Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization
Abstract
:1. Introduction
2. Results and Discussions
2.1. Photophysical Properties
2.2. Intramolecular Charge Transfer
2.3. Crystal Structure
2.4. Mechanofluorochromic Properties
2.5. Acidochromism
2.6. Lipid Drops (LDs) Staining Properties
3. Materials and Methods
3.1. General Information and Materials
3.2. Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chang, Z.-F.; Jing, L.-M.; Chen, B.; Zhang, M.; Cai, X.; Liu, J.-J.; Ye, Y.-C.; Lou, X.; Zhao, Z.; Liu, B.; et al. Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effects and large two-photon absorption cross sections using tunable terminal groups. Chem. Sci. 2016, 7, 4527–4536. [Google Scholar] [CrossRef] [Green Version]
- Abdurahman, A.; Wang, L.; Zhang, Z.; Feng, Y.; Zhao, Y.; Zhang, M. Novel triazole-based AIE materials: Dual-functional, highly sensitive and selective fluorescence probe. Dyes Pigm. 2020, 174, 108050. [Google Scholar] [CrossRef]
- Kohmoto, S.; Chuko, T.; Hisamatsu, S.; Okuda, Y.; Masu, H.; Takahashi, M.; Kishikawa, K. Piezoluminescence and Liquid Crystallinity of 4,4′-(9,10-Anthracenediyl) bispyridinium Salts. Cryst. Growth Des. 2015, 15, 2723–2731. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, R.; Li, Y.; Huang, H.; Wang, Q.; Wang, D.; Zhu, X.; Liu, S.; Zhu, H. An AIE-active boron-difluoride complex: Multi-stimuli-responsive fluorescence and application in data security protection. Chem. Commun. 2014, 50, 12951–12954. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, M.K.; Mahadevan, K.M.; Basavaraj, R.B.; Darshan, G.P.; Sharma, S.C.; Raju, M.S.; Vijayakumar, G.R.; Manjappa, K.B.; Yang, D.-Y.; Nagabhushana, H. New design of highly sensitive AIE based fluorescent imidazole derivatives: Probing of sweat pores and anti-counterfeiting applications. Mater. Sci. Eng. C 2019, 101, 564–574. [Google Scholar] [CrossRef]
- Pannipara, M.; Al-Sehemi, A.G.; Kalam, A.; Asiri, A.M. Naphthalene based AIE active stimuli-responsive material as rewritable media for temporary communication. Opt. Mater. 2017, 72, 442–446. [Google Scholar] [CrossRef]
- Han, J.; Sun, J.; Li, Y.; Duan, Y.; Han, T. One-pot synthesis of a mechanochromic AIE luminogen: Implication for rewritable optical data storage. J. Mater. Chem. C 2016, 4, 9287–9293. [Google Scholar] [CrossRef]
- Li, S.; Shang, Y.; Zhao, E.; Kwok, R.T.K.; Lam, J.W.Y.; Song, Y.; Tang, B.Z. Color-tunable and highly solid emissive AIE molecules: Synthesis, photophysics, data storage and biological application. J. Mater. Chem. C 2015, 3, 3445–3451. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Hong, Y.; Chen, B.; Wang, Y.; Zhou, W.; Wong, W.W.H.; Zhou, J.; Smith, T.A.; Zhao, Z. AIE conjugated polyelectrolytes based on tetraphenylethene for efficient fluorescence imaging and lifetime imaging of living cells. Polym. Chem. 2017, 8, 3862–3866. [Google Scholar] [CrossRef]
- Dai, C.; Yang, D.; Zhang, W.; Fu, X.; Chen, Q.; Zhu, C.; Cheng, Y.; Wang, L. Boron ketoiminate-based conjugated polymers with tunable AIE behaviours and their applications for cell imaging. J. Mater. Chem. B 2015, 3, 7030–7036. [Google Scholar] [CrossRef]
- Dong, W.; Ma, Z.; Chen, P.; Duan, Q. Carbazole and tetraphenylethylene based AIE-active conjugated polymer for highly sensitive TNT detection. Mater. Lett. 2019, 236, 480–482. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, F.X.; Feng, Y.; Liu, X.; Wang, L.; Yu, Z.-Q.; Tang, B.Z. Shape-Persistent π-Conjugated Macrocycles with Aggregation-Induced Emission Property: Synthesis, Mechanofluorochromism, and Mercury (II) Detection. ACS Appl. Mater. Interfaces 2019, 11, 34232–34240. [Google Scholar] [CrossRef]
- Ekbote, A.; Mobin, S.M.; Misra, R. Stimuli-responsive phenothiazine-based donor–acceptor isomers: AIE, mechanochromism and polymorphism. J. Mater. Chem. C 2020, 8, 3589–3602. [Google Scholar] [CrossRef]
- Chua, M.H.; Zhou, H.; Lin, T.T.; Wu, J.; Xu, J. Triphenylethylenyl-based donor–acceptor–donor molecules: Studies on structural and optical properties and AIE properties for cyanide detection. J. Mater. Chem. C 2017, 5, 12194–12203. [Google Scholar] [CrossRef]
- Qian, R.; Tong, H.; Huang, C.; Li, J.; Tang, Y.; Wang, R.; Lou, K.; Wang, W. A donor–acceptor triptycene–coumarin hybrid dye featuring a charge separated excited state and AIE properties. Org. Biomol. Chem. 2016, 14, 5007–5011. [Google Scholar] [CrossRef]
- Guo, B.; Cai, X.; Xu, S.; Fateminia, S.M.A.; Liu, J.; Liang, J.; Feng, G.; Wu, W.; Liu, B. Decoration of porphyrin with tetraphenylethene: Converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement. J. Mater. Chem. B 2016, 4, 4690–4695. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Liu, M.; Yang, Q.; Chen, Y. From Tetraphenylfurans to Ring-Opened (Z)-1, 4-Enediones: ACQ Fluorophores versus AIEgens with Distinct Responses to Mechanical Force and Light. Chem. Eur. J. 2018, 24, 13197–13204. [Google Scholar] [CrossRef]
- Zhao, N.; Lam, J.W.Y.; Sung, H.H.Y.; Su, H.M.; Williams, I.D.; Wong, K.S.; Tang, B.Z. Effect of the Counterion on Light Emission: A Displacement Strategy to Change the Emission Behaviour from Aggregation-Caused Quenching to Aggregation-Induced Emission and to Construct Sensitive Fluorescent Sensors for Hg2+ Detection. Chem. Eur. J. 2014, 20, 133–138. [Google Scholar] [CrossRef]
- Long, X.; Wu, J.; Yang, S.; Deng, Z.; Zheng, Y.; Zhang, W.; Jiang, X.-F.; Lu, F.; Li, M.-D.; Xu, L. Discovery of and insights into one-photon and two-photon excited ACQ-to-AIE conversion via positional isomerization. J. Mater. Chem. C 2021, 9, 11679–11689. [Google Scholar] [CrossRef]
- Li, Y.-X.; Yang, X.-F.; Miao, J.-L.; Sun, G.-X. Substitution Position and Vinylene Bond Geometry Modulating the Fluorescence Solvatochromism and Aggregation-Induced Emission of (9-Anthryl) vinyl(1-pyrenyl) vinylbenzene Isomers. J. Phys. Chem. C 2016, 120, 21722–21729. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, Y.; Zhang, X.; Chen, M.; Guo, H.; Yang, F. Perylene bisimide with diphenylacrylonitrile on side-chain: Strongly fluorescent liquid crystal with large pseudo Stokes shift based on AIE and FRET effect. Soft Matter 2018, 14, 6737–6744. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, J.Z. Red and near infrared emission materials with AIE characteristics. J. Mater. Chem. C 2016, 4, 10588–10609. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Ran, H.; Zhang, J.; Chen, L.; Han, R.; Duan, X.; Sun, H.; Hu, J.-Y. New pyrene-based butterfly-shaped blue AIEgens: Synthesis, structure, aggregation-induced emission and their nondoped blue OLEDs. Dyes Pigm. 2020, 173, 107881. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Q.; Wen, X.; Gao, X.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Pyrene-based blue AIEgens: Tunable intramolecular conjugation, good hole mobility and reversible mechanochromism. J. Mater. Chem. C 2016, 4, 8506–8513. [Google Scholar] [CrossRef]
- Ekbote, A.; Han, S.H.; Jadhav, T.; Mobin, S.M.; Lee, J.Y.; Misra, R. Stimuli responsive AIE active positional isomers of phenanthroimidazole as non-doped emitters in OLEDs. J. Mater. Chem. C 2018, 6, 2077–2087. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Ni, H.; Zhang, H.; Zhang, H.; Chuah, C.; Ma, C.; Wong, K.S.; Lam, J.W.Y.; Kwok, R.T.K.; et al. ACQ-to-AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two-Photon NIR Bioimaging. Angew. Chem. Int. Ed. 2020, 59, 12822–12826. [Google Scholar] [CrossRef]
- Caruso, U.; Panunzi, B.; Diana, R.; Concilio, S.; Sessa, L.; Shikler, R.; Nabha, S.; Tuzi, A.; Piotto, S. AIE/ACQ Effects in Two DR/NIR Emitters: A Structural and DFT Comparative Analysis. Molecules 2018, 23, 1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekbote, A.; Mobin, S.M.; Misra, R. Structure–property relationship in multi-stimuli responsive D–A–A′ benzothiazole functionalized isomers. J. Mater. Chem. C 2018, 6, 10888–10901. [Google Scholar] [CrossRef]
- Li, K.; Su, X.; Wang, Y.; Tao, F.; Cui, Y.; Zhang, H.; Li, T. D-π-A type barbituric derivatives: Aggregation induced emission, mechanofluorochromic and solvatochromic properties. J. Lumin. 2018, 203, 50–58. [Google Scholar] [CrossRef]
- Tong, J.; Wang, Y.; Mei, J.; Wang, J.; Qin, A.; Sun, J.Z.; Tang, B.Z. A 1,3-Indandione-Functionalized Tetraphenylethene: Aggregation-Induced Emission, Solvatochromism, Mechanochromism, and Potential Application as a Multiresponsive Fluorescent Probe. Chem. Eur. J. 2014, 20, 4661–4670. [Google Scholar] [CrossRef]
- Schmitt, V.; Moschel, S.; Detert, H. Diaryldistyrylpyrazines: Solvatochromic and Acidochromic Fluorophores. Eur. J. Org. Chem. 2013, 2013, 5655–5669. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Ge, Z.; Zhang, W.; Wang, K.-P.; Hu, Z.-Q. Dimethylamine substituted bisbenzocoumarins: Solvatochromic, mechanochromic and acidochromic properties. CrystEngComm 2018, 20, 5432–5441. [Google Scholar] [CrossRef]
- Naeem, K.C.; Subhakumari, A.; Varughese, S.; Nair, V.C. Heteroatom induced contrasting effects on the stimuli responsive properties of anthracene based donor–π–acceptor fluorophores. J. Mater. Chem. C 2015, 3, 10225–10231. [Google Scholar] [CrossRef]
- Subuddhi, U.; Haldar, S.; Sankararaman, S.; Mishra, A.K. Photophysical behaviour of 1-(4-N,N-dimethylaminophenylethynyl)pyrene (DMAPEPy) in homogeneous media. Photochem. Photobiol. Sci. 2006, 5, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Swathi, M.G.; Devadiga, D.; Ahipa, T.N. Mechanochromic studies of new cyanopyridone based fluorescent conjugated molecules. J. Lumin. 2020, 217, 116818. [Google Scholar] [CrossRef]
- Gundu, S.; Kim, M.; Mergu, N.; Son, Y.-A. AIE-active and reversible mechanochromic tetraphenylethene-tetradiphenylacrylonitrile hybrid luminogens with re-writable optical data storage application. Dyes Pigm. 2017, 146, 7–13. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Chi, Z.; Xu, B.; Zhou, W.; Liu, S.; Zhang, Y.; Xu, J. New Thermally Stable Piezofluorochromic Aggregation-Induced Emission Compounds. Org. Lett. 2011, 13, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, H.; Shi, G.; Yang, J.; Chi, Z.; Ma, Y. Luminescent network film deposited electrochemically from a carbazole functionalized AIE molecule and its application for OLEDs. J. Mater. Chem. C 2015, 3, 3752–3759. [Google Scholar] [CrossRef]
- Mao, Z.; Yang, Z.; Mu, Y.; Zhang, Y.; Wang, Y.F.; Chi, Z.; Lo, C.C.; Liu, S.; Lien, A.; Xu, J. Linearly Tunable Emission Colors Obtained from a Fluorescent–Phosphorescent Dual-Emission Compound by Mechanical Stimuli. Angew. Chem. 2015, 127, 6368–6371. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Kong, L.; Yang, J. Mechanoresponsive Material of AIE-Active 1,4-Dihydropyrrolo [3,2-b] pyrrole Luminophores Bearing Tetraphenylethylene Group with Rewritable Data Storage. Molecules 2018, 23, 3255. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Nagai, S.; Asami, M.; Ito, S. Two types of two-step mechanochromic luminescence of phenanthroimidazolylbenzothiadiazoles. Mater. Adv. 2020, 1, 708–719. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhang, L.; Liu, L.; Wang, Q.; Lu, H.; Zhao, X. Remarkable solid-state fluorescence change from the visible to the near-infrared region based on the protonation/deprotonation of an AIEgen. Mater. Chem. Front. 2020, 4, 3378–3383. [Google Scholar] [CrossRef]
- Gao, M.; Su, H.; Li, S.; Lin, Y.; Ling, X.; Qin, A.; Tang, B.Z. An easily accessible aggregation-induced emission probe for lipid droplet-specific imaging and movement tracking. Chem. Commun. 2017, 53, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Zhang, Y.-L.; Chen, X.-L.; Su, H.-F.; Peng, Q.-C.; Yu, B.; Qu, L.-B.; Li, K. A Type of Atypical AIEgen Used for One-Photon/Two-Photon Targeted Imaging in Live Cells. ACS Appl. Bio Mater. 2020, 3, 505–511. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lin, X.; Li, R.; Wang, Z.; Liu, W.; Chen, L.; Chen, N.; Dai, T.; Sun, S.; Li, Z.; et al. Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization. Molecules 2022, 27, 193. https://doi.org/10.3390/molecules27010193
Wang X, Lin X, Li R, Wang Z, Liu W, Chen L, Chen N, Dai T, Sun S, Li Z, et al. Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization. Molecules. 2022; 27(1):193. https://doi.org/10.3390/molecules27010193
Chicago/Turabian StyleWang, Xinli, Xiang Lin, Renfu Li, Zexin Wang, Wei Liu, Liwei Chen, Nannan Chen, Tao Dai, Shitao Sun, Zhenli Li, and et al. 2022. "Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization" Molecules 27, no. 1: 193. https://doi.org/10.3390/molecules27010193
APA StyleWang, X., Lin, X., Li, R., Wang, Z., Liu, W., Chen, L., Chen, N., Dai, T., Sun, S., Li, Z., Hao, J., Lin, B., & Xie, L. (2022). Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization. Molecules, 27(1), 193. https://doi.org/10.3390/molecules27010193