Phytochemical Profile, Antimicrobial, Cytotoxic, and Antioxidant Activities of Fresh and Air-Dried Satureja nabateorum Essential Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of S. nabateorum Essential Oils
2.2. Antimicrobial Activity of EOs from Fresh and Air-Dried S. nabateorum
2.3. Antioxidant Activity
2.4. Cytotoxic Characters
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of the Essential Oils
3.3. Qualitative and Quantitative Analysis
3.4. Antimicrobial Screening
3.4.1. Microbial Isolates
3.4.2. Antimicrobial Test
3.5. Free Radical Scavenging Activity
3.6. Cell Culture and Cytotoxicity Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jaradat, N.; Al-Maharik, N. Fingerprinting, Antimicrobial, Antioxidant, Anticancer, Cyclooxygenase and Metabolic Enzymes Inhibitory Characteristic Evaluations of Stachys viticina Boiss. Essential Oil. Molecules 2019, 24, 3880. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaradat, N.; Adwan, L.; K’aibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement. Altern. Med. 2016, 16, 418. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Tepe, B.; Cilkiz, M. A pharmacological and phytochemical overview on Satureja. Pharm. Biol. 2016, 54, 375–412. [Google Scholar] [CrossRef] [Green Version]
- Akthar, M.S.; Degaga, B.; Azam, T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues Bio. Sci. Pharmacol. Res. 2014, 2, 1–7. [Google Scholar]
- Al-Mariri, A.; Safi, M. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria. Iran. J. Med. Sci. 2014, 39, 36–43. [Google Scholar]
- Lang, G.; Buchbauer, G. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragr. J. 2012, 27, 13–39. [Google Scholar] [CrossRef]
- Azaz, A.D.; Kürkcüoglu, M.; Satil, F.; Can Baser, K.H.; Tümen, G. In vitro antimicrobial activity and chemical composition of some Satureja essential oils. Flavour Fragr. J. 2005, 20, 587–591. [Google Scholar] [CrossRef]
- Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils. Evid. Based Complement. Altern. Med. 2016, 2016, 2547169. [Google Scholar] [CrossRef] [Green Version]
- Maccelli, A.; Vitanza, L.; Imbriano, A.; Fraschetti, C.; Filippi, A.; Goldoni, P.; Maurizi, L.; Ammendolia, M.G.; Crestoni, M.E.; Fornarini, S. Satureja montana L. Essential oils: Chemical profiles/phytochemical screening, antimicrobial activity and o/w nanoemulsion formulations. Pharmaceutics 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Ćavar, S.; Maksimović, M.; Šolić, M.E.; Jerković-Mujkić, A.; Bešta, R. Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils. Food Chem. Toxicol. 2008, 111, 648–653. [Google Scholar] [CrossRef]
- Momtaz, S.; Abdollahi, M. An update on pharmacology of Satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. Int. J. Pharmacol. 2010, 6, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Danin, A.; Hedge, I.C. Contributions to the flora of Jordan 2. A new species of Satureja (Labiatae) and some new records. Willdenowia 1998, 28, 135–142. [Google Scholar] [CrossRef]
- BräuChler, C. Delimitation and revision of the genus Thymbra (Lamiaceae). Phytotaxa 2018, 369, 15–27. [Google Scholar] [CrossRef]
- Giweli, A.; Džamić, A.M.; Soković, M.; Ristić, M.S.; Marin, P.D. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules 2012, 17, 4836–4850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MArkOvIć, T.; Chatzopoulou, P.; Šiljegović, J.; Nikolić, M.; Glamočlija, J.; Ćirić, A.; Soković, M. Chemical analysis and antimicrobial activities of the essential oils of Satureja thymbra L. and Thymbra spicata L. and their main components. Arch. Biol. Sci. 2011, 63, 457–464. [Google Scholar] [CrossRef]
- Chorianopoulos, N.; Kalpoutzakis, E.; Aligiannis, N.; Mitaku, S.; Nychas, G.-J.; Haroutounian, S.A. Essential oils of Satureja, Origanum, and Thymus species: Chemical composition and antibacterial activities against foodborne pathogens. J. Agric. Food Chem. 2004, 52, 8261–8267. [Google Scholar] [CrossRef]
- Elgndi, M.A.; Filip, S.; Pavlić, B.; Vladić, J.; Stanojković, T.; Žižak, Ž.; Zeković, Z. Antioxidative and cytotoxic activity of essential oils and extracts of Satureja montana L., Coriandrum sativum L. and Ocimum basilicum L. obtained by supercritical fluid extraction. J. Supercrit. Fluids 2017, 128, 128–137. [Google Scholar] [CrossRef]
- Aghbash, B.N.; Pouresmaeil, M.; Dehghan, G.; Nojadeh, M.S.; Mobaiyen, H.; Maggi, F. Chemical composition, antibacterial and radical scavenging activity of essential oils from Satureja macrantha CA Mey. at different growth stages. Foods 2020, 9, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghotbabadi, F.S.; Alizadeh, A.; Zadehbagheri, M.; Kamelmanesh, M.M.; Shaabani, M. Phytochemical composition of the essential oil, total phenolic content, antioxidant and antimicrobial activity in Iranian Satureja sahendica Bornm. at different ontogenesis conditions. J. Med. Plant Res. 2012, 6, 3525–3534. [Google Scholar]
- Vitali, L.A.; Beghelli, D.; Nya, P.C.B.; Bistoni, O.; Cappellacci, L.; Damiano, S.; Lupidi, G.; Maggi, F.; Orsomando, G.; Papa, F. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 2016, 9, 775–786. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Wei, J.; Su, P.; Pan, W.; Zheng, X.; Zhang, K.; Lin, L.; Tang, J.; Fang, Y. Essential oil composition and bioactivity variation in wild-growing populations of Curcuma phaeocaulis Valeton collected from China. Ind. Crops Prod. 2017, 103, 274–282. [Google Scholar] [CrossRef]
- Yousefzadi, M.; Riahi-Madvar, A.; Hadian, J.; Rezaee, F.; Rafiee, R.; Biniaz, M. Toxicity of essential oil of Satureja khuzistanica: In vitro cytotoxicity and anti-microbial activity. J. Immunotoxicol. 2014, 11, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Jaradat, N.; Adwan, L.; Zaid, A.N.; K’aibni, S.; Arar, M. Composition, anticholinesterase and antipedicular activities of Satureja capitata L. volatile oil. Open Life Sci. 2020, 15, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
Component | RI | Dry, % | Fresh % | |
---|---|---|---|---|
1 | α-Thujene | 918 | 1.24 ± 0.01 | 1.06 ± 0.12 |
2 | α-Pinene | 930 | 0.65 ± 0.002 | 0.59 ± 0.008 |
3 | Camphene | 952 | 0.23 ± 0.006 | 0.37 ± 0.005 |
4 | Sabinene | 972 | 0.08 ± 0.001 | 0.15 ± 0.001 |
5 | β-Pinene | 979 | 0.18 ± 0.001 | 0.20 ± 0.02 |
6 | Isolimonene | 984 | - | 0.41 ± 0.002 |
7 | Myrcene | 991 | 1.47 ± 0.01 | 0.69 ± 0.001 |
8 | δ-2-Carene | 1003 | 0.23 ± 0.002 | 0.25 ± 0.02 |
9 | α-Terpinene | 1019 | 2.81 ± 0.01 | 2.68 ± 0.98 |
10 | p-Cymene | 1023 | 15.02 ± 1.02 | 11.51 ± 0.97 |
11 | Sylvesterine | 1029 | 0.68 ± 0.009 | 0.60 ± 0.001 |
12 | Ocimene | 1033 | 0.60 ± 0.008 | 0.51 ± 0.006 |
13 | γ-Terpinene | 1061 | 21.15 ± 1.05 | 20.65 ± 1.12 |
14 | Terpinolene | 1087 | - | 0.09 ± 0.002 |
15 | Linalool | 1098 | 1.69 ± 0.05 | 0.78 ± 0.006 |
16 | cis-Thujone | 1103 | - | 0.17 ± 0.003 |
17 | 3-Terpinen-1-ol | 1133 | - | 0.13 ± 0.001 |
18 | (-)-Camphor | 1144 | - | 0.69 ± 0.006 |
19 | Not identified | 1148 | - | 0.19 ± 0.003 |
20 | Terpinen-4-ol | 1173 | 0.69 ± 0.006 | 0.17 ± 0.002 |
21 | Nerol | 1228 | - | 0.15 ± 0.001 |
22 | Thymol methylether | 1235 | 1.21 ± 0.01 | 0.76 ± 0.005 |
23 | Carvacrol methylether | 1242 | 1.04 ± 0.01 | 3.44 ± 0.01 |
24 | Linalool acetate | 1256 | - | 0.15 ± 0.001 |
25 | Geranial | 1262 | 0.24 ± 0.002 | 2.91 ± 0.01 |
26 | Neomenthyl acetate | 1266 | 0.24 ± 001 | - |
27 | Isobornyl acetate | 1278 | - | 1.80 ± 0.01 |
28 | Thymol | 1292 | 46.07 ± 1.1 | 40.64 ± 1.21 |
29 | α-Cubebene | 1345 | - | 0.89 ± 0.002 |
30 | α-Cupaene | 1377 | - | 0.25 ± 0.004 |
31 | β-Cubebene | 1383 | - | 0.25 ± 0.002 |
32 | β-Caryophyllene | 1424 | 2.78 ± 0.006 | 2.85 ± 0.02 |
33 | α-Caryophyllene | 1457 | 0.14 ± 0.003 | 0.16 ± 0.001 |
34 | Geranyl propanoate | 1471 | 0.38 ± 0.001 | 0.30 ± 0.01 |
35 | Muurolene | 1476 | 0.11 ± 0.006 | - |
36 | Germacrene D | 1482 | 0.54 ± 0.003 | 1.14 ± 0.07 |
37 | α-Muurolene | 1497 | 0.07 ± 0.001 | 0.13 ± 0.06 |
38 | Germacrene A | 1508 | 0.07 ± 0.007 | 0.36 ± 0.21 |
39 | γ-Cadinene | 1514 | 0.16 ± 0.006 | 0.12 ± 0.03 |
40 | δ-Cadinene | 1528 | 0.22 ± 0.001 | 0.09 ± 0.001 |
41 | Germacrene B | 1552 | 0.04 ± 0.001 | 0.26 ± 0.004 |
42 | Caryophellene oxide | 1580 | 0.07 ± 0.001 | 0.10 ± 0.002 |
Total | 99.56 | 98.64 | ||
Grouped Compounds | ||||
Monoterpene hydrocarbons | 47.58 | 47.20 | ||
Phenolic monoterpenes | 48.32 | 44.84 | ||
Sesquiterpene hydrocarbon | 3.66 | 6.60 |
S. aureus | E. faecium | E. coli | P. aeruginosa | K. pneumoniae | P. vulgaris | MRSA | C. albicans | |
---|---|---|---|---|---|---|---|---|
Source | ATCC 25923 | ATCC 700221 | ATCC 25922 | ATCC 27853 | ATCC 13883 | ATCC 700221 | Clinically diagnosed | ATCC 90028 |
Fluconazole | ND | ND | ND | ND | ND | ND | ND | 1.56 |
Ampicillin | 3.12 ± 0.06 | 1.56 ± 0.01 | 3.12 ± 0.01 | ND | 1 ± 0.01 | 18 ± 0.91 | ND | ND |
Ciprofloxacin | 0.78 ± 0.01 | 0.78 ± 0.01 | 1.56 ± 0.08 | 3.12 ± 0.1 | 0.125 ± 0.02 | 15 ± 0.68 | 12.50 ± 0.58 | ND |
Fresh S. nabateorum EO | 0.80 ± 0.01 | 1.25 ± 0.03 | 2.25 ± 0.01 | 6.25 ± 0.61 | 0.135 ± 0.04 | 22 ± 1.02 | 12.50 ± 0.61 | 0.75 ± 0.05 |
Air-dried S. nabateorum EO | 0.85 ± 0.01 | 1.25 ± 0.05 | 2.25 ± 0.02 | 12.50 ± 1.31 | 0.135 ± 0.01 | 22 ± 1.13 | 6.25 ± 0.97 | 0.75 ± 0.05 |
IC50 (μg/mL) Values against Different Cancer Cell Lines | ||||
---|---|---|---|---|
Cells | MCF-7 | COLO-205 | HeLa | HepG2 |
Air-dried S. nabateorum | 1090 ± 3.25 | 134.3 ± 1.2 | 89 ± 0.74 | ND |
Fresh S. nabateorum | 930 ± 1.25 | 256 ± 1.95 | 82 ± 0.98 | 90 ± 0.77 |
DOX | 3 ± 0.89 | 5 ± 0.78 | 9.5 ± 1.0 | 25.43 ± 1.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Maharik, N.; Jaradat, N. Phytochemical Profile, Antimicrobial, Cytotoxic, and Antioxidant Activities of Fresh and Air-Dried Satureja nabateorum Essential Oils. Molecules 2022, 27, 125. https://doi.org/10.3390/molecules27010125
Al-Maharik N, Jaradat N. Phytochemical Profile, Antimicrobial, Cytotoxic, and Antioxidant Activities of Fresh and Air-Dried Satureja nabateorum Essential Oils. Molecules. 2022; 27(1):125. https://doi.org/10.3390/molecules27010125
Chicago/Turabian StyleAl-Maharik, Nawaf, and Nidal Jaradat. 2022. "Phytochemical Profile, Antimicrobial, Cytotoxic, and Antioxidant Activities of Fresh and Air-Dried Satureja nabateorum Essential Oils" Molecules 27, no. 1: 125. https://doi.org/10.3390/molecules27010125
APA StyleAl-Maharik, N., & Jaradat, N. (2022). Phytochemical Profile, Antimicrobial, Cytotoxic, and Antioxidant Activities of Fresh and Air-Dried Satureja nabateorum Essential Oils. Molecules, 27(1), 125. https://doi.org/10.3390/molecules27010125