Liquid Crystals Based on the N-Phenylpyridinium Cation—Mesomorphism and the Effect of the Anion
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Mesomorphism of the Octyl Sulfate Salts (3-n)
2.3. Mesomorphism of the Dodecyl Sulfate Salts (4-n)
2.4. Mesomorphism of the Triflimide Salts (5-n)
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Heintz, W. Über die Fette. Prakt. Chem. 1855, 66, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Vorländer, D. The Behaviour of Salts in Organic Acids During Melting. Ber. Dtsch. Chem. Ges. 1910, 43, 3120–3135. [Google Scholar] [CrossRef] [Green Version]
- Skoulios, A.; Luzzati, V. Structure of Anhydrous Sodium Soaps at High Temperature. Nature 1959, 183, 1310–1312. [Google Scholar] [CrossRef]
- Landi, E.; Vacatello, M. Metal-dependent Thermal Behavior in (N-CNH2N+1NH3)2MCl4. Thermochim. Acta 1975, 13, 441–447. [Google Scholar] [CrossRef]
- Bowlas, C.J.; Bruce, D.W.; Seddon, K.R. Liquid-crystalline Ionic Liquids. Chem. Commun. 1996, 1625–1626. [Google Scholar] [CrossRef]
- Gainar, A.; Tzeng, M.-C.; Heinrich, B.; Donnio, B.; Bruce, D.W. Incompatibility-driven Self-organization in Polycatenar Liquid Crystals bearing both Hydrocarbon and Fluorocarbon Chains. J. Phys. Chem. B 2017, 121, 8817–8828. [Google Scholar] [CrossRef] [Green Version]
- Yoshio, M.; Mukai, T.; Ohno, H.; Kato, T. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc. 2004, 126, 994–995. [Google Scholar] [CrossRef]
- Wang, R.-T.; Lee, G.-H.; Lai, C.K. Anion-induced Ionic Liquid Crystals of Diphenylviologens. J. Mater. Chem. C 2018, 6, 9430–9444. [Google Scholar] [CrossRef]
- Tanabe, K.; Yasuda, T.; Yoshio, M.; Kato, T. Viologen-based Redox-active Ionic Liquid Crystals Forming Columnar Phases. Org. Lett. 2007, 9, 4271–4274. [Google Scholar] [CrossRef]
- Kijima, M.; Setoh, K.; Shirakawa, H. Synthesis of a Novel Ionic Liquid Crystalline Polythiophene Having Viologen Side Chain. Chem. Lett. 2000, 936–937. [Google Scholar] [CrossRef]
- Kijima, M.; Setoh, K.; Shirakawa, H. Synthesis of Novel Ionic Liquid Crystalline Pyrrole Derivatives having a Viologen Moiety. Mol. Cryst. Liq. Cryst. 2001, 364, 911–918. [Google Scholar] [CrossRef]
- Bhowmik, P.K.; Han, H.; Cebe, J.J.; Burchett, R.A.; Acharya, B.; Kumar, S. Ambient temperature thermotropic liquid crystalline viologen bis(triflimide) salts. Liq. Cryst. 2003, 30, 1433–1440. [Google Scholar] [CrossRef]
- Bhowmik, P.; Han, H.; Nedeltchev, I.; Cebe, J. Room-temperature thermotropic ionic liquid crystals: Viologenbis(triflimide) salts. Mol. Cryst. Liq. Cryst. 2004, 419, 27–46. [Google Scholar] [CrossRef]
- Pibiri, I.; Beneduci, A.; Carraro, M.; Causin, V.; Casella, G.; Corrente, G.A.; Chidichimo, G.; Pace, A.; Riccobono, G.; Sailelli, G. Mesomorphic and electrooptical properties of viologens based on non-symmetric alkyl/polyfluoroalkyl functionalization and on an oxadiazolyl-extended bent core. J. Mater. Chem. C 2019, 7, 7974–7983. [Google Scholar] [CrossRef]
- Herod, J.D.; Bates, M.A.; Whitwood, A.C.; Bruce, D.W. Ionic N-Phenylpyridinium Tetracatenar Mesogens: Competing Driving Forces in Mesophase Formation and Unprecedented Difference in Phase Stabilisation within an Homologous Series. Soft Matter 2019, 15, 4432–4436. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-T.; Lee, G.-H.; Lai, C.K. Effect of counter ions on the mesogenic ionic N-phenylpyridiniums. CrystEngComm 2018, 20, 2593–2607. [Google Scholar] [CrossRef]
- Wang, R.-T.; Tsai, S.-J.J.; Lee, G.-H.; Lai, C.K. Aggregation-induced emissions in columnar wedge-shaped pyridinium-based ionic liquid crystals. Dyes Pigments 2020, 173, 107913. [Google Scholar] [CrossRef]
- Riccobono, A.; Parker, R.R.; Whitwood, A.C.; Slattery, J.M.; Bruce, D.W.; Pibiri, I.; Pace, A. Triazolium Ions as Flexible Scaffolds for the Construction of Fluorinated, Self-organised Ionic Liquid Phases. Chem. Commun. 2018, 54, 9965–9968. [Google Scholar] [CrossRef] [Green Version]
- Riccobono, A.; Lazzara, G.; Pibiri, I.; Pace, A.; Slattery, J.M.; Bruce, D.W. Synthesis and Mesomorphism of Related Series of Triphilic Ionic Liquid Crystals based on a 1,2,4-Triazolium Cation. J. Mol. Liq. 2021, 321, 114758. [Google Scholar] [CrossRef]
- Guillon, D.; Heinrich, B.; Ribeiro, A.; Cruz, C.; Nguyen, H.T. Thermotropic Lamellar-to-Columnar Phase Transition Exhibited by a Biforked Compound. Mol. Cryst. Liq. Cryst. 1998, 317, 51–64. [Google Scholar] [CrossRef]
- Fazio, D.; Mongin, C.; Donnio, B.; Galerne, Y.; Guillon, D.; Bruce, D.W. Bending and Shaping: Cubics, Calamitics and Columnars. J. Mater. Chem. 2001, 11, 2852–2863. [Google Scholar] [CrossRef]
- Bruce, D.W.; Donnio, B.; Hudson, S.A.; Levelut, A.-M.; Megtert, S.; Petermann, D.; Veber, M. X-ray Diffraction from Mesophases of Some Stilbazole Complexes of Silver(I); Monodomain Determination of a Thermotropic Cubic Phase. J. Phys. II France 1995, 5, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.L.; Horton, P.N.; Hursthouse, M.B.; Bruce, D.W. Liquid-Crystalline Complexes of 4-Alkoxystilbazoles with Silver 1, 12-Dodecylene Disulphate. Liq. Cryst. 2004, 31, 1445–1456. [Google Scholar] [CrossRef]
- Adams, H.; Bailey, N.A.; Bruce, D.W.; Davis, S.C.; Dunmur, D.A.; Hudson, S.A.; Thorpe, S.J. Mesomorphic Stilbazole Complexes of Silver Octylsulphate. Molecular Structure of Bis[4 -(4-methoxystyryl)pyridinato]silver(I) Octyl Sulphate Hemihydrate. J. Mater. Chem. 1992, 2, 395–400. [Google Scholar] [CrossRef]
- Donnio, B.; Bruce, D.W. Liquid-crystalline, Polycatenar Complexes of Silver(I): Dependence of the Mesomorphism on the Ligand and the Anion. New J. Chem. 1999, 23, 275–286. [Google Scholar] [CrossRef]
- Smirnova, A.I.; Zharnikova, N.V.; Donnio, B.; Bruce, D.W. The Influence of Lateral, Apolar Substituents on the Mesomorphic Behaviour of Tetracatenar Liquid Crystals. Russ. J. Gen. Chem. 2010, 80, 1331–1340. [Google Scholar] [CrossRef]
- Smirnova, A.I.; Heinrich, B.; Donnio, B.; Bruce, D.W. The Influence of Lateral Fluorination and Cyanation on the Mesomorphism of Polycatenar Mesogens and the Nature of the SmC Phase Therein. RSC Adv. 2015, 5, 75149–75159. [Google Scholar] [CrossRef]
- Huck, D.M.; Nguyen, H.L.; Coles, S.J.; Hursthouse, M.B.; Guillon, D.; Donnio, B.; Bruce, D.W. Mesomorphic Silver(I) Complexes of Polycatenar 2′- and 3′-Stilbazoles. Crystal and Molecular Structure of 3,4-Dimethoxy-3’-stilbazole and of Two Silver Triflate Complexes. Polyhedron 2006, 25, 307–324. [Google Scholar] [CrossRef]
n | dobs/Å | hk | Parameter/Å |
---|---|---|---|
8 | 23.8 | 20 | a = 47.6 |
11.8 | 40 | b = 10.9 | |
10.6 | 11 | ||
8.8 | 60 | ||
5.3 | halo | ||
10 | 27.0 | 20 | a = 54.0 |
13.5 | 40 | b = 10.9 | |
10.7 | 11 | ||
9.0 | 60 | ||
5.3 | halo | ||
12 | 29.9 | 20 | a = 59.8 |
15.0 | 40 | b = 10.7 | |
10.5 | 11 | ||
10.0 | 60 | ||
5.3 | halo | ||
14 | 32.8 | 20 | a = 65.6 |
16.4 | 40 | b = 10.7 | |
10.6 | 11 | ||
5.3 | halo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herod, J.D.; Bruce, D.W. Liquid Crystals Based on the N-Phenylpyridinium Cation—Mesomorphism and the Effect of the Anion. Molecules 2021, 26, 2653. https://doi.org/10.3390/molecules26092653
Herod JD, Bruce DW. Liquid Crystals Based on the N-Phenylpyridinium Cation—Mesomorphism and the Effect of the Anion. Molecules. 2021; 26(9):2653. https://doi.org/10.3390/molecules26092653
Chicago/Turabian StyleHerod, Jordan D., and Duncan W. Bruce. 2021. "Liquid Crystals Based on the N-Phenylpyridinium Cation—Mesomorphism and the Effect of the Anion" Molecules 26, no. 9: 2653. https://doi.org/10.3390/molecules26092653
APA StyleHerod, J. D., & Bruce, D. W. (2021). Liquid Crystals Based on the N-Phenylpyridinium Cation—Mesomorphism and the Effect of the Anion. Molecules, 26(9), 2653. https://doi.org/10.3390/molecules26092653