation uterine natural killer cell density in human endometrium is associated with impaired corticosteroid signaling in decidualizing stromal cells. J. Clin. Endocrinol. Metab. 2013, 98, 4429–4437. [Google Scholar] [CrossRef]
- Yamada, S. Pleiotropic effects of ARB in metabolic syndrome. Curr. Vasc. Pharmacol. 2011, 9, 158–161. [Google Scholar] [PubMed]
- Mancha-Ramirez, A.M.; Yang, X.; Liang, H.; Junco, J.; Lee, K.P.; Bovio, S.F.; Espinoza, M.; Wool, J.; Slaga, A.; Glade, D.C.; et al. Harnessing the gatekeepers of glucocorticoids for chemoprevention of non-melanoma skin cancer. Mol. Carcinog. 2019, 58, 102–112. [Google Scholar]
- Chapman, K.E.; Coutinho, A.E.; Zhang, Z.; Kipari, T.; Savill, J.S.; Seckl, J.R. Changing glucocorticoid action: 11β-Hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation. J. Steroid Biochem. Mol. Biol. 2013, 137, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Rabbitt, E.H.; Gittoes, N.J.; Steward, P.M.; Hewison, M. 11beta-hydroxysteroid dehydrogenases, cell proliferation and malignancy. J. Steroid Biochem. Mol. Biol. 2003, 85, 415–421. [Google Scholar]
- Chang, J.; Xue, M.; Yang, S.; Yao, B.; Zhang, B.; Chen, X.; Pozzi, A.; Zhang, M.-Z. Inhibition of 11β-Hydroxysteroid dehydrogenase type II suppresses lung carcinogenesis by blocking tumor COX-2 expression as well as the ERK and mTOR signaling pathways. PLoS ONE 2015, 10, e0127030. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.Z.; Xu, J.; Yao, B.; Yin, H.; Cai, Q.; Shrubsole, M.J.; Chen, X.; Kon, V.; Zheng, W.; Pozzii, A.; et al. Inhibition of 11beta-hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. J. Clin. Investig. 2009, 119, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Myles, K.; Smith, R.; Krozowski, Z. Expression of the 11betahydroxysteroid dehydrogenase type II enzyme in breast tumors and modulation of activity and cell growth in PMC42 cells. J. Steroid Biochem. Mol. Biol. 2001, 76, 153–159. [Google Scholar] [CrossRef]
- Lipka, C.; Mankertz, J.; Fromm, M.; Lübbert, H.; Bühler, H.; Kühn, W.; Ragosch, V.; Hundertmark, S. Impairment of the antiproliferative effect of glucocorticosteroids by 11beta-hydroxysteroid dehydrogenase type 2 overexpression in MCF-7 breast-cancer cells. Horm. Metab. Res. 2004, 36, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Gent, R.; du Toit, T.; Bloem, L.M.; Swart, A.C. The 11β-hydroxysteroid dehydrogenase isoforms: Pivotal catalytic activities yield potent C11-oxy C19 steroids with 11βHSD2 favouring 11-ketotestosterone, 11-ketoandrostenedione and 11-ketoprogesterone biosynthesis. J. Steroid Biochem. Mol. Biol. 2019, 189, 116–126. [Google Scholar] [CrossRef]
- Diederich, S.; Grossmann, C.; Hanke, B.; Quinkler, M.; Herrmann, M.; Bahr, V.; Oelkers, W. In the search for specific inhibitors of human 11beta-hydroxysteroid-dehydrogenases (11beta-HSDs): Chenodeoxycholic acid selectively inhibits 11beta-HSD-I. Eur. J. Endocrinol. 2000, 142, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Vicker, N.; Su, X.; Lawrence, H.; Cruttenden, A.; Purohit, A.; Reedb, M.J.; Potter, B.V.L. A novel 18β-glycyrrhetinic acid analogue as a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase 2. Bioorg. Med. Chem. Lett. 2004, 14, 3263–3267. [Google Scholar] [PubMed]
- Sanna, P.P.; Kawamura, T.; Chen, J.; Koob, G.F.; Roberts, A.J.; Vendruscolo, L.F.; Repunte-Canonigo, V. 11β-hydroxysteroid dehydrogenase inhibition as a new potential therapeutic target for alcohol abuse. Transl. Psychiatry 2016, 6, e760. [Google Scholar] [CrossRef]
- Beck, K.R.; Murielle Bächler, M.; Vuorinen, A.; Wagner, S.; Akram, M.; Griesser, U.; Temml, V.; Klusonova, P.; Yamaguchi, H.; Schuster, D.; et al. Inhibition of 11β-hydroxysteroid dehydrogenase 2 by the fungicides itraconazole and posaconazole. Biochem. Pharmacol. 2017, 15, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Studzińska, R.; Kupczyk, D.; Płazińska, A.; Kołodziejska, R.; Kosmalski, T.; Modzelewska-Banachiewicz, B. Thiazolo[3,2-a]pyrimidin-5-one derivatives as a novel class of 11β-hydroxysteroid dehydrogenase inhibitors. Bioorg. Chem. 2018, 81, 21–26. [Google Scholar] [CrossRef]
- Studzińska, R.; Kołodziejska, R.; Kupczyk, D.; Płaziński, W.; Kosmalski, T. A novel derivatives of thiazol-4(5H)-one and their activity in the inhibition of 11β-hydroxysteroid dehydrogenase type 1. Bioorg. Chem. 2018, 79, 115–121. [Google Scholar] [CrossRef]
- Studzińska, R.; Kołodziejska, R.; Płaziński, W.; Kupczyk, D.; Kosmalski, T.; Jasieniecka, K.; Modzelewska-Banachiewicz, B. Synthesis of the N-methyl derivatives of 2-aminothiazol-4(5H)–one and their interactions with 11βHSD1-molecular modeling and in vitro studies. Chem. Biodivers. 2019, 16, e1900065. [Google Scholar]
- Kupczyk, D.; Studzińska, R.; Bilski, R.; Baumgart, S.; Kołodziejska, R.; Woźniak, A. Synthesis of novel 2-(isopropylamino)thiazol-4(5H)-one derivatives and their inhibitory activity of 11β-HSD1 and 11β-HSD2 in aspect of carcinogenesis prevention. Molecules 2020, 25, 4233. [Google Scholar] [CrossRef]
- Cirillo, N.; Morgan, D.J.; Pedicillo, M.C.; Celentano, A.; Muzio, L.L.; McCullough, M.J.; Prime, S.S. Characterisation of the cancer-associated glucocorticoid system: Key role of 11β-hydroxysteroid dehydrogenase type 2. Br. J. Cancer 2017, 117, 984–993. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yang, S.; Yin, H.; Fan, X.; Wang, S.; Yao, B.; Pozzi, A.; Chen, X.; Harris, R.C.; Zhang, M.-Z. Epithelial-specific deletion of 11β-HSD2 hinders Apcmin/+ mouse tumorigenesis. Mol. Cancer Res. 2013, 11, 1040–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Jiang, L.; Zhang, M.-Z. 11β-Hydroxysteroid Dehydrogenase Type II is a Potential Target for Prevention of Colorectal Tumorigenesis. J. Oncobiomark. 2013, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Terao, M.; Itoi, S.; Murota, H.; Katayama, I. Expression profiles of cortisol-inactivating enzyme, 11β-hydroxysteroid dehydrogenase-2, in human epidermal tumors and its role in keratinocyte proliferation. Exp. Dermatol. 2013, 22, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Terao, M.; Katayama, I. Local cortisol/corticosterone activation in skin physiology and pathology. J. Dermatol. Sci. 2016, 84, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and premeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar]
- Veber, D.F.; Johnson, S.R.; Cheng, H.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of DrugCandidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswandhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M., Jr.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [PubMed]
- Molinspiration. Available online: https://www.molinspiration.com/ (accessed on 28 January 2021).
- SwissADME. Available online: http://www.swissadme.ch/ (accessed on 7 February 2021).
- Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov. 2010, 5, 235–248. [Google Scholar]
- Crivori, P.; Poggesi, I. Computational approaches for predicting CYP-relatedmetabolism properties in the screening of new drugs. Eur. J. Med. Chem. 2006, 41, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Studzińska, R.; Karczmarska-Wódzka, A.; Kozakiewicz, A.; Kołodziejska, R.; Paprocka, R.; Wróblewski, M.; Augustyńska, B.; Modzelewska-Banachiewicz, B. 2-Allylaminothiazole and 2-allylaminodihydrothiazole derivatives: Synthesis, characterization and evaluation of bioactivity. Monatsh. Chem. 2015, 146, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Kupczyk, D.; Studzińska, R.; Bilski, R.; Woźniak, A. Application of ELISA technique and human microsomes in the search for 11β-hydroxysteroid dehydrogenase inhibitors. Biomed. Res. Int. 2019, 5747436. [Google Scholar] [CrossRef] [PubMed]
Compound | Molecular Weight a [g/mol] | HBD a | HBA a | Topological Polar Surface Area a [A2] | Number Rotatable Bonds a | Molar Refractivity b | miLogP a | LogP b |
---|---|---|---|---|---|---|---|---|
3a | 186.28 | 1 | 3 | 41.46 | 2 | 56.10 | 1.26 | 1.50 |
3b | 200.31 | 1 | 3 | 41.46 | 3 | 60.90 | 1.77 | 1.87 |
3c | 214.33 | 1 | 3 | 41.46 | 4 | 65.71 | 2.33 | 2.21 |
3d | 214.33 | 1 | 3 | 41.46 | 3 | 65.71 | 2.01 | 2.14 |
3e | 200.31 | 1 | 3 | 41.46 | 2 | 60.94 | 1.71 | 1.83 |
3f | 200.48 | 1 | 3 | 41.46 | 3 | 75.78 | 2.48 | 2.53 |
3g | 327.25 | 1 | 3 | 41.46 | 3 | 83.48 | 3.29 | 3.16 |
3h | 240.37 | 1 | 3 | 41.46 | 2 | 73.25 | 2.88 | 2.62 |
3i | 212.32 | 1 | 3 | 41.46 | 2 | 63.64 | 1.63 | 2.00 |
Rule | Criteria | 3a | 3b | 3c | 3d | 3e | 3f | 3g | 3h | 3i |
---|---|---|---|---|---|---|---|---|---|---|
(Yes/No) | ||||||||||
Lipinski | MW ≤ 500 Da LogP ≤ 5 HBD ≤ 5 HBA ≤ 10 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Veber | tPSA ≤ 140 A2 Nrotb ≤ 10 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Egan | 0 ≥ tPSA ≤ 132 A2 −1 ≥ logP ≤ 6 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Ghose | 160 ≤ MW ≤ 480 −0.4 ≤ logP ≤ 5.6 40 ≤ MR ≤ 130 20 ≤ atoms ≤ 70 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupczyk, D.; Studzińska, R.; Baumgart, S.; Bilski, R.; Kosmalski, T.; Kołodziejska, R.; Woźniak, A. A Novel N-Tert-Butyl Derivatives of Pseudothiohydantoin as Potential Target in Anti-Cancer Therapy. Molecules 2021, 26, 2612. https://doi.org/10.3390/molecules26092612
Kupczyk D, Studzińska R, Baumgart S, Bilski R, Kosmalski T, Kołodziejska R, Woźniak A. A Novel N-Tert-Butyl Derivatives of Pseudothiohydantoin as Potential Target in Anti-Cancer Therapy. Molecules. 2021; 26(9):2612. https://doi.org/10.3390/molecules26092612
Chicago/Turabian StyleKupczyk, Daria, Renata Studzińska, Szymon Baumgart, Rafał Bilski, Tomasz Kosmalski, Renata Kołodziejska, and Alina Woźniak. 2021. "A Novel N-Tert-Butyl Derivatives of Pseudothiohydantoin as Potential Target in Anti-Cancer Therapy" Molecules 26, no. 9: 2612. https://doi.org/10.3390/molecules26092612
APA StyleKupczyk, D., Studzińska, R., Baumgart, S., Bilski, R., Kosmalski, T., Kołodziejska, R., & Woźniak, A. (2021). A Novel N-Tert-Butyl Derivatives of Pseudothiohydantoin as Potential Target in Anti-Cancer Therapy. Molecules, 26(9), 2612. https://doi.org/10.3390/molecules26092612