Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications
Abstract
:1. Introduction
2. Supercritical Deposition of Nano-Scale Metal-Organic Precursors
- The metal precursor is dissolved in scco2;
- The metal precursor is adsorbed from the fluid phase to the support material or reacts with the surface of the support;
- The adsorbed metal precursor is converted to its metal or metal oxide form.
3. Supercritical Antisolvent Precipitation of Photocatalytic Nanoparticles
4. Sol–Gel Reactions
5. Sol–Gel Reactions and Supercritical Drying to Obtain Porous Structures
6. Other Applications of Supercritical CO2 in Photocatalysis: From Supercritical Foaming to scCO2 as a Promising Reaction Medium
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldino, L.; Cardea, S.; Reverchon, E. Supercritical assisted electrospray: An improved micronization process. Polymers 2019, 11, 244. [Google Scholar] [CrossRef] [Green Version]
- Baldino, L.; Cardea, S.; Scognamiglio, M.; Reverchon, E. A new tool to produce alginate-based aerogels for medical applications, by supercritical gel drying. J. Supercrit. Fluids 2019, 146, 152–158. [Google Scholar] [CrossRef]
- Campardelli, R.; Trucillo, P.; Reverchon, E. Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. J. CO2 Util. 2018, 25, 235–241. [Google Scholar] [CrossRef]
- Dos Santos, L.C.; Johner, J.C.F.; Scopel, E.; Pontes, P.V.A.; Ribeiro, A.P.B.; Zabot, G.L.; Batista, E.A.C.; Meireles, M.A.A.; Martínez, J. Integrated supercritical CO2 extraction and fractionation of passion fruit (Passiflora edulis Sims) by-products. J. Supercrit. Fluids 2021, 168. [Google Scholar] [CrossRef]
- Pajnik, J.; Lukić, I.; Dikić, J.; Asanin, J.; Gordic, M.; Misic, D.; Zizović, I.; Korzeniowska, M. Application of supercritical solvent impregnation for production of zeolite modified starch-chitosan polymers with antibacterial properties. Molecules 2020, 25, 4717. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Marco, I. Eudragit: A novel carrier for controlled drug delivery in supercritical antisolvent coprecipitation. Polymers 2020, 12, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabernero, A.; Cardea, S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. Mat. Sci. Eng. C 2020, 112. [Google Scholar] [CrossRef]
- Wang, C.H.; Hsieh, D.J.; Periasamy, S.; Chuang, C.T.; Tseng, F.W.; Kuo, J.C.; Tarng, Y.W. Regenerative porcine dermal collagen matrix developed by supercritical carbon dioxide extraction technology: Role in accelerated wound healing. Materialia 2020, 9. [Google Scholar] [CrossRef]
- Belizón, M.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez De La Ossa-Fernández, E.J. Supercritical impregnation of antioxidant mango polyphenols into a multilayer PET/PP food-grade film. J. CO2 Util. 2018, 25, 56–67. [Google Scholar] [CrossRef]
- Franco, P.; Incarnato, L.; De Marco, I. Supercritical CO2 impregnation of α-tocopherol into PET/PP films for active packaging applications. J. CO2 Util. 2019, 34, 266–273. [Google Scholar] [CrossRef]
- Gong, D.; Jing, X.; Zhao, Y.; Zheng, H.; Zheng, L. One-step supercritical CO2color matching of polyester with dye mixtures. J. CO2 Util. 2021, 44. [Google Scholar] [CrossRef]
- Penthala, R.; Heo, G.; Kim, H.; Lee, I.Y.; Ko, E.H.; Son, Y.A. Synthesis of azo and anthraquinone dyes and dyeing of nylon-6,6 in supercritical carbon dioxide. J. CO2 Util. 2020, 38, 49–58. [Google Scholar] [CrossRef]
- Costa, J.M.; Almeida Neto, A.F.D. Nanocatalysts deposition assisted by supercritical carbon dioxide technology: A review. Synth. Met. 2021, 271. [Google Scholar] [CrossRef]
- Elmanovich, I.V.; Stakhanov, A.I.; Zefirov, V.V.; Pavlov, A.A.; Lokshin, B.V.; Gallyamov, M.O. Thermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxide. J. Supercrit. Fluids 2020, 158. [Google Scholar] [CrossRef]
- Papoulis, D. Halloysite based nanocomposites and photocatalysis: A Review. Appl. Clay Sci. 2019, 168, 164–174. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Kabra, K.; Chaudhary, R.; Sawhney, R.L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Ind. Eng. Chem. Res. 2004, 43, 7683–7696. [Google Scholar] [CrossRef]
- Yong, X.; Schoonen, M.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar]
- Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357. [Google Scholar] [CrossRef]
- Demeestere, K.; Dewulf, J.; Van Langenhove, H. Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art. Crit. Rev. Environ. Sci. Technol. 2007, 37, 489–538. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Sacco, O. UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets. Chem. Eng. J. 2018, 350, 703–713. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Cat. B 2011, 101, 382–387. [Google Scholar] [CrossRef]
- Baeck, S.H.; Choi, K.S.; Jaramillo, T.F.; Stucky, G.D.; McFarland, E.W. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 2003, 15, 1269–1273. [Google Scholar] [CrossRef]
- Chen, D.; Ye, J. Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 2008, 18, 1922–1928. [Google Scholar] [CrossRef]
- Cao, S.W.; Zhu, Y.J. Hierarchically nanostructured α-Fe2O3 hollow spheres: Preparation, growth mechanism, photocatalytic property, and application in water treatment. J. Phys. Chem. C 2008, 112, 6253–6257. [Google Scholar] [CrossRef]
- Mishra, M.; Chun, D.M. α-Fe2O3 as a photocatalytic material: A review. Appl. Cat. A 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, J.; Chen, F.; Anpo, M. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl. Cat. B 2009, 85, 148–154. [Google Scholar] [CrossRef]
- Primo, A.; Marino, T.; Corma, A.; Molinari, R.; García, H. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J. Am. Chem. Soc. 2011, 133, 6930–6933. [Google Scholar] [CrossRef] [PubMed]
- Chithambararaj, A.; Sanjini, N.S.; Velmathi, S.; Chandra Bose, A. Preparation of h-MoO3 and α-MoO3 nanocrystals: Comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys. Chem. Chem. Phys. 2013, 15, 14761–14769. [Google Scholar] [CrossRef]
- Szkoda, M.; Trzciński, K.; Nowak, A.P.; Gazda, M.; Sawczak, M.; Lisowska-Oleksiak, A. The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants. Mater. Chem. Phys. 2020, 248. [Google Scholar] [CrossRef]
- Gionco, C.; Paganini, M.C.; Giamello, E.; Sacco, O.; Vaiano, V.; Sannino, D. Rare earth oxides in zirconium dioxide: How to turn a wide band gap metal oxide into a visible light active photocatalyst. J. Energy Chem. 2017, 26, 270–276. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Jia, X.; Wang, J.; Chen, Z.; Xu, Y. Reactant effect on visible-light driven photocatalytic performance of sol–gel derived tetragonal ZrO2 nanoparticles. Mater. Res. Bull. 2017, 93, 264–269. [Google Scholar] [CrossRef]
- Elango, G.; Roopan, S.M. Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B 2016, 155, 34–38. [Google Scholar] [CrossRef]
- Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H.; Jing, L. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Cat. B 2017, 201, 486–494. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, W.; Xu, R.; Shi, Y.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 2013, 49, 9803–9805. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Jiang, R.; Xiao, L.; Chang, Y.; Guan, Y.; Li, X.; Zeng, G. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 2009, 169, 933–940. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors. J. Clean. Prod. 2015, 100, 208–211. [Google Scholar] [CrossRef]
- Sharma, M.; Jain, T.; Singh, S.; Pandey, O.P. Photocatalytic degradation of organic dyes under UV-Visible light using capped ZnS nanoparticles. Sol. Energy 2012, 86, 626–633. [Google Scholar] [CrossRef]
- Tuncer, M.; Ozdemir, B. Photocatalytic activity of TiO2 powders synthesized by supercritical gas antisolvent method. Acta Phys. Pol. A 2014, 125, 608–610. [Google Scholar] [CrossRef]
- Da Silva, E.P.; Winkler, M.E.G.; Giufrida, W.M.; Cardozo-Filho, L.; Alonso, C.G.; Lopes, J.B.O.; Rubira, A.F.; Silva, R. Effect of phase composition on the photocatalytic activity of titanium dioxide obtained from supercritical antisolvent. J. Colloid Interface Sci. 2019, 535, 245–254. [Google Scholar] [CrossRef]
- Marin, R.P.; Ishikawa, S.; Bahruji, H.; Shaw, G.; Kondrat, S.A.; Miedziak, P.J.; Morgan, D.J.; Taylor, S.H.; Bartley, J.K.; Edwards, J.K.; et al. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Appl. Cat. A 2015, 504, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Franco, P.; Sacco, O.; De Marco, I.; Vaiano, V. Zinc oxide nanoparticles obtained by supercritical antisolvent precipitation for the photocatalytic degradation of crystal violet dye. Catalysts 2019, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Franco, P.; Sacco, O.; De Marco, I.; Sannino, D.; Vaiano, V. Photocatalytic Degradation of Eriochrome Black-T Azo Dye Using Eu-Doped ZnO Prepared by Supercritical Antisolvent Precipitation Route: A Preliminary Investigation. Top. Catal. 2020, 63, 1193–1205. [Google Scholar] [CrossRef]
- Kaneco, S.; Kurimoto, H.; Shimizu, Y.; Ohta, K.; Mizuno, T. Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy 1999, 24, 21–30. [Google Scholar] [CrossRef]
- Hirakawa, T.; Whitesell, J.K.; Fox, M.A. Effect of temperature and pressure in the photocatalytic oxidation of n-octanol on partially desilanized hydrophobic TiO2 suspended in aerated supercritical CO2. J. Phys. Chem. B 2004, 108, 10213–10218. [Google Scholar] [CrossRef]
- Li, H.; Sunol, S.G.; Sunol, A.K. Development of titanium-dioxide-based aerogel catalyst with tunable nanoporosity and photocatalytic activity. Nanotechnology 2012, 23. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-M.; Peng, R.; Dimitrijevic, N.M.; Rajh, T.; Koodali, R.T. Preparation of TiO2–SiO2 aperiodic mesoporous materials with controllable formation of tetrahedrally coordinated Ti4+ ions and their performance for photocatalytic hydrogen production. Int. J. Hydrog. Energy 2014, 39, 127–136. [Google Scholar] [CrossRef]
- Dagan, G.; Tomkiewicz, M. Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments. J. Phys. Chem. 1993, 97, 12651–12655. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Lee, K.-Y.; Phadtare, V.D.; Dhavale, R.P.; Park, H.-H. Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity. Ceram. Int. 2020, 46, 4939–4946. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Phadtare, V.D.; Yadav, H.M.; Park, H.-H. Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam. J. Mol. Liq. 2019, 277, 424–433. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Phadtare, V.D.; Han, W.; Lee, K.-Y.; Choi, H.; Kim, Y.; Yadav, H.M.; Park, H.-H. SnO2 aerogel deposited onto polymer-derived carbon foam for environmental remediation. J. Mol. Liq. 2019, 287, 110990. [Google Scholar] [CrossRef]
- Leitner, W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc. Chem. Res. 2002, 35, 746–756. [Google Scholar] [CrossRef]
- Ramsey, E.; Qiubai, S.; Zhang, Z.; Zhang, C.; Wei, G. Mini-Review: Green sustainable processes using supercritical fluid carbon dioxide. J. Environ. Sci. 2009, 21, 720–726. [Google Scholar] [CrossRef]
- Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
- Bozbağ, S.E.; Erkey, C. Supercritical deposition: Current status and perspectives for the preparation of supported metal nanostructures. J. Supercrit. Fluids 2015, 96, 298–312. [Google Scholar] [CrossRef]
- Barim, S.B.; Uzunlar, E.; Bozbag, S.E.; Erkey, C. Review-Supercritical Deposition: A Powerful Technique for Synthesis of Functional Materials for Electrochemical Energy Conversion and Storage. J. Electrochem. Soc. 2020, 167. [Google Scholar] [CrossRef]
- Watkins, J.J.; McCarthy, T.J. Polymer/Metal Nanocomposite Synthesis in Supercritical CO2. Chem. Mater. 1995, 7, 1991–1994. [Google Scholar] [CrossRef]
- Horibe, T.; Kondo, H.; Ishikawa, K.; Kano, H.; Sekine, M.; Hiramatsu, M.; Hori, M. Supercritical fluid deposition of high-density nanoparticles of photocatalytic TiO2 on carbon nanowalls. Appl. Phys. Express 2013, 6. [Google Scholar] [CrossRef]
- Liu, C.; Lin, X.; Li, Y.; Xu, P.; Li, M.; Chen, F. Enhanced photocatalytic performance of mesoporous TiO2 coated SBA-15 nanocomposites fabricated through a novel approach: Supercritical deposition aided by liquid-crystal template. Mater. Res. Bull. 2016, 75, 25–34. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Aymonier, C.; Majimel, J.; Olivier, C.; Klein, A.; Jaegermann, W.; Toupance, T. Supercritical CO2-assisted deposition of NiO on (101)-anatase-TiO2 for efficient facet engineered photocatalysts. New J. Chem. 2018, 42, 18649–18658. [Google Scholar] [CrossRef]
- Sun, L.; Han, P.; Tang, S. Preparation of Ordered Mesoporous Alumina Supported-ZnO/NiO Nanocomposite Using Supercritical Carbon Dioxide Impregnation and Its Photocatalytic Performance. ChemNanoMat 2019, 5, 723–728. [Google Scholar] [CrossRef]
- Chang, F.; Wang, G.; Xie, Y.; Zhang, M.; Zhang, J.; Yang, H.-J.; Hu, X. Synthesis of TiO2 nanoparticles on mesoporous aluminosilicate Al-SBA-15 in supercritical CO2 for photocatalytic decolorization of methylene blue. Ceram. Int. 2013, 39, 3823–3829. [Google Scholar] [CrossRef]
- Franco, P.; Martino, M.; Palma, V.; Scarpellini, A.; De Marco, I. Pt on SAS-CeO2 nanopowder as catalyst for the CO-WGS reaction. Int. J. Hydrog. Energy 2018, 43, 19965–19975. [Google Scholar] [CrossRef]
- Marin, R.P.; Kondrat, S.A.; Davies, T.E.; Morgan, D.J.; Enache, D.I.; Combes, G.B.; Taylor, S.H.; Bartley, J.K.; Hutchings, G.J. Novel cobalt zinc oxide Fischer–Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catal. Sci. Technol. 2014, 4, 1970–1978. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, L.; Zhao, J.; Li, Y.; Zhang, M. Study on MnO x-FeO y composite oxide catalysts prepared by supercritical antisolvent process for low-temperature selective catalytic reduction of NO x. J. Mater. Res. 2016, 31, 702. [Google Scholar] [CrossRef]
- Tang, Z.-R.; Edwards, J.K.; Bartley, J.K.; Taylor, S.H.; Carley, A.F.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. J. Catal. 2007, 249, 208–219. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Sacco, O.; Sannino, D. Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl. Cat. B 2017, 209, 621–630. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Štrbac, D.; Aggelopoulos, C.A.; Štrbac, G.; Dimitropoulos, M.; Novaković, M.; Ivetić, T.; Yannopoulos, S.N. Photocatalytic degradation of Naproxen and methylene blue: Comparison between ZnO, TiO2 and their mixture. Process Saf. Environ. 2018, 113, 174–183. [Google Scholar] [CrossRef]
- Sui, R.; Charpentier, P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chem. Rev. 2012, 112, 3057–3082. [Google Scholar] [CrossRef]
- Tadros, M.E.; Adkins, C.L.J.; Russick, E.M.; Youngman, M.P. Synthesis of titanium dioxide particles in supercritical CO2. J. Supercrit. Fluids 1996, 9, 172–176. [Google Scholar] [CrossRef]
- Reverchon, E.; Caputo, G.; Correra, S.; Cesti, P. Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale. J. Supercrit. Fluids 2003, 26, 253–261. [Google Scholar] [CrossRef]
- Jensen, H.; Joensen, K.D.; Iversen, S.B.; Søgaard, E.G. Low Temperature Synthesis of Metal Oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process. Ind. Eng. Chem. Res. 2006, 45, 3348–3353. [Google Scholar] [CrossRef]
- Simonsen, M.E.; Jensen, H.; Li, Z.; Søgaard, E.G. Surface properties and photocatalytic activity of nanocrystalline titania films. J. Photochem. Photobiol. A 2008, 200, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Camarillo, R.; Rizaldos, D.; Jiménez, C.; Martínez, F.; Rincón, J. Enhancing the photocatalytic reduction of CO2 with undoped and Cu-doped TiO2 nanofibers synthesized in supercritical medium. J. Supercrit. Fluids 2019, 147, 70–80. [Google Scholar] [CrossRef]
- D’Elia, D.; Beauger, C.; Hochepied, J.F.; Rigacci, A.; Berger, M.H.; Keller, N.; Keller-Spitzer, V.; Suzuki, Y.; Valmalette, J.C.; Benabdesselam, M.; et al. Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. Int. J. Hydrog. Energy 2011, 36, 14360–14373. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhu, J.; Liu, Y.M.; Cao, Y.; Li, H.X.; He, H.Y.; Dai, W.L.; Fan, K.N. Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying. J. Mol. Catal. A Chem. 2006, 255, 260–268. [Google Scholar] [CrossRef]
- Boujday, S.; Wünsch, F.; Portes, P.; Bocquet, J.-F.; Colbeau-Justin, C. Photocatalytic and electronic properties of TiO2 powders elaborated by sol–gel route and supercritical drying. Sol. Energy Mater. Sol. Cells 2004, 83, 421–433. [Google Scholar] [CrossRef]
- Lin, C.C.; Wei, T.Y.; Lee, K.T.; Lu, S.Y. Titania and Pt/titania aerogels as superior mesoporous structures for photocatalytic water splitting. J. Mater. Chem. 2011, 21, 12668–12674. [Google Scholar] [CrossRef]
- Kim, W.-I.; Suh, D.J.; Park, T.-J.; Hong, I.-K. Photocatalytic degradation of methanol on titania and titania–silica aerogels prepared by non-alkoxide sol–gel route. Top. Catal. 2007, 44, 499–505. [Google Scholar] [CrossRef]
- Mumin, M.A.; Moula, G.; Charpentier, P.A. Supercritical CO2 synthesized TiO2 nanowires covalently linked with core-shell CdS-ZnS quantum dots: Enhanced photocatalysis and stability. RSC Adv. 2015, 5, 67767–67779. [Google Scholar] [CrossRef]
- Bartkova, H.; Kluson, P.; Bartek, L.; Drobek, M.; Cajthaml, T.; Krysa, J. Photoelectrochemical and photocatalytic properties of titanium (IV) oxide nanoparticulate layers. Thin Solid Films 2007, 515, 8455–8460. [Google Scholar] [CrossRef]
- Ding, Z.; Zhu, H.Y.; Lu, G.Q.; Greenfield, P.F. Photocatalytic properties of titania pillared clays by different drying methods. J. Colloid Interface Sci. 1999, 209, 193–199. [Google Scholar] [CrossRef]
- Buaki-Sogo, M.; Serra, M.; Primo, A.; Alvaro, M.; Garcia, H. Alginate as template in the preparation of active titania photocatalysts. ChemCatChem 2013, 5, 513–518. [Google Scholar] [CrossRef]
- Puskelova, J.; Baia, L.; Vulpoi, A.; Baia, M.; Antoniadou, M.; Dracopoulos, V.; Stathatos, E.; Gabor, K.; Pap, Z.; Danciu, V.; et al. Photocatalytic hydrogen production using TiO2-Pt aerogels. Chem. Eng. J. 2014, 242, 96–101. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Daniel, C.; Navarra, W.; Venditto, V. Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels. Mat. Sci. Semicon. Proc. 2018, 80, 104–110. [Google Scholar] [CrossRef]
- Popa, M.; Diamandescu, L.; Vasiliu, F.; Teodorescu, C.M.; Cosoveanu, V.; Baia, M.; Feder, M.; Baia, L.; Danciu, V. Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels. J. Mater. Sci. 2009, 44, 358–364. [Google Scholar] [CrossRef]
- Lucky, R.A.; Charpentier, P.A. N-doped ZrO2/TiO2 bimetallic materials synthesized in supercritical CO2: Morphology and photocatalytic activity. Appl. Cat. B 2010, 96, 516–523. [Google Scholar] [CrossRef]
- Yoda, S.; Suh, D.J.; Sato, T. Adsorption and photocatalytic decomposition of benzene using silica-titania and titania aerogels: Effect of supercritical drying. J. Solgel Sci. Technol. 2001, 22, 75–81. [Google Scholar] [CrossRef]
- Cao, S.; Yeung, K.L.; Yue, P.L. Preparation of freestanding and crack-free titania-silica aerogels and their performance for gas phase, photocatalytic oxidation of VOCs. Appl. Cat. B 2006, 68, 99–108. [Google Scholar] [CrossRef]
- Cao, S.; Yeung, K.L.; Yue, P.L. An investigation of trichloroethylene photocatalytic oxidation on mesoporous titania-silica aerogel catalysts. Appl. Cat. B 2007, 76, 64–72. [Google Scholar] [CrossRef]
- Justh, N.; Mikula, G.J.; Bakos, L.P.; Nagy, B.; László, K.; Parditka, B.; Erdélyi, Z.; Takáts, V.; Mizsei, J.; Szilágyi, I.M. Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition. Carbon 2019, 147, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Sacco, O.; Vaiano, V.; Daniel, C.; Navarra, W.; Venditto, V. Highly robust and selective system for water pollutants removal: How to transform a traditional photocatalyst into a highly robust and selective system for water pollutants removal. Nanomaterials 2019, 9, 1509. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Keum, Y.; Chen, Y.-P.; Oh, H.S.; Lee, J.Y.; Park, J. Stimuli-Responsive Ti-Organic Gels and Aerogels Derived from Ti-Oxo Clusters: Hierarchical Porosity and Photocatalytic Activity. Inorg. chem. 2019, 58, 15936–15941. [Google Scholar] [CrossRef]
- Li, Y.; Ma, M.; Sun, S.; Wang, X.; Yan, W.; Ouyang, Y. Preparation and photocatalytic activity of TiO2–carbon surface composites by supercritical pretreatment and sol–gel process. Catal. Commun. 2008, 9, 1583–1587. [Google Scholar] [CrossRef]
- Zeng, M.-x.; Li, Y.-j.; Wei, C.; LI, L.-y. Photocatalytic activity and kinetics for acid yellow degradation over surface composites of TiO2-coated activated carbon under different photocatalytic conditions. Trans. Nonferrous Met. Soc. 2013, 23, 1019–1027. [Google Scholar] [CrossRef]
- You-ji, L.; Wei, C. Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2–zeolite surface composite catalysts: Effects of photocatalytic condition on degradation efficiency. Catal. Sci. Technol. 2011, 1, 802–809. [Google Scholar] [CrossRef]
- Wang, K.; Yao, B.; Morris, M.A.; Holmes, J.D. Supercritical fluid processing of thermally stable mesoporous titania thin films with enhanced photocatalytic activity. Chem. Mater. 2005, 17, 4825–4831. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, B.; Feng, J.; Tan, X.; Liu, L.; Liu, L.; Han, B.; Zheng, L.; Zhang, J.; Tai, J. Highly mesoporous Ru-MIL-125-NH2 produced by supercritical fluid for efficient photocatalytic hydrogen production. ACS Appl. Energy Mater. 2019, 2, 4964–4970. [Google Scholar] [CrossRef]
- Marković, D.; Milovanović, S.; Radovanović, Ž.; Zizovic, I.; Šaponjić, Z.; Radetić, M. Floating photocatalyst based on poly (ε-caprolactone) foam and TiO2 nanoparticles for removal of textile dyes. Fiber Polym. 2018, 19, 1219–1227. [Google Scholar] [CrossRef]
- Camarillo, R.; Toston, S.; Martinez, F.; Jimenez, C.; Rincon, J. Enhancing the photocatalytic reduction of CO2 through engineering of catalysts with high pressure technology: Pd/TiO2 photocatalysts. J. Supercrit. Fluids 2017, 123, 18–27. [Google Scholar] [CrossRef]
- Alonso, E.; Montequi, I.; Cocero, M. Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2. J. Supercrit. Fluids 2009, 49, 233–238. [Google Scholar] [CrossRef]
- Rodríguez, V.; Camarillo, R.; Martínez, F.; Jiménez, C.; Rincón, J. CO2 photocatalytic reduction with CNT/TiO2 based nanocomposites prepared by high-pressure technology. J. Supercrit. Fluids 2020, 163, 104876. [Google Scholar] [CrossRef]
- Camarillo, R.; Toston, S.; Martinez, F.; Jimenez, C.; Rincon, J. Preparation of TiO2-based catalysts with supercritical fluid technology: Characterization and photocatalytic activity in CO2 reduction. J. Chem. Technol. Biotechnol. 2017, 92, 1710–1720. [Google Scholar] [CrossRef]
- Grills, D.C.; Fujita, E. New directions for the photocatalytic reduction of CO2: Supramolecular, scCO2 or biphasic ionic liquid− scCO2 systems. J. Phys. Chem. Lett. 2010, 1, 2709–2718. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Chen, C.-Y.; Chang, T.-F.M.; Tahara, Y.; Hashimoto, T.; Kurosu, H.; Sone, M. Fabrication and photocatalytic performance of Au/ZnO layered structure on silk textile for flexible device applications. Electrochim. Acta 2017, 253, 39–46. [Google Scholar] [CrossRef]
- Ren, Y.; Li, C.; Xu, Q.; Yan, J.; Li, Y.; Yuan, P.; Xia, H.; Niu, C.; Yang, X.; Jia, Y. Two-dimensional amorphous heterostructures of Ag/a-WO3-x for high-efficiency photocatalytic performance. Appl. Cat. B 2019, 245, 648–655. [Google Scholar] [CrossRef]
- Haldorai, Y.; Shim, J.-J. Supercritical fluid mediated synthesis of highly exfoliated graphene/ZnO composite for photocatalytic hydrogen production. Mater. Lett. 2014, 133, 24–27. [Google Scholar] [CrossRef]
Metal Organic Precursor | Metal Oxide | Operating Conditions | Mean NPs Diameter | Photocatalytic Application | Results | Ref. |
---|---|---|---|---|---|---|
TTIP | TiO2 | PPC =11 MPa; TPC =40 °C; PS = 9 MPa; TS = 100-180 °C; t = 30 min | 2.7 nm | MB degradation | 40% of MB removal after 240 min | [61] |
Ti(OC(CH3)3)4 | TiO2/SBA-15 | - | 2.6–15.3 nm | MB, MO, RB, and phenol degradation | The highest degradation efficiency with a TiO2 loading of 15 wt% and a calcination temperature of 400 °C | [62] |
Ni(NO3)2 · 6H2O | NiO | PPC =5 MPa; PS = 22 MPa; TS = 200 °C; t = 30 min | 7 nm | MB or MO Degradation | 0.25 wt% NiO–TiO2 showed the highest efficiency for both MB and MO degradation | [63] |
Zn(NO3)2 ·6H2O/ Ni(NO3)2 ·6H2O | ZnO/NiO | PS = 20 MPa; TS = 50 °C; t = 4 h | 21 nm | Congo Red Degradation | About 97% of dye removal after 240 min; superior performance of catalysts prepared by supercritical deposition than those of commercial TiO2 and of composites prepared via incipient wetness impregnation | [64] |
TBOT | TiO2 | PS = 20 MPa | - | MB degradation | Complete MB discoloration after 80 min with scCO2- prepared catalyst; a superior efficiency than that of commercial TiO2 | [65] |
Metal Organic Precursor | Metal Oxide | Operating Conditions | Mean Crystallite Size | Photocatalytic Application | Band Gap | Results | Ref. |
---|---|---|---|---|---|---|---|
TTIP | TiO2 | P = 10-15 MPa; T = 50-150 °C | 13 nm | RR 180 degradation | - | 98% of dye removal after 45 min with TiO2 prepared at 15 MPa/150 °C | [42] |
TTIP | TiO2 | P = 25 MPa; T = 60 °C | 27 nm | MB and MO degradation | 3.22 eV | The highest photodegradation with TiO2 consisted of 7 wt% of rutile and 93 wt% of anatase phase (98% discoloration in 90 min) | [43] |
TTIP | TiO2 | P = 12 MPa; T = 40 °C | 13 nm | Water splitting | - | Conversion% equal to 75% in 3 h; selectivity around 85% in all the time range studied | [44] |
Zn(CH3COO)2 | ZnO | P = 15 MPa; T = 40 °C | 18 nm | CV degradation | 3.10 eV | 500 °C as optimum calcination temperature to preserve the nanoparticle morphology; complete CV decolorization in 60 min | [45] |
Eu(CH3COO)3· H2O Zn(CH3COO)2 | Eu-ZnO | P = 15 MPa; T = 40 °C | 15 nm | EB degradation | 3.22 eV | Superior catalytic performance of SAS-prepared catalysts compared to those of commercial/traditional catalysts; complete discoloration after 240 min | [46] |
Photocatalyst | Drying Conditions | Photocatalytic Application | Band Gap (eV) | SSA (m2/g) | Results | Ref. |
---|---|---|---|---|---|---|
TiO2 aerogel | - | SA degradation | - | 600 | About 98% of SA degradation in 900 min | [51] |
TiO2 aerogel | P = 8 MPa; T = 40 °C; t = 6 h | Phenol degradation | 3.03 | 464 a; 100 b | Optimum calcination temperature of 650 °C for the best photocatalytic performance (92% degradation yield); superior performance of scCO2- prepared samples than that of commercial TiO2 | [80] |
TiO2 aerogel | P = 8 MPa; T = 37 °C; t = 4 h | Methanol assisted water splitting | 3.25 | 600 a; 97 b | Higher activity of scCO2- prepared samples than that of commercial TiO2 | [79] |
TiO2 aerogel | P = 10 MPa; T = 50 °C | Phenol degradation | - | 112 b | scCO2- prepared aerogel 3 times more active than commercial TiO2 | [81] |
TiO2 aerogel | P = 8.27 MPa; T = 35 °C | Water splitting | - | 84.5 b | H2 evolution rate 9.6 times higher with scCO2- prepared aerogel compared to that of commercial TiO2 | [82] |
TiO2 nanowires | P = 41.4 MPa; T = 60 °C; t = 24 h | MB degradation | 2.5 | - | MB degradation efficiency equal to 88%; higher activity of scCO2- prepared samples than that of commercial one | [84] |
TiO2 layer | P = 14 MPa; T = 100 °C; t = 2 h | Stearic acid methyl ester decomposition | - | 220 a | Complete decomposition in about 22.5 h | [85] |
TiO2 pillared clays | P = 20 MPa; T = 50 °C; t = 3 h | Phenol degradation | - | 254 a | Total degradation in less than 125 min | [86] |
N-doped TiO2 aerogel | P = 20 MPa; T = 40 °C; t = 4 h | Phenol degradation | 2.5 | 280 a | 45% of degradation after 180 min | [89] |
Fe(III)-doped TiO2 aerogel | - | SA degradation | - | 151 b | TiO2- based aerogel with 1.8 at.% Fe(III) showed an apparent rate constant of SA degradation 6 times higher than commercial TiO2 | [90] |
TiO2-Pt aerogel | P = 9.5 MPa; T = 40 °C | Ethanol reforming | 2.91-3.14 | 600 a; 162 b | The highest H2 production rate (7.2 mmolH2 h-1 g-1) with 1%Pt and the smallest particles size | [88] |
TiO2–SiO2 aerogel | - | Water splitting | 3.42 | 715 a | H2 production in the range 0.73-1.35 mmol/gTiO2 | [50] |
TiO2–SiO2 aerogel | P = 16 MPa; T = 80-280 °C; t = 3 h | Benzene decomposition | - | 967 a | Benzene conversion up to 90% after 30 min | [92] |
TiO2–SiO2 aerogel | P = 8.6 MPa; T = 50 °C | VOCs oxidation | - | 469 a; 306 b | TiO2-SiO2 aerogel prepared by ethanol supercritical drying showed the highest removal efficiency (about 10%), also compared to commercial TiO2 | [93] |
TiO2–SiO2 aerogel | T = 50 °C | Trichloroethylene Oxidation | 469 a; 306 b | TiO2-SiO2 aerogel prepared by ethanol supercritical drying showed the highest conversion (around 30%), also compared to that of commercial TiO2 | [94] | |
TiO2 aerogel; TiO2–SiO2 aerogel | P = 11 MPa; T = 60 °C | Degradation of methanol | - | 150; 635 | 98% conversion, almost double compared to commercial TiO2 | [83] |
TiO2–SiO2 pillared clays | P = 20 MPa; T = 50 °C; t = 3 h | Phenol degradation | - | 400 a | Lower activity of TiO2–SiO2 pillared clays compared to that of TiO2 pillared clays | [86] |
TiO2–RFCA | - | MO degradation | - | 645 | More effective photocatalytic activity in the case of the TiO2–RFCA composites compared to the single materials | [95] |
TiO2–WO3-Fe3+ aerogel | P = 11 MPa; T = 42 °C; t = 8 h | MB degradation | 2.06 | 379 a; 154 b | About 90% and 70% of MB degradation after 12 h under UV or visible light, respectively | [49] |
ZnO/s-PS | P = 20 MPa; T = 40 °C; t = 4 h | Phenol degradation | - | 276 a | Phenol removal increased by increasing the pH of the solution; synergy between photocatalyst and PS-based support assured robustness, chemical stability, easy recovery after treatment, high removal efficiency and selectivity | [96] |
Au/TiO2 alginate beads | - | Water splitting | - | 485–275 a; 187–136 b | Au/TiO2 alginate beads are 8 times more active under solar light than commercial TiO2 with the same Au amount | [87] |
Au/CeO2 NPs dispersed on alginate aerogel | - | Water splitting | - | 102 | Photocatalytic activity of Au/CeO2 NPs under visible light outperform that of standard WO3 even under UV irradiation. | [31] |
Ti-organic aerogel | - | Degradation of various dyes | 3.4-3.2 | 688–350 b | Effective stimuli-response of Ti-oxo-based materials | [97] |
N-doped ZrO2/TiO2 | - | MB degradation | - | 56-94 | N-doped samples show higher activity than undoped samples and commercial TiO2; the activity enhancement is higher in TiO2-based samples than Zr-modified ones | [91] |
TiO2/RF polymer aerogel; TiO2/RF carbon aerogel | - | MO degradation | - | 232–870 | TiO2/RF carbon aerogel more active than TiO2/RF polymer aerogel in MO photodegradation | [95] |
Photocatalyst | scCO2 Use | Photocatalytic Application | SSA (m2/g) | Results | Ref. |
---|---|---|---|---|---|
TiO2-coated carbon surface | Supercritical pre-treatment before sol–gel reaction | MB degradation | 378–487 | Optimal conditions for the fastest MB degradation rate: MB concentration of 20 mg/l at pH 6, catalyst content of 2.5 g/l | [98] |
TiO2-coated carbon surface | Supercritical pre-treatment before sol–gel reaction | Degradation of acid yellow | 325–575 | The degradation rate follows a pseudo-first order kinetics with the acid yellow concentration; it is proportional to the square root of the light intensity | [99] |
TiO2-coated zeolite surface | Supercritical pre-treatment before sol–gel reaction | Degradation of Rhodamine B | 103–267 | Optimal conditions for the fastest degradation rate: Rhodamine concentration of 2 mg/l at pH 10, catalyst content of 6 g/l | [100] |
TiO2-film supported on silicon substrate | Supercritical post-treatment | Decomposition of stearic acid | - | High photocatalytic efficiency with scCO2-treated films (complete decomposition after 75 min) | [101] |
Ru-coordinated MOFs | Modification of MOFs structure | Hydrogen production | 996–1257 | scCO2-modified MOFs exhibited a higher activity than those of the pure MOF and MOF loaded with Ru particles | [102] |
TiO2-loaded PCL foams | PCL foaming | Removal of textile dyes | - | Complete discoloration of AO7 and BY28 after 300 and 180 min, respectively | [103] |
Au/ZnO layered structure on silk textile | Electroless plating and cathodic deposition of metal oxides on silk | Flexible wearable device | - | Issues related to conventional electroless plating overcome by sc-CO2: the silk was catalyzed without defects; adhesive property between silk and metalized-layer was enhanced | [109] |
Ag/WO3 nanosheets | Supercritical exfoliation of WS2 nanosheets | Oxygen evolution reactions | - | Synergistic photocatalysis effect of Ag and amorphous WO3 | [110] |
Pd-doped TiO2 | scCO2 as reaction medium for thermal hydrolysis | Reduction of CO2 to hydrocarbons | 71–146 | Pd-TiO2 exhibited CH4 and CO production rates up to 22 and 2 times higher than those of commercial TiO2 | [104] |
TiO2 powders | scCO2 as reaction medium for catalyst synthesis | Reduction of CO2 to formic acid | - | Optimal irradiation time of 5 h for the maximum yield of formic acid; the amount of formic acid increased with pH, up to almost 15 µmol/gTiO2 in a solution with phosphoric acid (almost pH 2) | [47] |
CNT/TiO2 and CNT/ Cu-dopedTiO2 | scCO2 as reaction medium for thermal hydrolysis | Reduction of CO2 to hydrocarbons | 150–216 | CNT/TiO2 composites showed CO and CH4 production rates (8.1 and 1.1 _µmol g−1 h−1, respectively) 4 and 15 times higher than those of commercial TiO2 | [106] |
TiO2 powders | scCO2 as reaction medium for thermal hydrolysis | Reduction of CO2 to hydrocarbons | 40–152 | TiO2 synthesis in supercritical medium resulted in a significant enhancement in the rate of CO2 catalytic conversion | [107] |
TiO2 powders | scCO2 as reaction medium for thermal hydrolysis | MO oxidation | 113–350 | No effect of synthesis pressure on the activity of prepared TiO2; the increase of synthesis temperature from 200 °C to 300 °C led to an increase of crystalline quality and size, resulting in a higher activity | [105] |
RGO/ZnO | Supercritical coating of RGO with ZnO, involving simultaneously “thermal decomposition of Zn(NO3)2 ·6H2O (i.e., ZnO precursor) + GO thermal reduction” | Hydrogen production | - | ZnO/RGO composite exhibited a H2 production activity 4.5 times higher (289 µmol/g) than that of pure ZnO (61.5 µmol/g) in 2 h | [111] |
TiO2 powders | scCO2 as reaction medium for octanol oxidation | Octanol oxidation | 50 | Possibility to improve yield and selectivity by modulating temperature or pressure; above the critical point, photooxidative degradation rate increased as scCO2 pressure decreased at 36°C | [48] |
Applications | PROS |
---|---|
As a solvent for the deposition of semiconductors/active species on/in the support surface |
|
As a solvent/antisolvent/co-solute in the production of particles-based powders |
|
Production of aerogels |
|
As a foaming agent |
|
As a reaction medium |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, P.; Sacco, O.; Vaiano, V.; De Marco, I. Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications. Molecules 2021, 26, 2640. https://doi.org/10.3390/molecules26092640
Franco P, Sacco O, Vaiano V, De Marco I. Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications. Molecules. 2021; 26(9):2640. https://doi.org/10.3390/molecules26092640
Chicago/Turabian StyleFranco, Paola, Olga Sacco, Vincenzo Vaiano, and Iolanda De Marco. 2021. "Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications" Molecules 26, no. 9: 2640. https://doi.org/10.3390/molecules26092640
APA StyleFranco, P., Sacco, O., Vaiano, V., & De Marco, I. (2021). Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications. Molecules, 26(9), 2640. https://doi.org/10.3390/molecules26092640