Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of DESs
2.2. Characterization of ChCl–Lactic Acid Molar Ratio 1:2-Based DES
2.2.1. FTIR Spectrum
2.2.2. Density, pH, and Viscosity
2.3. Selection of Extraction Parameters and Response Surface Methodology Optimization
2.4. HPLC-PDA/MS Analysis of Hazelnut Skin Extract
3. Materials and Methods
3.1. Chemicals
3.2. Samples
3.3. Preparation of DESs
3.4. FTIR Spectroscopy
3.5. pH, Density, and Viscosity of DESs
3.6. Ultrasound-Assisted Extraction of Phenolic Compounds with a Conventional Solvent
3.7. Ultrasound-Assisted Extraction of Phenolic Compounds with DESs
3.8. Ultrasound-Assisted Extraction of Phenolic Compounds with DESs
3.9. HPLC-PDA/ESI-MS Analysis of Phenolic Compounds
3.10. Determination of Total Phenolic Compounds Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic Composition of Hazelnut Skin. J. Agric. Food Chem. 2011, 59, 9935–9941. [Google Scholar] [CrossRef]
- Pelvan, E.; Olgun, E.Ö.; Karadağ, A.; Alasalvar, C. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 2018, 244, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.L.; Pagano, I.; Esposito, T.; Mencherini, T.; Porta, A.; Petrone, A.M.; Gazzerro, P.; Picerno, P.; Sansone, F.; Rastrelli, L.; et al. HRMS Profile of a Hazelnut Skin Proanthocyanidin-rich Fraction with Antioxidant and Anti-Candida albicans Activities. J. Agric. Food Chem. 2016, 64, 585–595. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 26 March 2021).
- Özdemir, K.S.; Yilmaz, C.; Durmaz, G.; Gökmen, V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res. Int. 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Shahidi, F.; Alasalvar, C.; Liyana-Pathirana, C.M. Antioxidant Phytochemicals in Hazelnut Kernel (Corylus avellane L.) and Hazelnut Byproducts. J. Agric. Food Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef]
- Monagas, M.; Garrido, I.; Lebrón-Aguilar, R.; Bartolome, B.; Gómez-Cordovés, C. Almond (Prunus dulcis (Mill.) D.A. Webb) Skins as a Potential Source of Bioactive Polyphenols. J. Agric. Food Chem. 2007, 55, 8498–8507. [Google Scholar] [CrossRef]
- Savic, I.M.; Nikolic, I.L.; Savic-Gajic, I.M.; Kundakovic, T.D. Modeling and optimization of bioactive compounds from chickpea seeds (Cicer arietinum L.). Sep. Sci. Technol. 2019, 54, 837–846. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresour. Technol. 2007, 98, 2963–2967. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, J.; Zhang, Y.; Xia, Q.; Bi, W.; Yang, X.; Chen, D.D.Y. Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. J. Chromatogr. A 2016, 1443, 262–266. [Google Scholar] [CrossRef]
- Longo, L.S., Jr.; Marcus, V.; Craveiro, B. Deep Eutectic Solvents as Unconventional Media for Multicomponent Reactions. J. Braz. Chem. Soc. 2018, 29, 1999–2025. [Google Scholar] [CrossRef]
- Tang, W.; An, Y.; Row, K.H. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: Opportunities and trends. TrAC Trends Anal. Chem. 2021, 136, 116187. [Google Scholar] [CrossRef]
- Hayyan, M.; Looi, C.Y.; Hayyan, A.; Wong, W.F.; Hashim, M.A. In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents. PLoS ONE 2015, 10, e0117934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halder, A.K.; Cordeiro, M.N.D.S. Probing the Environmental Toxicity of Deep Eutectic Solvents and Their Components: An In Silico Modeling Approach. ACS Sustain. Chem. Eng. 2019, 7, 10649–10660. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Meng, Z.; Zhao, J.; Duan, H.; Guan, Y.; Zhao, L. Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. J. Pharm. Biomed. Anal. 2018, 161, 246–253. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Fanali, C.; Della Posta, S.; Dugo, L.; Russo, M.; Gentili, A.; Mondello, L.; De Gara, L. Application of deep eutectic solvents for the extraction of phenolic compounds from extra-virgin olive oil. Electrophoresis 2020, 41, 1752–1759. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A.; Sahraei, R. A green ultrasonic-assisted liquid–liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 2016, 150, 577–585. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Fanali, C.; Della Posta, S.; Dugo, L.; Gentili, A.; Mondello, L.; De Gara, L. Choline-chloride and betaine-based deep eutectic solvents for green extraction of nutraceutical compounds from spent coffee ground. J. Pharm. Biomed. Anal. 2020, 189, 113421. [Google Scholar] [CrossRef]
- Bonacci, S.; Di Gioia, M.L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural Deep Eutectic Solvent as Extraction Media for the Main Phenolic Compounds from Olive Oil Processing Wastes. Antioxidants 2020, 9, 513. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, T.; Al-Wahaibi, Y.M.; Hashim, M.A. Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta 2012, 541, 70–75. [Google Scholar] [CrossRef]
- Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; Al Nashef, I.M. Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. J. Chem. Eng. Data 2010, 55, 4632–4637. [Google Scholar] [CrossRef]
- Horinaka, J.-I.; Okamoto, A.; Takigawa, T. Rheological properties of concentrated solutions of gelatin in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate. Int. J. Biol. Macromol. 2016, 91, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.S.; Onaizi, S.A.; Hussein, I.A.; Saad, M.A.; Al-Marri, M.J.; Benamor, A. Intercalation of ionic liquids into bentonite: Swelling and rheological behaviors. Colloids Surf. A Physicochem. Eng. Asp. 2016, 507, 141–151. [Google Scholar] [CrossRef]
- Al-Sadat, W.; Nasser, M.S.; Chang, F.; Nasr-El-Din, H.; Hussein, I.A. Laboratory evaluation of the effects of additives and pH on the thermorheological behavior of a viscoelastic zwitterionic surfactant used in acid stimulation. J. Pet. Sci. Eng. 2014, 122, 458–467. [Google Scholar] [CrossRef]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Achkar, T.E.; Fourmentin, S.; Greige-Gerges, H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Lanjekar, K.J.; Rathod, V.K. Green extraction of Glycyrrhizic acid from Glycyrrhiza glabra using choline chloride based natural deep eutectic solvents (NADESs). Process Biochem. 2021, 102, 22–32. [Google Scholar] [CrossRef]
- Alcalde, R.; Gutiérrez, A.; Atilhan, M.; Aparicio, S. An experimental and theoretical investigation of the physicochemical properties on choline chloride–Lactic acid based natural deep eutectic solvent (NADES). J. Mol. Liq. 2019, 290, 110916. [Google Scholar] [CrossRef]
- Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Jakopic, J.; Petkovsek, M.M.; Likozar, A.; Solar, A.; Stampar, F.; Veberic, R. HPLC–MS identification of phenols in hazelnut (Corylus avellana L.) kernels. Food Chem. 2011, 124, 1100–1106. [Google Scholar] [CrossRef]
- Slatnar, A.; Petkovsek, M.M.; Stampar, F.; Veberic, R.; Solar, A. HPLC-MSn identification and quantification of phenolic compounds in hazelnut kernels, oil and bagasse pellets. Food Res. Int. 2014, 64, 783–789. [Google Scholar] [CrossRef]
- Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018, 244, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Skulcova, A.; Russ, A.; Jablonsky, M.; Sima, J. The pH Behavior of Seventeen Deep Eutectic Solvents. BioResources 2018, 13, 5042–5051. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin−Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
Abbreviation | HBA | HBD | Molar Ratio |
---|---|---|---|
DES-1 | ChCl | Urea | 1:2 |
NADES-2 | ChCl | Lactic acid | 1:2 |
NADES-3 | ChCl | Glucose | 2:1 |
NADES-4 | ChCl | Xylitol | 1:2 |
NADES-5 | ChCl | Glycerol | 1:2 |
DES-6 | ChCl | 1,6-Hexanediol | 1:7 |
DES-7 | ChCl | Triethylene glycol | 1:2 |
DES-8 | ChCl | Ethylene glycol | 1:2 |
DES-9 | ChCl | Propylene glycol | 1:2 |
NADES-10 | ChCl | Malic acid | 1:2 |
NADES-11 | Betaine | Glycerol | 1:2 |
DES-12 | Betaine | Ethylene glycol | 1:2 |
DES-13 | Betaine | Triethylene glycol | 1:2 |
NADES-14 | Betaine | Lactic acid | 1:2 |
NADES-15 | Betaine | Malic acid | 1:2 |
Standard Order a | Run Order b | T °C ± 2 | Time (min) | %H2O (v/v) | g skin/5 mL |
---|---|---|---|---|---|
1 | 9 | 50 | 30 | 15 | 0.2 |
2 | 23 | 50 | 30 | 15 | 0.5 |
3 | 19 | 50 | 30 | 15 | 0.8 |
4 | 3 | 50 | 30 | 15 | 1 |
5 | 26 | 50 | 30 | 15 | 1.5 |
6 | 7 | 50 | 30 | 35 | 0.2 |
7 | 13 | 50 | 30 | 35 | 0.5 |
8 | 17 | 50 | 30 | 35 | 0.8 |
9 | 5 | 50 | 30 | 35 | 1 |
10 | 29 | 50 | 30 | 35 | 1.5 |
11 | 14 | 70 | 30 | 15 | 0.2 |
12 | 8 | 70 | 30 | 15 | 0.5 |
13 | 15 | 70 | 30 | 15 | 0.8 |
14 | 22 | 70 | 30 | 15 | 1 |
15 | 28 | 70 | 30 | 15 | 1.5 |
16 | 25 | 70 | 30 | 35 | 0.2 |
17 | 10 | 70 | 30 | 35 | 0.5 |
18 | 1 | 70 | 30 | 35 | 0.8 |
19 | 20 | 70 | 30 | 35 | 1 |
35 | 12 | 70 | 30 | 35 | 1.5 |
21 | 11 | 80 | 30 | 15 | 0.2 |
22 | 24 | 80 | 30 | 15 | 0.5 |
23 | 18 | 80 | 30 | 15 | 0.8 |
24 | 6 | 80 | 30 | 15 | 1 |
25 | 16 | 80 | 30 | 15 | 1.5 |
26 | 27 | 80 | 30 | 35 | 0.2 |
27 | 4 | 80 | 30 | 35 | 0.5 |
28 | 21 | 80 | 30 | 35 | 0.8 |
29 | 30 | 80 | 30 | 35 | 1 |
30 | 2 | 80 | 30 | 35 | 1.5 |
Quadratic | Crossproduct | Linear | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coefficient | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 |
0.6394 | 0 | 2.8390 | 0.1928 | −0.9318 | −0.4731 | 0.7166 | 1.0958 | −3.3169 | 6.7465 |
λ 280 nm | ||
Number | Compound | [M − H]− (m/z) |
1 | Gallic acid | 169 |
2 | Protocatechuic acid | 153 |
3 | Procyanidin trimer C2 | 865 |
4 | Prodelphinidin beta-type dimer | 593 |
5 | Prodelphinidin beta-type dimer | 593 |
6 | Prodelphinidin beta-type dimer | 593 |
7 | Procyanidin beta 1 dimer | 577 |
8 | (+) Catechin | 289 |
9 | Procyanidin beta-type trimer | 865 |
10 | Procyanidin beta-type trimer | 865 |
11 | (−) Epicatechin | 289 |
12 | Procyanidin beta-type dimer gallate | 729 |
13 | Epicatechin 3-O-gallate | 441 |
λ 360 nm | ||
Number | Compound | [M − H]− (m/z) |
1 | Myricetin rhamnoside | 463 |
2 | Quercetin-3-O-rhamnoside | 447 |
3 | Ploretin-2-O-glucoside | 435 |
4 | Kampferol rhamnoside | 431 |
5 | Quercetin | 301 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanali, C.; Gallo, V.; Della Posta, S.; Dugo, L.; Mazzeo, L.; Cocchi, M.; Piemonte, V.; De Gara, L. Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin. Molecules 2021, 26, 2652. https://doi.org/10.3390/molecules26092652
Fanali C, Gallo V, Della Posta S, Dugo L, Mazzeo L, Cocchi M, Piemonte V, De Gara L. Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin. Molecules. 2021; 26(9):2652. https://doi.org/10.3390/molecules26092652
Chicago/Turabian StyleFanali, Chiara, Valeria Gallo, Susanna Della Posta, Laura Dugo, Leone Mazzeo, Marco Cocchi, Vincenzo Piemonte, and Laura De Gara. 2021. "Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin" Molecules 26, no. 9: 2652. https://doi.org/10.3390/molecules26092652
APA StyleFanali, C., Gallo, V., Della Posta, S., Dugo, L., Mazzeo, L., Cocchi, M., Piemonte, V., & De Gara, L. (2021). Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin. Molecules, 26(9), 2652. https://doi.org/10.3390/molecules26092652