Influence of Hydrogen Peroxide on Disinfection and Soil Removal during Low-Temperature Household Laundry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Disinfection Activity of 3% HP
2.2. Standard Soil Removal
2.3. Colour Change of Textile Samples
2.4. Tensile Strength of Coloured Textile Samples
3. Materials and Methods
3.1. Materials
3.2. Washing Procedure
- No HP: washing with liquid detergent only
- HP prewash: 3% H2O2 in prewash + wash with liquid detergent
- HP main wash: washing with liquid detergent + 3% H2O2 in the main wash
- HP rinse: washing with liquid detergent + 3% H2O2 in a rinse wash
3.3. Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Commission Regulation (EU) 2019/2023 of 1 October 2019 Laying Down Ecodesign Requirements for Household Washing Machines and Household Washer-Dryers Pursuant to Directive 2009/125/EC of the European Parliament and of the Council, Amending Commission Regulation (EC) No 1275/2008 and Repealing Commission Regulation (EU) No 1015/2010 (Text with EEA Relevance.) C/2019/2124. 2019. Available online: http://data.europa.eu/eli/reg/2019/2023/oj/ (accessed on 9 November 2021).
- Pakula, C.; Stamminger, R. Electricity and water consumption for laundry washing by washing machine worldwide. Energy Effic. 2010, 3, 365–382. [Google Scholar] [CrossRef]
- Pakula, C.; Stamminger, R. Energy and water savings potential in automatic laundry washing processes. Energy Effic. 2015, 8, 205–222. [Google Scholar] [CrossRef]
- Laitala, K.; Boks, C.; Klepp, I.G. Potential for environmental improvements in laundering. Int. J. Consum. Stud. 2011, 35, 254–264. [Google Scholar] [CrossRef]
- Ferri, A.; Osset, M.; Abeliotis, K.; Ambert, C.; Candan, C.; Owens, J.; Stamminger, R. Laundry performance: Effect of detergent and additives on consumer satisfaction. Tenside Surfactants Deterg. 2016, 53, 375–386. [Google Scholar] [CrossRef]
- Lambert, E.; Bichler, S.; Stamminger, R. Hygiene in domestic laundering–Consumer behavior in Germany. Tenside Surfactants Deterg. 2015, 52, 441–446. [Google Scholar] [CrossRef]
- Kruschwitz, A.; Karle, A.; Schmitz, A.; Stamminger, R. Consumer Laundry Practices in Germany. Int. J. Consum. Stud. 2014, 38, 265–277. [Google Scholar] [CrossRef]
- Rogers, D. Making Laundry Cool. Washing Trends and Innovations. Consumers and Brand Owners Alike Want More Sustainable Laundry Practices to Become the Norm. How Is the Transition Being Achieved Effectively? Du Pont. 2015. Available online: http://fhc.biosciences.dupont.com/fileadmin/user_upload/live/fhc/Making_Laundry_Cool2.pdf/ (accessed on 9 November 2021).
- Betz, M.; Cerny, G. Antimicrobial effects of bleaching agents Part 2–Studies on bacteria, yeast, mould and phage. Tenside Surfactants Deterg. 2001, 38, 242–249. [Google Scholar]
- Abney, S.E.; Ijaz, M.K.; McKinney, J.; Gerba, C.P. Laundry hygiene and odour control: State of the science. Appl. Environ. Microb. 2021, 87, e300220. [Google Scholar] [CrossRef]
- Bockmühl, D.P.; Schages, J.; Rehberg, L. Laundry and textile hygiene in healthcare and beyond. Microb. Cell 2019, 6, 299–306. [Google Scholar] [CrossRef]
- Heudorf, U.; Gasteyer, S.; Muller, M.; Serra, N.; Westphal, T.; Reinheimer, C.; Kempf, V. Handling of laundry in nursing homes in Frankfurt am Main, Germany, 2016–laundry and professional clothing as potential pathways of bacterial transfer. GMS Hyg. Infect. Control 2017, 12, eDoc20. [Google Scholar] [CrossRef]
- Chiereghin, A.; Felici, S.; Gibertoni, D.; Foschi, C.; Turello, G.; Piccirilli, G.; Gabrielli, L.; Clerici, P.; Landini, M.P.; Lazzarotto, T. Microbial contamination of medical staff clothing during patient care activities: Performance of decontamination of domestic versus industrial laundering procedures. Curr. Microbiol. 2020, 77, 1159–1166. [Google Scholar] [CrossRef]
- Reynolds, K.A.; Verhougstraete, M.P.; Mena, K.D.; Sattar, S.A.; Scott, E.A.; Gerba, C.P. Quantifying pathogen infection risks from household laundry practices. J. Appl. Microbiol. 2021, in press. [Google Scholar] [CrossRef]
- Honisch, M.; Brands, B.; Weide, M.; Speckmann, H.D.; Stamminger, R.; Bockmuhl, D. Antimicrobial efficacy of laundry detergents with regard to time and temperature in domestic washing machines. Tenside Surfactants Deterg. 2016, 53, 547–552. [Google Scholar] [CrossRef]
- Laitala, K.; Jensen, H.M. Cleaning effect of household laundry detergents at low temperatures. Tenside Surfactants Deterg. 2010, 47, 413–420. [Google Scholar] [CrossRef]
- Pusic, T.; Jelicic, J.; Nuber, M.; Soijacic, I. Investigation of bleach active compounds in washing bath. Tekstil 2007, 56, 412–417. [Google Scholar]
- Brands, B.; Brinkmann, A.; Bloomfield, S.; Bockmühl, D.P. Microbicidal action of heat, detergents and active oxygen bleach as components of laundry hygiene. Tenside Surfactants Deterg. 2016, 53, 495–501. [Google Scholar] [CrossRef]
- Hickman, W.S. Peracetic acid and its uses in fibre bleaching. Rev. Prog. Color. 2002, 32, 13–27. [Google Scholar] [CrossRef]
- Yun, C.S.; Patwary, S.; LeHew, M.L.A.; Kim, J. Sustainable care of textile products and its environmental impact: Tumble-drying and ironing processes. Fiber. Polym. 2017, 18, 590–596. [Google Scholar] [CrossRef]
- Beck, R.H.F.; Koch, H.; Mentech, J. Bleach Activators. In Carbohydrates as Organic Raw Materials III; Van Bekkum, H., Röper, H., Voragen, F., Eds.; VCH Weinhem: New York, NY, USA, 1996; pp. 295–306. [Google Scholar] [CrossRef]
- Jacksch, S.; Kaiser, D.; Weis, S.; Weide, M.; Ratering, S.; Schnell, S.; Egert, M. Influence of sampling site and other environmental factors on the bacterial community composition of domestic washing machines. Microorganisms 2020, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacksch, S.; Zohra, H.; Weide, M.; Schnell, S.; Egert, M. Cultivation-based quantification and identification of bacteria at two hygienic key sides of domestic washing machines. Microorganisms 2021, 9, 905. [Google Scholar] [CrossRef] [PubMed]
- Neral, B.; Arnuš, S. Textile Washing Hygiene and the Covid-19 Pandemic. Tekstilec 2021, 64, SI 7–SI 17. [Google Scholar]
- Köse, H.; Yapar, N. The comparison of various disinfectants’ efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turk. J. Med. Sci. 2017, 47, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Upson, S.; Clarke, C. Support to the Evaluation of Regulation (EC) No 648/2004 (Detergents Regulation); European Commission: Brussels, Belgium, 2018; Available online: https://op.europa.eu/sl/publication-detail/-/publication/ad2fa114-e952-11e8-b690-01aa75ed71a1/ (accessed on 9 November 2021).
- Urban, M.V.; Rath, T.; Radtke, C. Hydrogen peroxide (H2O2): A review of its use in surgery. Wien. Med. Wochenschr. 2019, 169, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S.; Sostar-Turk, S. Antimicrobial activity of selected disinfectants used in a low temperature laundering procedure for textiles. Fibres Text. East. Eur. 2010, 18, 89–92. [Google Scholar]
- Altenbaher, B.; Šoštar Turk, S.; Fijan, S. Ecological parameters and disinfection effect of low-temperature laundering in hospitals in Slovenia. J. Clean. Prod. 2011, 19, 253–258. [Google Scholar] [CrossRef]
- McLaren, K.; McCauley, E.; O’Neill, B.; Tinker, S.; Jenkins, N.; Sehulster, L. The efficacy of a simulated tunnel washer process on removal and destruction of Clostridioides difficile spores from health care textiles. Am. J. Infect. Control. 2019, 47, 1375–1381. [Google Scholar] [CrossRef]
- Boateng, M.K.; Price, S.L.; Huddersman, K.D.; Walsh, S.E. Antimicrobial activities of hydrogen peroxide and its activation by a novel heterogeneous Fenton’s-like modified PAN catalyst. Appl. Environ. Microb. 2011, 111, 1533–1543. [Google Scholar] [CrossRef]
- Brul, S.; Coote, P. Preservative agents in foods: Mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 1999, 50, 1–17. [Google Scholar] [CrossRef]
- Choi, H.; Chatterjee, P.; Lichtfouse, E.; Martel, J.A.; Hwang, M.; Jinadatha, C.; Sharma, V.K. Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: A review. Env. Chem. Lett. 2021, 19, 1945–1951. [Google Scholar] [CrossRef]
- Johansson, I.; Somasundaran, P. (Eds.) Handbook for Cleaning/Decontamination of Surfaces; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Hooker, E.A.; Ulrich, D.; Brooks, D. Successful Removal of Clostridioides Difficile Spores and Pathogenic Bacteria from a Launderable Barrier Using a Commercial Laundry Process. Infect. Dis. 2020, 13, 1178633720923657. [Google Scholar] [CrossRef]
- Forte Tavčer, P. Influence of bleach activators in removing different soils from cotton fabric. Fibres Text. East. Eur. 2020, 141, 74–78. [Google Scholar] [CrossRef]
- Phillips, D.; Scotney, J. Oxidative-bleach fading of dyed cellulosic textiles when washed in a detergent containing a bleach activator. AATCC Rev. 2002, 2, 50–53. [Google Scholar]
Code | Description | Mass Per Unit Area (g/m2) |
---|---|---|
Empa 101 | 100% Cotton soiled with carbon black/olive oil | 90 |
Empa 114 | 100% Cotton soiled with red wine | 200 |
Empa 116 | 100% Cotton soiled with blood/milk/ink | 200 |
Empa 160 | 100% Cotton soiled with chocolate cream | 200 |
Sample No. | Component 1 | Component 2 |
---|---|---|
1 | Cotton | - |
2 | Cotton | - |
3 | Viscose | Linen |
4 | Cotton | Viscose, Linen |
5 | Cotton | Polyester |
6 | Viscose | Polyester |
7 | Cotton | Polyester |
8 | Wool | Polyester |
9 | Wool | Viscose, CA |
10 | Polyester | - |
11 | Polyester | - |
Wash Cycle | Time (min) | Wash Bath Volume (l) | Temperature (°C) |
---|---|---|---|
Prewash | 16 | 3 | 28 |
Main Wash | 30 | 10 | 40 |
Rinse | 10 | 3 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavčer, P.F.; Brenčič, K.; Fink, R.; Tomšič, B. Influence of Hydrogen Peroxide on Disinfection and Soil Removal during Low-Temperature Household Laundry. Molecules 2022, 27, 195. https://doi.org/10.3390/molecules27010195
Tavčer PF, Brenčič K, Fink R, Tomšič B. Influence of Hydrogen Peroxide on Disinfection and Soil Removal during Low-Temperature Household Laundry. Molecules. 2022; 27(1):195. https://doi.org/10.3390/molecules27010195
Chicago/Turabian StyleTavčer, Petra Forte, Katja Brenčič, Rok Fink, and Brigita Tomšič. 2022. "Influence of Hydrogen Peroxide on Disinfection and Soil Removal during Low-Temperature Household Laundry" Molecules 27, no. 1: 195. https://doi.org/10.3390/molecules27010195
APA StyleTavčer, P. F., Brenčič, K., Fink, R., & Tomšič, B. (2022). Influence of Hydrogen Peroxide on Disinfection and Soil Removal during Low-Temperature Household Laundry. Molecules, 27(1), 195. https://doi.org/10.3390/molecules27010195