Differential Response of Pentanal and Hexanal Exhalation to Supplemental Oxygen and Mechanical Ventilation in Rats
Abstract
:1. Introduction
2. Results
2.1. Experimental Conditions
2.2. Breath Analysis
2.3. Systemic Inflammation
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Anesthesia
4.3. Ventilation
4.4. Breath and Blood Samples
4.5. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Winter, P.M.; Smith, G. The toxicity of oxygen. Anesthesiology 1972, 37, 210–241. [Google Scholar] [CrossRef]
- Weenink, R.P.; de Jonge, S.W.; van Hulst, R.A.; Wingelaar, T.T.; van Ooij, P.-J.A.M.; Immink, R.V.; Preckel, B.; Hollmann, M.W. Perioperative Hyperoxyphobia: Justified or Not? Benefits and Harms of Hyperoxia during Surgery. J. Clin. Med. 2020, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Kallet, R.H.; Matthay, M.A. Hyperoxic acute lung injury. Respir. Care 2013, 58, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, Z.A.M.; Pratt, D.A. Lipid Peroxidation: Kinetics, Mechanisms, and Products. J. Org. Chem. 2017, 82, 2817–2825. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, K.; Sano, M.; Fujita, M.; Tomita, I. Production of Aliphatic Aldehydes on Peroxidation of Various Types of Lipids. Chem. Pharm. Bull. 1991, 39, 1788–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, P.; Loeseken, C.; Schubert, J.K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010, 126, 2663–2670. [Google Scholar] [CrossRef]
- Ulanowska, A.; Kowalkowski, T.; Trawińska, E.; Buszewski, B. The application of statistical methods using VOCs to identify patients with lung cancer. J. Breath Res. 2011, 5, 046008. [Google Scholar] [CrossRef]
- Müller-Wirtz, L.M.; Kiefer, D.; Maurer, F.; Floss, M.A.; Doneit, J.; Hüppe, T.; Shopova, T.; Wolf, B.; Sessler, D.I.; Volk, T.; et al. Volutrauma Increases Exhaled Pentanal in Rats: A Potential Breath Biomarker for Ventilator-Induced Lung Injury. Anesth. Analg. 2021. [Google Scholar] [CrossRef]
- Freeman, B.A.; Crapo, J.D. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 1981, 256, 10986–10992. [Google Scholar] [CrossRef]
- Freeman, B.A.; Topolosky, M.K.; Crapo, J.D. Increases Oxygen Radical Rat Lung Homogenates. Arch. Biochem. Biophys. 1982, 216, 477–484. [Google Scholar] [CrossRef]
- Loiseaux-Meunier, M.N.; Bedu, M.; Gentou, C.; Pepin, D.; Coudert, J.; Caillaud, D. Oxygen toxicity: Simultaneous measure of pentane and malondialdehyde in humans exposed to hyperoxia. Biomed. Pharmacother. 2001, 55, 163–169. [Google Scholar] [CrossRef]
- Morita, S.; Snider, M.T.; Inada, Y. Increased N-pentane Excretion in Humans: A Consequence of Pulmonary Oxygen Exposure. Anesthesiology 1986, 64, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.P.; Katz, M.A. Source of ethane in expirate of rats ventilated with 100% oxygen. J. Appl. Physiol. 1989, 66, 1268–1272. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.P.; Eskelson, C.; Katz, M.A. Ethane Production Rate in Rats Exposed to High Oxygen Concentration. Am. Rev. Respir. Dis. 1988, 137, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Serpa Neto, A.; Cardoso, S.O.; Manetta, J.A.; Pereira, V.G.M.; Espósito, D.C.; Pasqualucci, M.D.O.P.; Damasceno, M.C.T.; Schultz, M.J. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: A meta-analysis. JAMA 2012, 308, 1651–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmerhorst, H.J.F.; Schouten, L.R.A.; Wagenaar, G.T.M.; Juffermans, N.P.; Roelofs, J.J.T.H.; Schultz, M.J.; de Jonge, E.; van Westerloo, D.J. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med. Exp. 2017, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Güldner, A.; Kiss, T.; Serpa Neto, A.; Hemmes, S.N.T.; Canet, J.; Spieth, P.M.; Rocco, P.R.M.; Schultz, M.J.; Pelosi, P.; Gama de Abreu, M. Intraoperative Protective Mechanical Ventilation for Prevention of Postoperative Pulmonary Complications. Anesthesiology 2015, 123, 692–713. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.T.; Yang, C.Y.; Miao, L.J.; Zhang, S.F.; Han, X.P.; Ren, S.E.; Sun, X.Q.; Cao, Y.N. Effects of mechanical ventilation with different tidal volume on oxidative stress and antioxidant in lung. J. Anesth. 2015, 29, 346–351. [Google Scholar] [CrossRef]
- Setzer, F.; Oschatz, K.; Hueter, L.; Schmidt, B.; Schwarzkopf, K.; Schreiber, T. Susceptibility to ventilator induced lung injury is increased in senescent rats. Crit. Care 2013, 17, R99. [Google Scholar] [CrossRef] [Green Version]
- Vlahakis, N.E.; Hubmayr, R.D. Cellular stress failure in ventilator-injured lungs. Am. J. Respir. Crit. Care Med. 2005, 171, 1328–1342. [Google Scholar] [CrossRef] [Green Version]
- Vlahakis, N.E.; Schroeder, M.A.; Pagano, R.E.; Hubmayr, R.D. Deformation-induced lipid trafficking in alveolar epithelial cells. Am. J. Physiol. Cell Mol. Physiol. 2001, 280, L938–L946. [Google Scholar] [CrossRef]
- Shestivska, V.; Olšinová, M.; Sovová, K.; Kubišta, J.; Smith, D.; Cebecauer, M.; Španěl, P. Evaluation of lipid peroxidation by the analysis of volatile aldehydes in the headspace of synthetic membranes using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Müller-Wirtz, L.M.; Kiefer, D.; Ruffing, S.; Brausch, T.; Hüppe, T.; Sessler, D.I.; Volk, T.V.; Fink, T.; Kreuer, S.; Maurer, F. Quantification of volatile aldehydes from in vitro lipid peroxidation and in breath of ventilated patients. Molecules 2021. (under review). [Google Scholar]
- National Center for Biotechnology Information. PubChem Database. Pentanal, CID=8063. Available online: https://pubchem.ncbi.nlm.nih.gov/compound (accessed on 20 January 2020).
- National Center for Biotechnology Information. PubChem Database. Hexanal, CID=6184. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hexanal (accessed on 20 January 2020).
- Kumar, S.; Huang, J.; Abbassi-Ghadi, N.; Mackenzie, H.A.; Veselkov, K.A.; Hoare, J.M.; Lovat, L.B.; Španěl, P.; Smith, D.; Hanna, G.B. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. Ann. Surg. 2015, 262, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C.S.; Tietje, O.; Wong, C. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res. Treat. 2006, 99, 19–21. [Google Scholar] [CrossRef]
- Weigand, M.A.; Snyder-Ramos, S.A.; Möllers, A.G.; Bauer, J.; Hansen, D.; Kochen, W.; Martin, E.; Motsch, J. Inhaled nitric oxide does not enhance lipid peroxidation in patients with acute respiratory distress syndrome. Crit. Care Med. 2000, 28, 3429–3435. [Google Scholar] [CrossRef]
- Johnston, C.J.; Wright, T.W.; Reed, C.K.; Finkelstein, J.N. Comparison of adult and newborn pulmonary cytokine mRNA expression after hyperoxia. Exp. Lung Res. 1997, 23, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Shea, L.M.; Beehler, C.; Schwartz, M.; Shenkar, R.; Tuder, R.; Abraham, E. Hyperoxia activates NF-kappaB and increases TNF-alpha and IFN-gamma gene expression in mouse pulmonary lymphocytes. J. Immunol. 1996, 157, 3902–3908. [Google Scholar]
- Bhandari, V.; Elias, J.A. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic. Biol. Med. 2006, 41, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Kotani, N.; Hashimoto, H.; Sessler, D.I.; Muraoka, M.; Hashiba, E.; Kubota, T.; Matsuki, A. Supplemental intraoperative oxygen augments antimicrobial and proinflammatory responses of alveolar macrophages. Anesthesiology 2000, 93, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, O.; Pollesello, P.; Saris, N.-E.L. Inhibition of lipid peroxidation in isolated rat liver mitochondria by the general anaesthetic propofol. Biochem. Pharmacol. 1992, 44, 391–393. [Google Scholar] [CrossRef]
- Kahraman, S.; Kilinç, K.; Dal, D.; Erdem, K. Propofol attenuates formation of lipid peroxides in tourniquet-induced ischaemia-reperfusion injury. Br. J. Anaesth. 1997, 78, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.G.; Myers, D.S.; Davies, M.J.; Webster, N.R.; Jones, J.G. The antioxidant potential of propofol (2,6-diisopropylphenol). Br. J. Anaesth. 1992, 68, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Müller-Wirtz, L.M.; Maurer, F.; Brausch, T.; Kiefer, D.; Floss, M.; Doneit, J.; Volk, T.; Sessler, D.I.; Fink, T.; Lehr, T.; et al. Exhaled Propofol Concentrations Correlate with Plasma and Brain Tissue Concentrations in Rats. Anesth. Analg. 2021, 132, 110–118. [Google Scholar] [CrossRef] [PubMed]
Pentanal | |||
Parameter | Regression Coefficient | 95% Confidence Interval | p |
FiO2 = 93% | 0.03 | −1.4–1.4 | 0.967 |
FiO2 = 60% | 0.67 | −1.1–2.4 | 0.454 |
FiO2 = 30% | 0 | - | - |
Ventilation time [h] | 0.4 | 0.3–0.5 | <0.001 |
Hexanal | |||
Parameter | Regression Coefficient | 95% Confidence Interval | p |
FiO2 = 93% | 0.09 | 0.002–0.172 | 0.046 |
FiO2 = 60% | 0.03 | −0.06–0.116 | 0.506 |
FiO2 = 30% | 0 | - | - |
Ventilation time [h] | −0.01 | −0.016–(−0.007) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Wirtz, L.M.; Kiefer, D.; Knauf, J.; Floss, M.A.; Doneit, J.; Wolf, B.; Maurer, F.; Sessler, D.I.; Volk, T.; Kreuer, S.; et al. Differential Response of Pentanal and Hexanal Exhalation to Supplemental Oxygen and Mechanical Ventilation in Rats. Molecules 2021, 26, 2752. https://doi.org/10.3390/molecules26092752
Müller-Wirtz LM, Kiefer D, Knauf J, Floss MA, Doneit J, Wolf B, Maurer F, Sessler DI, Volk T, Kreuer S, et al. Differential Response of Pentanal and Hexanal Exhalation to Supplemental Oxygen and Mechanical Ventilation in Rats. Molecules. 2021; 26(9):2752. https://doi.org/10.3390/molecules26092752
Chicago/Turabian StyleMüller-Wirtz, Lukas M., Daniel Kiefer, Joschua Knauf, Maximilian A. Floss, Jonas Doneit, Beate Wolf, Felix Maurer, Daniel I. Sessler, Thomas Volk, Sascha Kreuer, and et al. 2021. "Differential Response of Pentanal and Hexanal Exhalation to Supplemental Oxygen and Mechanical Ventilation in Rats" Molecules 26, no. 9: 2752. https://doi.org/10.3390/molecules26092752
APA StyleMüller-Wirtz, L. M., Kiefer, D., Knauf, J., Floss, M. A., Doneit, J., Wolf, B., Maurer, F., Sessler, D. I., Volk, T., Kreuer, S., & Fink, T. (2021). Differential Response of Pentanal and Hexanal Exhalation to Supplemental Oxygen and Mechanical Ventilation in Rats. Molecules, 26(9), 2752. https://doi.org/10.3390/molecules26092752