Pharmacological Potential and Chemical Composition of Crocus sativus Leaf Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative and Quantitative Analysis of the Identified Compounds
2.2. HPLC Method Validation
2.3. Cytotoxic Activity of the Extracts
2.4. Molecular Docking Studies
2.5. Cytotoxic Activity of Secondary Metabolites from C. sativus Leaf Extracts
2.6. Antioxidant Activity
2.7. Bioactivity Screening and Anti-Neuraminidase Activity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Crude Extracts Preparation
3.3. Sample Preparation for HPLC Analysis
3.4. HPLC Conditions
3.5. HPLC–PDA, and UPLC–MS Conditions, HPLC Post-Column Assay
3.6. In Vitro Cytotoxic Activity
3.7. Antiallergic Activity in RBL-2H3 Cells
3.8. Anti-Inflammatory Activity in Human Neutrophils
3.9. Lipid Droplet Assay
3.10. NRF2 Activity
3.11. Protective Effect of the Extracts against Influenza Virus and Enterovirus
3.12. Coronavirus 229E Assay
3.13. Neuraminidase Activity Assay
3.14. Molecular Docking
3.14.1. Ligand Preparation
3.14.2. Enzymes Preparation
3.15. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagbo, I.J.; Otang-Mbeng, W. Plants used for the traditional management of cancer in the eastern cape province of south africa: A review of ethnobotanical surveys, ethnopharmacological studies and active phytochemicals. Molecules 2021, 26, 4639. [Google Scholar] [CrossRef]
- Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab. 2008, 9, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef]
- Ratsch, C.; Hofmann, A. The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications; Park Street Press: Boston, MA, USA, 2005; p. 944. [Google Scholar]
- Basker, D.; Negbi, M. Uses of saffron. Econ. Bot. 1983, 37, 228–236. [Google Scholar] [CrossRef]
- Мykhailenko, O.; Desenko, V.; Ivanauskas, L.; Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according with Good Agricultural and Collection Practices to assure quality and traceability. Ind. Crops Prod. 2020, 151, 112376–112387. [Google Scholar] [CrossRef]
- Ashrafi, V.; Mirshekari, B.; Dashti, S.; Khalilvand, E.; Farzaneh, S. Locating Ornamental and medicinal saffron cultivation based on Ahp analysis in Gis environment in Ardabil province. J. Ornam. Plants 2018, 8, 155–169. [Google Scholar]
- European Department for the Quality of Medicines. European Pharmacopoeia, 9.0 ed.; European Department for the quality of Medicines: Strasbourg, France, 2014; Volume 1, p. 1694. [Google Scholar]
- Gezici, S. Comparative anticancer activity analysis of saffron extracts and a principle component, crocetin for prevention and treatment of human malignancies. J. Food Sci. Technol. 2019, 56, 5435–5443. [Google Scholar] [CrossRef]
- Milajerdi, A.; Djafarian, K.; Hosseini, B. The toxicity of saffron (Crocus sativus L.) and its constituents against normal and cancer cells. J. Nutr. Intermed. Metab. 2016, 3, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Mykhailenko, O.; Lesyk, R.; Finiuk, N.; Stoika, R.; Yushchenko, T.; Ocheretniuk, A.; Vaschuk, V.; Mishchenko, V.; Georgiyants, V. In vitro anticancer activity screening of Iridaceae plants. J. Appl. Pharm. Sci. 2020, 10, 59–63. [Google Scholar]
- Maccarone, R.; Di Marco, S.; Bisti, S. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Abedimanesh, N.; Bathaie, S.Z.; Abedimanesh, S.; Motlagh, B.; Separham, A.; Ostadrahimi, A. Saffron and crocin improved appetite, dietary intakes and body composition in patients with coronary artery disease. J. Cardiovasc. Thorac. Res. 2017, 9, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Betti, G.; Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien. Med. Wochenschr. 2007, 157, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Vioque, R.; Santana-Méridas, O.; Polissiou, M.; Vioque, J.; Astraka, K.; Alaiz, M.; Herraiz-Peñalver, D.; Tarantilis, P.A.; Girón-Calle, J. Polyphenol composition and in vitro antiproliferative effect of corm, tepal and leaf from Crocus sativus L. on human colon adenocarcinoma cells (Caco-2). J. Funct. Foods 2016, 24, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Lahmass, I.; Lamkami, T.; Delporte, C.; Sikdar, S.; Van Antwerpen, P.; Saalaoui, E.; Megalizzi, V. The waste of saffron crop, a cheap source of bioactive compounds. J. Funct. Foods 2017, 35, 341–351. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. Proc. Phytochem. Soc. Eur. 2012, 11, 447–466. [Google Scholar] [CrossRef]
- Mir, M.A.; Ahmad Ganai, S.; Mansoor, S.; Jan, S.; Mani, P.; Masoodi, K.Z.; Amin, H.; Rehman, M.U.; Ahmad, P. Isolation, purification and characterization of naturally derived Crocetin beta-D-glucosyl ester from Crocus sativus L. against breast cancer and its binding chemistry with ERalpha and HDAC2. Saudi J. Biol. Sci. 2020, 27, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Jadouali, S.; Atifi, H.; Bouzoubaa, Z.; Majourhat, K.; Gharby, S.; Achemchem, F.; Elmoslih, A.; Laknifli, A.; Mamouni, R. Chemical characterization, antioxidant and antibacterial activity of Moroccan Crocus sativus L. petals and leaves. J. Mater. Environ. Sci. 2018, 9, 113–118. [Google Scholar] [CrossRef]
- Sánchez-Vioque, R.; Rodríguez-Conde, M.; Reina-Urena, J.; Escolano-Tercero, M.; Herraiz-Peñalver, D.; Santana-Méridas, O. In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Ind. Crops Prod. 2012, 39, 149–153. [Google Scholar] [CrossRef]
- Khan, A.; Muhamad, N.A.; Ismail, H.; Nasir, A.; Khalil, A.A.K.; Anwar, Y.; Khan, Z.; Ali, A.; Taha, R.M.; Al-Shara, B.; et al. Potential nutraceutical benefits of in vivo grown saffron (Crocus sativus L.) as analgesic, anti-inflammatory, anticoagulant, and antidepressant in mice. Plants 2020, 9, 1414. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilina, T.; Skowronska, W.; Kashpur, N.; Granica, S.; Bazylko, A.; Kovalyova, A.; Goryacha, O.; Koshovyi, O. Immunomodulatory activity and phytochemical profile of infusions from Cleavers herb. Molecules 2020, 25, 3721. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Bezruk, I.; Ivanauskas, L.; Lesyk, R.; Georgiyants, V. Characterization of phytochemical components of Crocus sativus leaves using HPLC-MS/MS and GC-MS: A new potential by-product. Sci. Pharm. 2021, 89, 28. [Google Scholar] [CrossRef]
- Gismondi, A.; Serio, M.; Canuti, L.; Canini, A. Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am. J. Plant. Sci. 2012, 3, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Acar, G.; Dogan, N.M.; Duru, M.E.; Kivrak, I. Phenolic profiles, antimicrobial and antioxidant activity of the various extracts of Crocus species in Anatolia. Afr. J. Microbiol. Res. 2010, 4, 1154–1161. [Google Scholar]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Repor. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk-Czepas, J.; Kozachok, S.; Pecio, Ł.; Marchyshyn, S.; Oleszek, W. Determination of phenolic profiles of Heraria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects. Phytochemistry 2021, 190, 112861. [Google Scholar] [CrossRef]
- Singab, A.N.B.; Ayoub, I.M.; El-Shazly, M.; Korinek, M.; Wu, T.Y.; Cheng, Y.-B.; Chang, F.-R.; Wubde, Y.-C. Shedding the light on Iridaceae: Ethnobotany, phytochemistry and biological activity. Ind. Crops Prod. 2016, 92, 308–335. [Google Scholar] [CrossRef]
- Bate-Smith, E.C. The phenolic constituents of plants and their taxonomic significance. J. Linn. Soc. 1968, 60, 325–356. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. 6-Hydroxyflavones and other flavonoids of Crocus. Z. Naturforsch. 1984, 39c, 18–23. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Kovalyov, V.; Goryacha, O.; Ivanauskas, L.; Georgiyants, V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry 2019, 162, 56–89. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.A.; Malik, A.H.; Wani, Z.A.; Mohiuddin, T.; Shah, Z.; Abbas, N.; Ashraf, N. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S. Afr. J. Bot. 2015, 99, 80–87. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef] [PubMed]
- Kyslychenko, V.; Karpiuk, U.; Diakonova, I.; Abu-Darwish, M.S. Phenolic compounds and terpenes in the green parts of Glycine hispida. Adv. Environ. Biol. 2010, 4, 490–494. [Google Scholar]
- Zhang, H.; Wang, M.; Chen, L.; Liu, Y.; Liu, H.; Huo, H.; Sun, L.; Ren, X.; Deng, Y.; Qi, A. Structure-solubility relationships and thermodynamic aspects of solubility of some flavonoids in the solvents modeling biological media. J. Mol. Liq. 2017, 225, 439–445. [Google Scholar] [CrossRef]
- Manthey, J.A.; Guthrie, N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 2002, 50, 5837–5843. [Google Scholar] [CrossRef] [PubMed]
- Mykhailenko, O.; Petrikaitė, V.; Korinek, M.; El-Shazly, M.; Chen, B.-H.; Yen, C.-H.; Hsieh, C.-F.; Bezruk, I.; Dabrišiūtė, A.; Ivanauskas, L.; et al. Bio-guided bioactive profiling and HPLC-DAD fingerprinting of Ukrainian saffron (Crocus sativus stigma): Moving from Correlation toward Causation. BMC Complement. Med. Ther. 2021, 21, 203. [Google Scholar] [CrossRef] [PubMed]
- Smolskaite, L.; Talou, T.; Fabre, N.; Venskutonis, P.R. Valorization of saffron industry by-products: Bioactive compounds from leaves. In Innovations for Food Science and Production, Proceedings of the 6th Baltic Conference on Food Science and Technology FOODBALT-2011, Jelgava, Latvia, 5–6 May 2011; Straumite, E., Ed.; Faculty of Food Technology: Riga, Latvia, 2011; pp. 67–72. [Google Scholar]
- Samarghandian, S.; Borji, A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharm. Res. 2014, 6, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Abd Razak, S.; Hamzah, M.S.A.; Yee, F.C.; Abdul Kadir, M.R.; Mat Nayan, N.H. A review on medicinal properties of saffron toward major diseases. J. Herbs Spices Med. Plants 2017, 23, 98–116. [Google Scholar] [CrossRef]
- Sudhakaran, M.; Sardesai, S.; Dosef, A.I. Flavonoids: New frontier for immuno-regulation and breast cancer control. Antioxidants 2019, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.J.; Ahn, W.S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr. Res. Pract. 2008, 2, 322–325. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, P.; Sun, J.; Guo, L. Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway. J. BUON Off. J. Balk. Union Oncol. 2018, 23, 218–223. [Google Scholar]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS ONE 2021, 16, e0254035. [Google Scholar] [CrossRef]
- Muthusamy, K.; Kirubakaran, P.; Singh, K.D.; Nagamani, S.; Sindhu, S. Molecular docking studies of Bitter melon compounds against BRCA1 protein. J. Pharm. Res. 2011, 4, 388–390. [Google Scholar]
- Ravichandran, R.; Sundararajan, R. In silico-based virtual drug screening and molecular docking analysis of phytochemical-derived compounds and FDA approved drugs against BRCA1 receptor. J. Cancer Prev. Curr. Res. 2017, 8, 00268–00275. [Google Scholar] [CrossRef] [Green Version]
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Comparative in silico docking analysis of curcumin and resveratrol on breast cancer proteins and their synergistic effect on MCF-7 cell line. J. Young Pharm. 2017, 9, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Senthilraja, P.; Senthil Vinoth, K.; Sindhuraj, M.; Prakash, M. potential of marine derived compounds against breast cancer (BRCA1): And in siloco docking study. Int. J. Ayurveda Res. 2012, 3, 570–572. [Google Scholar]
- Afrin, S.; Uddin, N.; Mehjabin, K.Z.; Niketa, T.K.; Nesa, F.; Akther, S.; Akther, S.; Chakraborty, S.; Chowdhury, D.; Akther, N. In silico molecular docking approch of some selected isolated phytochemicals from Phyllanthus emblic against breast cancer. Biomed. J. Sci. Technol. Res. 2018, 10, 7661–7664. [Google Scholar]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011, 12, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elekofehinti, O.O. Molecular docking studies on borapetol with target aromatase related to breast cancer. Int. J. Pharma Chem. 2015, 1, 149–155. [Google Scholar]
- Puranik, N.V.; Srivastava, P.; Bhatt, G.; Mary, D.J.S.J.; Limaye, A.M.; Sivaraman, J. Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (eRα) by various parameters and molecular modelling approach. Sci. Rep. 2019, 9, 7450. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Han, A.; Polsdofer, E.; Liu, S.; Liu, B. Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm. Sin. B 2018, 8, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, H.E.; Ebrahim, H.Y.; Mohyeldin, M.M.; Siddique, A.B.; Kamal, A.M.; Haggag, E.G.; Sayed, K.A.E. Rutin as a novel c-met inhibitory lead for the control of triple negative breast malignancies. Nutr. Cancer 2017, 69, 1256–1271. [Google Scholar] [CrossRef] [PubMed]
- Grasso, R.; Dell’Albani, P.; Carbone, C.M.; Spatuzza, R.; Bonfanti, G.; Sposito, G.; Puglisi, F.; Musumeci, A.; Scordino, A.; Campisi, A. Synergic pro-apoptotic effects of ferulic acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and delayed luminescence studies. Sci. Rep. 2020, 10, 4680–4693. [Google Scholar] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khanir, H.; et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharm. Rev. 2016, 10, 84–89. [Google Scholar]
- Yamagata, K.; Izawa, Y.; Onoder, D.; Tagami, M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol. Cell Biochem. 2018, 441, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef] [Green Version]
- Shanaida, M.; Hudz, N.; Korzeniowska, K.; Wieczorek, P.P. Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species. Int. J. Green Pharm. 2018, 12, 200–204. [Google Scholar]
- Shanaida, M.; Hudz, N.; Jasicka-Misiak, I.; Wieczorek, P.P. Polyphenols and pharmacological screening of a Monarda fistulosa L. dry extract based on a hydrodistilled residue by-product. Front. Pharmacol. 2021, 12, 563436. [Google Scholar] [CrossRef] [PubMed]
- Starchenko, G.; Hrytsyk, A.; Raal, A.; Koshovyi, O. Phytochemical profile and pharmacological activities of water and hydroethanolic dry extracts of Calluna vulgaris (L.) Hull. herb. Plants 2020, 9, 751. [Google Scholar] [CrossRef]
- Tavakkoli, A.; Iranshahi, M.; Hasheminezhad, S.H.; Hayes, A.W.; Karimi, G. The neuroprotective activities of natural products through the Nrf2 upregulation. Phytother. Res. 2019, 33, 2256–2273. [Google Scholar] [CrossRef] [PubMed]
- Marksa, M.; Radusiene, J.; Jakstas, V.; Ivanauskas, L.; Marksiene, R. Development of an HPLC post-column antioxidant assay for Solidago canadensis radical scavengers. Nat. Prod. Res. 2016, 30, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Korinek, M.; Chen, K.M.; Jiang, Y.H.; El-Shazly, M.; Stocker, J.; Chou, C.K.; Hwang, T.L.; Wu, Y.C.; Chen, B.H.; Chang, F.R. Anti-allergic potential of Typhonium blumei: Inhibition of degranulation via suppression of PI3K/PLCγ2 phosphorylation and calcium influx. Phytomedicine 2016, 23, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Wu, P.Y.; Chen, K.M.; Fu, T.F.; Wang, H.M.; Chen, C.Y.J. Antiallergic potential on RBL-2H3 cells of some phenolic constituents of Zingiber officinale (ginger). Nat. Prod. 2009, 72, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Korinek, M.; Tsai, Y.H.; El-Shazly, M.; Lai, K.H.; Backlund, A.; Wu, S.F.; Lai, W.C.; Wu, T.Y.; Chen, S.L.; Wu, Y.C.; et al. Anti-allergic hydroxy fatty acids from Typhonium blumei explored through ChemGPS-NP. Front. Pharmacol. 2017, 8, 356. [Google Scholar] [CrossRef] [Green Version]
- Boyum, A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J. Clin. Lab. Investig. Suppl. 1968, 97, 77–89. [Google Scholar]
- Yang, S.C.; Chung, P.J.; Ho, C.M.; Kuo, C.Y.; Hung, M.F.; Huang, Y.T.; Chang, W.Y.; Chang, Y.W.; Chan, K.H.; Hwang, T.L. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. J. Immunol. 2013, 190, 6511–6519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, T.L.; Su, Y.C.; Chang, H.L.; Leu, Y.L.; Chung, P.J.; Kuo, L.M.; Chang, Y.J. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. J. Lipid Res. 2009, 50, 1395–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, C.H.; Chang, H.S.; Yang, T.H.; Wang, S.F.; Wu, H.C.; Chen, Y.C.; Lin, K.J.; Wang, S. High-content screening of a Taiwanese indigenous plant extract library identifies Syzygium simile leaf extract as an inhibitor of fatty acid uptake. Int. J. Mol. Sci. 2018, 19, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-S.; Chang, H.-S.; Hsiao, H.-H.; Chen, Y.-F.; Kuo, Y.-P.; Yen, F.-L.; Yen, C.-H. Identification of Beilschmiedia tsangii root extract as a liver cancer cell–normal keratinocyte dual-selective NRF2 regulator. Antioxidants 2021, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Sethy, B.; Hsieh, C.F.; Lin, T.J.; Hu, P.Y.; Chen, Y.L.; Lin, C.Y.; Tseng, S.N.; Horng, J.T.; Hsieh, P.W. Design, synthesis, and biological evaluation of itaconic acid derivatives as potential anti-influenza agents. J. Med. Chem. 2019, 62, 2390–2403. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.F.; Jheng, J.R.; Lin, G.H.; Chen, Y.L.; Ho, J.Y.; Liu, C.J.; Hsu, K.Y.; Chen, Y.S.; Chan, Y.F.; Yu, H.M.; et al. Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the five-fold axis of capsid VP1 and cognate sulfated receptors. Emerg. Microbes Infect. 2020, 9, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Mykhailenko, O.; Korinek, M.; Ivanauskas, L.; Bezruk, I.; Myhal, A.; Petrikaitė, V.; El-Shazly, M.; Yen, C.H.; Chen, B.H.; Georgiyants, V.; et al. Qualitative and quantitative analysis of Ukrainian Iris species: A fresh look on their content and biological activities. Molecules 2020, 25, 4588. [Google Scholar] [CrossRef]
- Jeong, W.T.; Bang, J.-H.; Han, S.; Hyun, T.K.; Cho, H.; Lim, H.B.; Chung, J.-W. Establishment of a UPLC-PDA/ESI-Q-TOF/MS-based approach for the simultaneous analysis of multiple phenolic compounds in Amaranth (A. cruentus and A. tricolor). Molecules 2020, 25, 5674. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef]
- Schaldach, B.; Griitzmacher, H.-F. The fragmentations of substituted cinnamic acids after electron impact. Org. J. Mass Spectrom. 1980, 15, 175–181. [Google Scholar]
- Spínola, V.; Llorent-Martínez, E.J.; Castilho, P.C. Antioxidant polyphenols of Madeira sorrel (Rumex maderensis): How do they survive to in vitro simulated gastrointestinal digestion? Food Chem. 2018, 259, 105–112. [Google Scholar]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening non-colored phenolics in red wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry libraries. Molecules 2007, 12, 679–693. [Google Scholar]
- Yu, Q.; Qi, J.; Yu, H.-X.; Chen, L.-L.; Kou, J.-P.; Liu, S.-J.; Yu, B.-Y. Qualitative and quantitative analysis of phenolic compounds in the leaves of Aquilaria sinensis using Liquid Chromatography–Mass Spectrometry. Phytochem. Anal. 2013, 24, 349–356. [Google Scholar]
- Luo, L.; Gao, W.; Zhang, Y.; Liu, C.; Wang, G.; Wu, H.; Gao, W. Integrated phytochemical analysis based on uplc-ms and network pharmacology approaches to explore the quality control markers for the quality assessment of Trifolium pratense L. Molecules 2020, 25, 3787. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S.; Liu, D.; Yang, M.; Wei, J. Analysis of flavonoids in Dalbergia odorifera by Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2020, 25, 389. [Google Scholar] [CrossRef] [Green Version]
- March, R.E.; Miao, X.-S.; Metcalfe, C.D.; Stobiecki, M.; Marczak, L. A fragmentation study of an isoflavone glycoside, genistein-7-O-glucoside, using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int. J. Mass Spectrom. 2004, 232, 171–183. [Google Scholar]
- Shu, P.; Hong, J.-L.; Wu, G.; Yu, B.-Y.; Qin, M.-J. Analysis of flavonoids and phenolic acids in Iris tectorum by HPLC-DAD-ESI-MSn. Chin. J. Nat. Med. 2010, 8, 202–207. [Google Scholar]
№ | Compounds | Rt, min/λ, nm | Content, mg/g | |
---|---|---|---|---|
Aqueous Extract | Ethanolic Extract | |||
A | Chlorogenic acid | 11.66/310 | 0.677 ± 0.037 | 0.678 ± 0.004 |
B | Caffeic acid | 14.18/310 | - | 1.425 ± 0.012 |
C | Mangiferin | 17.18/270 | 1.823 ± 0.124 | 2.031 ± 0.648 |
D | Isoorientin | 17.66/310 | 8.508 ± 0.001 | - |
E | Ferulic acid | 21.64/310 | - | 0.251 ± 0.005 |
F | Rutin | 22.48/310 | 0.085 ± 0.027 | 0.100 ± 0.005 |
G | Tectoridin | 29.69/270 | 0.044 ± 0.032 | 0.107 ± 0.045 |
H | Quercetin | 43.71/310 | - | 0.255 ± 0.003 |
I | t-Cinnamic acid | 45.22/270 | 0.106 ± 0.001 | 0.333 ± 0.006 |
J | Nigricin | 45.50/270 | - | 0.069 ± 0.003 |
K | Genistein-7-glucoside | 46.07/270 | 0.407 ± 0.015 | - |
L | Apigenin | 47.90/340 | - | 0.088 ± 0.005 |
M | Kaempferol | 48.96/310 | 0.033 ± 0.003 | 0.046 ± 0.002 |
N | Iristectorigenin B | 49.15/270 | 0.073 ± 0.025 | 0.058 ± 0.003 |
O | Irigenin | 50.03/270 | 0.031 ± 0.016 | 0.028 ± 0.001 |
P | Biochanin A | 55.85/270 | 0.108 ± 0.325 | - |
Retention Time, min (UPLC–MS) | Compound | UV λmax (nm) | Mol. Formula | Mol. Weight, g/mol | [M−H]−(m/z) | Fragment Ions (−) |
---|---|---|---|---|---|---|
3.69 | Chlorogenic acid | 218, 241, 327 | C16H8O9 | 354.31 | 353 | 191, 179, 135 |
3.92 | Caffeic acid | 217, 236, 324 | C9H8O4 | 180.16 | 179 | 161, 135 |
4.21 | Mangiferin | 240, 318, 257, 365 | C19H18O11 | 422.30 | 421 | 403, 331, 301, 259, 271 |
4.51 | Isoorientin | 269, 349 | C21H20O11 | 448.38 | 447 | 429, 411, 327, 297, 285 |
4.64 | Genistein-7-glucoside | 259, 332 | C21H20O10 | 432.37 | 431 | 239, 268, 269, 311, 431 |
4.82 | Rutin | 255, 352 | C27H30O16 | 610.52 | 609 | 301 |
5.09 | Ferulic acid | 218, 235, 323 | C10H10O4 | 194.18 | 193 | 178, 149,134 |
6.22 | Apigenin | 237, 267, 337 | C15H10O5 | 270.24 | 269 | 158 |
6.54 | Tectoridin | 263, 328 | C22H22O11 | 462.41 | 461 | 446, 411, 341, 298 |
6.74 | Quercetin | 254, 369 | C15H10O7 | 302.24 | 301 | 273, 227, 179, 151, 93 |
6.80 | trans-Cinnamic acid | 322, 276 | C9H8O2 | 148.16 | 147 | 119, 103 |
7.41 | Kaempferol | 265, 365 | C15H10O6 | 286.24 | 285 | 239, 187 |
7.46 | Iristectorigenin B | 218, 265 | C17H14O7 | 330.29 | 329 | 314, 311, 299, 271, 255 |
7.58 | Irigenin | 264, 218 | C18H16O8 | 360.31 | 359 | 344, 329, 314, 286, 258 |
8.20 | Biochanin A | 262, 345 | C16H12O5 | 284.26 | 283 | 268, 267, 239, 211, 132 |
ND * | Nigricin | 262, 322 | C17H12O6 | 312.28 | ND | ND |
Binding Energies in the Active Site, kcal/mol | |||||
---|---|---|---|---|---|
№ | Compounds | Breast Cancer Proteins | Melanoma | ||
4RJ3 | 2IOK | 4XYF | 3ERT | ||
1 | Chlorogenic acid | −70.448 | −70.910 | −95.773 | −84.727 |
2 | Caffeic acid | −103.721 | −73.071 | −73.432 | −79.224 |
3 | Mangiferin | −36.321 | −74.476 | −93.985 | −72.074 |
4 | Isoorientin | −72.180 | −50.336 | −103.029 | −68.522 |
5 | Ferulic acid | −74.705 | −90.033 | −75.126 | −90.066 |
6 | Rutin | −59.391 | −62.756 | −53.408 | −75.257 |
7 | Tectoridin | −88.706 | −78.872 | −96.284 | −70.155 |
8 | Quercetin | −77.893 | −56.916 | −94.328 | −66.201 |
9 | t-Cinnamic acid | −81.085 | −72.741 | −60.426 | −84.200 |
10 | Genistein-7-Glu | −76.241 | −67.142 | −96.593 | −72.092 |
11 | Apigenin | −87.532 | −73.515 | −82.298 | −68.500 |
12 | Kaempferol | −90.462 | −71.603 | −86.092 | −79.633 |
13 | Iristectorigenin B | −79.516 | −75.179 | −55.603 | −86.510 |
14 | Nigricin | −83.299 | −84.250 | −74.943 | −81.789 |
15 | Irigenin | −86.146 | −80.691 | −80.050 | −56.689 |
Native ligands | |||||
Ligand 4RJ3 | −86.564 | ||||
Ligand 2IOK | −69.486 | ||||
Hydroxytamoxifen | −83.083 | ||||
Ligand 4XYF | −75.090 |
Component | Retention Time | Aqueous Extract | Ethanolic Extract |
---|---|---|---|
Caffeic acid | 14.283 | – | 0.172 ± 0.008 |
Mangiferin | 15.313 | 0.405 ± 0.017 | 0.384 ± 0.017 |
Isoorientin | 18.693 | 0.003 ± 0.001 | – |
Ferulic acid | 21.870 | – | 0.162 ± 0.007 |
Rutin | 22.398 | 0.224 ± 0.010 | 0.209 ± 0.009 |
Tectoridin | 29.759 | 0.003 ± 0.0001 | 0.024 ± 0.001 |
Total | 0.635 ± 0.007 | 0.951 ± 0.010 |
Sample | Relative NRF2 Activity a in HacaT Cells b(%, mean ± SD) | Relative NRF2 Activity a in Huh7 Cells b(%, mean ± SD) | NA9 Inhibition Activity c(%, mean ± SD) | Lipid Droplet Inhibition Activity d(%, mean ± SD) | Superoxide Anion Generation, Human Neutrophils e (%, mean ± SEM) | Elastase Release, Human Neutrophils e (%, mean ± SEM) | A23187-Induced Degranulation Assay, RBL-2H3 Cells f (%, mean ± SD) | Antigen-Induced Degranulation Assay, RBL-2H3 Cells f (%, mean ± SD) | Protective Activity against Influenza H1N1, MDCK Cells g | Protective Activity against Enterovirus 68, RD Cells g | Protective Activity against Coronavirus 229E, Huh7 Cells g |
---|---|---|---|---|---|---|---|---|---|---|---|
C. sativus leaf aqueous extract | 152.5 | 106.2 | 7.4 ± 2.9 | 86.3 ± 17.6 | 35.67 ± 5.62 ** | 19.62 ± 2.90 ** | 8.3 ± 7.4 | 2.0 ± 3.5 | inactive | inactive | – |
C. sativus leaf ethanolic extract | 136.5 | 104.5 | 6.8 ± 1.9 | 101.3 ± 17.3 | – l | – l | 6.3 ± 5.1 | 13.7 ± 1.5 | inactive | inactive | inactive |
TBHQ h | 684.3 ± 53.3 | – | – | – | – | – | – | – | – | – | – |
Luteolin i | – | 23.8 ± 0.3 | – | – | – | – | – | – | – | – | – |
Zanamivir j | – | – | 97.4 ± 0.0 | – | – | – | – | – | – | – | – |
TC k | – | – | – | 16.3 ± 0.2 | – | – | – | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mykhailenko, O.; Petrikaite, V.; Korinek, M.; Chang, F.-R.; El-Shazly, M.; Yen, C.-H.; Bezruk, I.; Chen, B.-H.; Hsieh, C.-F.; Lytkin, D.; et al. Pharmacological Potential and Chemical Composition of Crocus sativus Leaf Extracts. Molecules 2022, 27, 10. https://doi.org/10.3390/molecules27010010
Mykhailenko O, Petrikaite V, Korinek M, Chang F-R, El-Shazly M, Yen C-H, Bezruk I, Chen B-H, Hsieh C-F, Lytkin D, et al. Pharmacological Potential and Chemical Composition of Crocus sativus Leaf Extracts. Molecules. 2022; 27(1):10. https://doi.org/10.3390/molecules27010010
Chicago/Turabian StyleMykhailenko, Olha, Vilma Petrikaite, Michal Korinek, Fang-Rong Chang, Mohamed El-Shazly, Chia-Hung Yen, Ivan Bezruk, Bing-Hung Chen, Chung-Fan Hsieh, Dmytro Lytkin, and et al. 2022. "Pharmacological Potential and Chemical Composition of Crocus sativus Leaf Extracts" Molecules 27, no. 1: 10. https://doi.org/10.3390/molecules27010010
APA StyleMykhailenko, O., Petrikaite, V., Korinek, M., Chang, F. -R., El-Shazly, M., Yen, C. -H., Bezruk, I., Chen, B. -H., Hsieh, C. -F., Lytkin, D., Ivanauskas, L., Georgiyants, V., & Hwang, T. -L. (2022). Pharmacological Potential and Chemical Composition of Crocus sativus Leaf Extracts. Molecules, 27(1), 10. https://doi.org/10.3390/molecules27010010