Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface
Abstract
:1. Introduction
2. Results
2.1. Characterization of ALI Cultures
2.2. Methodological Approaches for Analysis of ALI Cultures
- Collected apical supernatants and basolateral medium;
- Scraped with a rhino-pro curette cells from the outermost rim of the insert (where mucous material has accumulated) and stored in lysis buffer for protein analysis;
- Approximately 3/4 of the insert was scraped with a curette for the RNA isolation (recovery of 300 to 600 pg/µL RNA, with integrity values of 7.1 to 7.7) and for the whole-cell lysates preparation in order to obtain the solubility of the highly hydrophobic CFTR protein. Protein yield varied considerably among lysates (from 1 to 12 mg/mL) but was always sufficient for at least one analysis;
- Approximately 1/4 of the remaining insert was fixed in formalin or methacarn and paraffin embedded for the immunohistochemistry analysis.
2.3. Immunostainings of CFTR in ALI Cultures in Comparison to Human Bronchus Tissue
2.4. Differential Staining of CFTR Protein in Human Bronchial Epithelial ALI Cultures
2.5. Effect of AAT on CFTR Levels in T84 Cells
2.6. AAT Regulates CFTR Levels in Human Bronchial Epithelial ALI Cultures
3. Discussion
4. Materials and Methods
4.1. Bronchial Epithelial Cells at Air-Liquid Interface (ALI) Culture
4.2. Histological Analysis
4.3. Immunofluorescence
4.4. T84 Cell Culture
4.5. Western Blot
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riordan, J.R. CFTR function and prospects for therapy. Annu. Rev. Biochem. 2008, 77, 701–726. [Google Scholar] [CrossRef]
- Mall, M.A.; Hartl, D. CFTR: Cystic fibrosis and beyond. Eur. Respir. J. 2014, 44, 1042–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Ratjen, F.; Bell, S.C.; Rowe, S.M.; Goss, C.H.; Quittner, A.L.; Bush, A. Cystic fibrosis. Nat. Rev. Dis Primers 2015, 1, 15010. [Google Scholar] [CrossRef] [PubMed]
- Stanke, F.; Becker, T.; Kumar, V.; Hedtfeld, S.; Becker, C.; Cuppens, H.; Tamm, S.; Yarden, J.; Laabs, U.; Siebert, B.; et al. Genes that determine immunology and inflammation modify the basic defect of impaired ion conductance in cystic fibrosis epithelia. J. Med. Genet. 2011, 48, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.T.; Cave, S.; Rendall, J.; O’Connor, C.M.; Morgan, K.; FitzGerald, M.X.; Kalsheker, N. An alpha1-antitrypsin enhancer polymorphism is a genetic modifier of pulmonary outcome in cystic fibrosis. Eur. J. Hum. Genet. 2001, 9, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Pankow, S.; Bamberger, C.; Calzolari, D.; Martinez-Bartolome, S.; Lavallee-Adam, M.; Balch, W.E.; Yates, J.R., 3rd. F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 2015, 528, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janciauskiene, S.; Welte, T. Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S4), S280–S288. [Google Scholar] [CrossRef]
- McElvaney, N.G. Alpha-1 Antitrypsin Therapy in Cystic Fibrosis and the Lung Disease Associated with Alpha-1 Antitrypsin Deficiency. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S2), S191–S196. [Google Scholar] [CrossRef]
- Drumm, M.L.; Konstan, M.W.; Schluchter, M.D.; Handler, A.; Pace, R.; Zou, F.; Zariwala, M.; Fargo, D.; Xu, A.; Dunn, J.M.; et al. Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 2005, 353, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Janciauskiene, S.M.; Bals, R.; Koczulla, R.; Vogelmeier, C.; Kohnlein, T.; Welte, T. The discovery of alpha1-antitrypsin and its role in health and disease. Respir. Med. 2011, 105, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Allen, E.D. Opportunities for the use of aerosolized alpha 1-antitrypsin for the treatment of cystic fibrosis. Chest 1996, 110, 256S–260S. [Google Scholar] [CrossRef]
- Martin, S.L.; Downey, D.; Bilton, D.; Keogan, M.T.; Edgar, J.; Elborn, J.S. Safety and efficacy of recombinant alpha(1)-antitrypsin therapy in cystic fibrosis. Pediatr. Pulmonol. 2006, 41, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Griese, M.; Latzin, P.; Kappler, M.; Weckerle, K.; Heinzlmaier, T.; Bernhardt, T.; Hartl, D. alpha1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur. Respir. J. 2007, 29, 240–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarcone, M.C.; Duistermaat, E.; van Schadewijk, A.; Jedynska, A.; Hiemstra, P.S.; Kooter, I.M. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 311, L111–L123. [Google Scholar] [CrossRef] [Green Version]
- Muller, L.; Brighton, L.E.; Carson, J.L.; Fischer, W.A., 2nd; Jaspers, I. Culturing of human nasal epithelial cells at the air liquid interface. J. Vis. Exp. 2013, 80, 50646. [Google Scholar] [CrossRef] [PubMed]
- Denning, G.M.; Ostedgaard, L.S.; Cheng, S.H.; Smith, A.E.; Welsh, M.J. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J. Clin. Investig. 1992, 89, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Wewers, M.D.; Casolaro, M.A.; Sellers, S.E.; Swayze, S.C.; McPhaul, K.M.; Wittes, J.T.; Crystal, R.G. Replacement therapy for alpha 1-antitrypsin deficiency associated with emphysema. N. Engl. J. Med. 1987, 316, 1055–1062. [Google Scholar] [CrossRef]
- Tumpara, S.; Martinez-Delgado, B.; Gomez-Mariano, G.; Liu, B.; DeLuca, D.S.; Korenbaum, E.; Jonigk, D.; Jugert, F.; Wurm, F.M.; Wurm, M.J.; et al. The Delivery of alpha1-Antitrypsin Therapy through Transepidermal Route: Worthwhile to Explore. Front. Pharmacol. 2020, 11, 983. [Google Scholar] [CrossRef]
- Sharma, L.; Feng, J.; Britto, C.J.; Dela Cruz, C.S. Mechanisms of Epithelial Immunity Evasion by Respiratory Bacterial Pathogens. Front. Immunol. 2020, 11, 91. [Google Scholar] [CrossRef]
- Tam, A.; Wadsworth, S.; Dorscheid, D.; Man, S.F.; Sin, D.D. The airway epithelium: More than just a structural barrier. Ther. Adv. Respir. Dis. 2011, 5, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, F.; Georas, S.N. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am. J. Respir. Cell Mol. Biol. 2014, 50, 857–869. [Google Scholar] [CrossRef] [Green Version]
- Montoro, D.T.; Haber, A.L.; Biton, M.; Vinarsky, V.; Lin, B.; Birket, S.E.; Yuan, F.; Chen, S.; Leung, H.M.; Villoria, J.; et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018, 560, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Plasschaert, L.W.; Zilionis, R.; Choo-Wing, R.; Savova, V.; Knehr, J.; Roma, G.; Klein, A.M.; Jaffe, A.B. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018, 560, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Lukacs, G.L.; Verkman, A.S. CFTR: Folding, misfolding and correcting the DeltaF508 conformational defect. Trends Mol. Med. 2012, 18, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Guggino, W.B.; Stanton, B.A. New insights into cystic fibrosis: Molecular switches that regulate CFTR. Nat. Rev. Mol. Cell Biol. 2006, 7, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Labenski, H.; Hedtfeld, S.; Becker, T.; Tummler, B.; Stanke, F. Initial interrogation, confirmation and fine mapping of modifying genes: STAT3, IL1B and IFNGR1 determine cystic fibrosis disease manifestation. Eur. J. Hum. Genet. 2011, 19, 1281–1288. [Google Scholar] [CrossRef]
- Lockett, A.D.; Brown, M.B.; Santos-Falcon, N.; Rush, N.I.; Oueini, H.; Oberle, A.J.; Bolanis, E.; Fragoso, M.A.; Petrusca, D.N.; Serban, K.A.; et al. Active trafficking of alpha 1 antitrypsin across the lung endothelium. PLoS ONE 2014, 9, e93979. [Google Scholar] [CrossRef] [Green Version]
- Guttman, O.; Baranovski, B.M.; Schuster, R.; Kaner, Z.; Freixo-Lima, G.S.; Bahar, N.; Kalay, N.; Mizrahi, M.I.; Brami, I.; Ochayon, D.E.; et al. Acute-phase protein alpha1-anti-trypsin: Diverting injurious innate and adaptive immune responses from non-authentic threats. Clin. Exp. Immunol. 2015, 179, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Keshavjee, S.; Liu, M. Alpha-1 Antitrypsin for COVID-19 Treatment: Dual Role in Antiviral Infection and Anti-Inflammation. Front. Pharmacol. 2020, 11, 615398. [Google Scholar] [CrossRef] [PubMed]
- Bergin, D.A.; Reeves, E.P.; Hurley, K.; Wolfe, R.; Jameel, R.; Fitzgerald, S.; McElvaney, N.G. The circulating proteinase inhibitor alpha-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci. Transl. Med. 2014, 6, 217ra211. [Google Scholar] [CrossRef]
- Fulcher, M.L.; Gabriel, S.; Burns, K.A.; Yankaskas, J.R.; Randell, S.H. Well-differentiated human airway epithelial cell cultures. Methods Mol. Med. 2005, 107, 183–206. [Google Scholar] [CrossRef] [PubMed]
- Shanks, N.; Greek, R.; Greek, J. Are animal models predictive for humans? Philos. Ethics Humanit. Med. 2009, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Coyle, J.P.; Xiong, R.; Wang, Y.; Heflich, R.H.; Ren, B.; Gwinn, W.M.; Hayden, P.; Rojanasakul, L. Invited review: Human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell. Dev. Biol. Anim. 2020. [Google Scholar] [CrossRef]
- Puchtler, H.; Waldrop, F.S.; Meloan, S.N.; Terry, M.S.; Conner, H.M. Methacarn (methanol-Carnoy) fixation. Practical and theoretical considerations. Histochemie 1970, 21, 97–116. [Google Scholar] [CrossRef] [PubMed]
Antibody | Host/Clonality | Dilution | Company | Cat. No. |
---|---|---|---|---|
AcTubulin | Mouse/ Monoclonal | 1:5000 | Sigma-Aldrich (St. Louis, MO, USA) | T6793 |
Muc5AC | Rabbit/ Polyclonal | 1:500 | Abcam (Cambridge, UK) | ab78660 |
Alexa Fluor 488 | Donkey- anti-rabbit | 1:200 | Abcam (Cambridge, UK) | ab150061 |
Alexa Fluor 594 | Donkey- anti-mouse | 1:200 | Thermo Fisher Scientific (Waltham, MA, USA) | R37115 |
CFTR | Mouse/ Monoclonal | 1:200 | CF Foundation (Bethesda, MD, USA) | 596 |
ZO1 | Goat/ Polyclonal | 1:200 | Abcam (Cambridge, UK) | ab99462 |
FOXI1 | Rabbit/ Polyclonal | 1:100 | Atlas Antibodies, (Bromma, Sweden) | HPA071469 |
Cyanine 3 | Donkey- anti-mouse | 1:200 | Dianova (Hamburg, Germany) | 715-165-151 |
Alexa Fluor 488 | Donkey- anti-goat | 1:200 | Abcam (Cambridge, UK) | ab150105 |
Alexa Fluor 555 | Donkey- anti-mouse | 1:200 | Abcam (Cambridge, UK) | ab150106 |
Antibody | Host/Clonality | Dilution | Company | Cat. No. |
---|---|---|---|---|
CFTR | Mouse/ Monoclonal | 1:400 | CF Foundation (Bethesda, MD, USA) | 217, 660, 570, 596 |
AAT | Rabbit/ Polyclonal | 1:800 | Agilent Dako (Santa Clara, CA, USA) | A0012 |
Phospho- STAT3Y705 | Rabbit/ Monoclonal | 1:2000 | Abcam (Cambridge, UK) | ab76315 |
FASN (HRP) | Rabbit/ Monoclonal | 1:5000 | Abcam (Cambridge, UK) | ab196854 |
IgG H&L (HRP) | Goat- anti-Mouse | 1:5000 | Abcam (Cambridge, UK) | ab97040 |
IgG H&L (HRP) | Goat- anti-Rabbit | 1:2000 | Abcam (Cambridge, UK) | ab205718 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanke, F.; Janciauskiene, S.; Tamm, S.; Wrenger, S.; Raddatz, E.L.; Jonigk, D.; Braubach, P. Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface. Molecules 2021, 26, 2639. https://doi.org/10.3390/molecules26092639
Stanke F, Janciauskiene S, Tamm S, Wrenger S, Raddatz EL, Jonigk D, Braubach P. Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface. Molecules. 2021; 26(9):2639. https://doi.org/10.3390/molecules26092639
Chicago/Turabian StyleStanke, Frauke, Sabina Janciauskiene, Stephanie Tamm, Sabine Wrenger, Ellen Luise Raddatz, Danny Jonigk, and Peter Braubach. 2021. "Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface" Molecules 26, no. 9: 2639. https://doi.org/10.3390/molecules26092639
APA StyleStanke, F., Janciauskiene, S., Tamm, S., Wrenger, S., Raddatz, E. L., Jonigk, D., & Braubach, P. (2021). Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface. Molecules, 26(9), 2639. https://doi.org/10.3390/molecules26092639