Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentation
2.3. Collection of Samples
2.4. Preparation of β-Cyclodextrin-Decorated Magnetic Activated Carbon
2.5. Ultrasound-Assisted Magnetic Solid-Phase Microextraction Procedure
2.6. Optimization of Extraction Procedure
2.7. Adsorption and Reusability
2.8. Method Validation
3. Results and Discussion
3.1. Characterization
3.1.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
3.1.2. Characterization of Adsorbent by Transmission Electron Microscopy
3.1.3. X-ray Diffraction Spectroscopy
3.2. Optimization of the MSPME Method
3.2.1. Selection of Adsorbent
3.2.2. Screening Process Using Two-Level Fractional Factorial Design
3.2.3. Response Surface Methodology and Desirability Function
3.2.4. Analytical Performance of MSPME-HPLC-DAD Method
3.2.5. Validation and Application
Spike Recovery Test
Determination of Selected Steroid Hormones in Wastewater (Influent and Effluent) and River Samples
3.2.6. Adsorption and Reusability
Adsorption Studies
Reusability and Regeneration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nezami, A.; Nosrati, R.; Golichenari, B.; Rezaee, R. Nanomaterial-based aptasensors and bioaf fi nity sensors for quantitative detection of 17 b-estradiol. Trends Anal. Chem. 2017, 94, 95–105. [Google Scholar] [CrossRef]
- Puckowski, A.; Mioduszewska, K.; Łukaszewicz, P.; Borecka, M.; Caban, M.; Maszkowska, J.; Stepnowski, P. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. J. Pharm. Biomed. Anal. 2016, 127, 232–255. [Google Scholar] [CrossRef] [PubMed]
- López-García, M.; Romero-González, R.; Frenich, A.G.; Frenich, A.G. Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography—Orbitrap high resolution mass spectrometry. J. Chromatogr. A 2018, 1540, 21–30. [Google Scholar] [CrossRef]
- di Donna, L.; Benabdelkamel, H.; Taverna, D.; Indelicato, S.; Aiello, D.; Napoli, A.; Sindona, G.; Mazzotti, F. Determination of ketosteroid hormones in meat by liquid chromatography tandem mass spectrometry and derivatization chemistry. Anal. Bioanal. Chem. 2015, 407, 5835–5842. [Google Scholar] [CrossRef] [PubMed]
- Smajdor, J.; Piech, R.; Rumin, M.; Bator, B.P. New high sensitive hydrocortisone determination by means of adsorptive stripping voltammetry on renewable mercury film silver based electrode. Electrochim. Acta 2015, 182, 67–72. [Google Scholar] [CrossRef]
- Merlo, F.; Speltini, A.; Maraschi, F.; Sturini, M.; Profumo, A. HPLC-MS/MS multiclass determination of steroid hormones in environmental waters after preconcentration on the carbonaceous sorbent HA-C@silica. Arab. J. Chem. 2020, 13, 4673–4680. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, B.; Zhang, J.; Wu, Y.; Duan, H. Determination of the residues of 50 anabolic hormones in muscle, milk and liver by very-high-pressure liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. B 2009, 877, 489–496. [Google Scholar] [CrossRef]
- Qin, H.; Li, B.; Liu, M.S.; Yang, Y.L. Separation and pre-concentration of glucocorticoids in water samples by ionic liquid supported vortex-assisted synergic microextraction and HPLC determination. J. Sep. Sci. 2013, 36, 1463–1469. [Google Scholar] [CrossRef]
- Manickum, T.; John, W. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa. Anal. Bioanal. Chem. 2015, 407, 4949–4970. [Google Scholar] [CrossRef] [PubMed]
- Avar, P.; Maász, G.; Takács, P.; Lovas, S.; Zrínyi, Z.; Svigruha, R.; Takátsy, A.; Tóth, L.G.; Pirger, Z. HPLC-MS/MS analysis of steroid hormones in environmental water samples. Drug Test. Anal. 2016, 8, 123–127. [Google Scholar] [CrossRef]
- Fonseca, A.P.; Lima, D.L.D.; Esteves, V.I. Degradation by solar radiation of estrogenic hormones monitored by UV–visible spectroscopy and capillary electrophoresis. Water Air Soil Pollut. 2011, 215, 441–447. [Google Scholar] [CrossRef]
- Huysman, S.; van Meulebroek, L.; Vanryckeghem, F.; van Langenhove, H.; Demeestere, K.; Vanhaecke, L. Development and validation of an ultra-high performance liquid chromatographic high resolution Q-Orbitrap mass spectrometric method for the simultaneous determination of steroidal endocrine disrupting compounds in aquatic matrices. Anal. Chim. Acta 2017, 984, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, A.; Pan, X.; Chen, L. Simultaneous determination of sex hormones in egg products by ZnCl2 depositing lipid, solid-phase extraction and ultra performance liquid chromatography/electrospray ionization tandem mass spectrometry. Anal. Chim. Acta 2010, 678, 108–116. [Google Scholar] [CrossRef]
- Attalah, E.; Nasr, Y.S.; El-gammal, H.A.; El-dien, F.A.N.; Attalah, E.; Nasr, Y.S.; El-gammal, H.A.; El-dien, F.A.N. Food Additives & Contaminants: Part A Optimisation and validation of a new analytical method for the determination of four natural and synthetic hormones using LC-ESI-MS/MS. Food Addit. Contam. Part A 2016, 33, 1545–1556. [Google Scholar]
- Fan, Y.B.; Yin, Y.M.; Jiang, W.B.; Chen, Y.P.; Yang, J.W.; Wu, J.; Xie, M.X. Simultaneous determination of ten steroid hormones in animal origin food by matrix solid-phase dispersion and liquid chromatography-electrospray tandem mass spectrometry. Food Chem. 2014, 142, 170–177. [Google Scholar] [CrossRef]
- Aufartová, J.; Mahugo-santana, C.; Sosa-ferrera, Z.; Santana-rodríguez, J.J.; Nováková, L.; Solich, P. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: An overview. Anal. Chim. Acta 2011, 704, 33–46. [Google Scholar] [CrossRef]
- Lu, C.; Wang, M.; Mu, J.; Han, D.; Bai, Y.; Zhang, H. Simultaneous determination of eighteen steroid hormones in antler velvet by gas chromatography–tandem mass spectrometry. Food Chem. 2013, 141, 1796–1806. [Google Scholar] [CrossRef]
- Ahmadi, M.; Elmongy, H.; Madrakian, T. Analytica Chimica Acta Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Anal. Chim. Acta 2017, 958, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Socas-rodríguez, B.; Asensio-ramos, M.; Hernández-borges, J.; Rodríguez-delgado, Á. Hollow-fiber liquid-phase microextraction for the determination of natural and synthetic estrogens in milk samples. J. Chromatogr. A 2013, 1313, 175–184. [Google Scholar] [CrossRef]
- Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC Trends Anal. Chem. 2016, 82, 199–207. [Google Scholar] [CrossRef]
- Żwir-Ferenc, A.; Biziuk, M. Solid Phase Extraction Technique—Trends, Opportunities and Applications. Polish J. Environ. Stud. 2006, 15, 677–690. [Google Scholar]
- Juang, R.S.; Yei, Y.C.; Liao, C.S.; Lin, K.S.; Lu, H.C.; Wang, S.F.; Sun, A.C. Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents. J. Taiwan Inst. Chem. Eng. 2018, 90, 51–60. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Zhang, C.; Ren, L. Preparation and evaluation of activated carbon-based iron-containing adsorbents for enhanced Cr(VI) removal: Mechanism study. Chem. Eng. J. 2012, 189–190, 295–302. [Google Scholar] [CrossRef]
- Cui, H.; Turn, S.Q. Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride. Appl. Catal. B Environ. 2009, 88, 25–31. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Guo, Y.; Liu, W.; Dong, C.; Wu, Y.; Li, S.; Shuang, S. β-Cyclodextrin/Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sens. Actuators B Chem. 2012, 163, 171–178. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Xu, D.; Huang, X.; Xu, X.; Zheng, S.; Zhang, Y.; Lin, H. Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr. Polym. 2017, 175, 584–591. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, W.; Sharma, S.; Tong, G.; Deng, Y. Synthesis of Cyclodextrin-functionalized Cellulose Nanofibril Aerogel as a Highly Effective Adsorbent for Phenol Pollutant Removal. BioResources 2015, 10, 7555–7568. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Qiu, C.; Fan, H.; Bai, Y.; Jin, Z.; Wang, J. A Novel Cyclodextrin-Functionalized Hybrid Silicon Wastewater Nano-Adsorbent Material and Its Adsorption Properties. Molecules 2018, 23, 1485. [Google Scholar] [CrossRef] [Green Version]
- Kawano, S.; Kida, T.; Miyawaki, K.; Noguchi, Y.; Kato, E.; Nakano, T.; Akashi, M. Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (PCB) contaminants in insulating oil. Environ. Sci. Technol. 2014, 48, 8094–8100. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Chen, D.; Ma, J. Synthesis of Cyclodextrin-based Adsorbents and its Application for Organic Pollutant Removal from Water. Curr. Org. Chem. 2017, 21, 1976–1990. [Google Scholar]
- Feng, J.; Sun, M.; Bu, Y.; Luo, C. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography. Anal. Bioanal. Chem. 2015, 407, 7025–7035. [Google Scholar] [CrossRef]
- Song, X.; Ha, W.; Chen, J.; Shi, Y. Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones. J. Chromatogr. A 2014, 1374, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Dimpe, K.M.; Mpupa, A.; Nomngongo, P.N. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2018, 188, 341–348. [Google Scholar] [CrossRef]
- Mashile, P.P.; Mpupa, A.; Nomngongo, P.N. Adsorptive removal of microcystin-LR from surface and waste water using tyre-basedbpowdered activated carbon: Kinetics and isotherms. Toxicon 2018, 145, 23–31. [Google Scholar] [CrossRef]
- Nyaba, L.; Matong, J.M.; Nomngongo, P.N. Nanoparticles consisting of magnetite and Al2O3 for ligandless ultrasound-assisted dispersive solid phase microextraction of Sb, Mo and V prior to their determination by ICP-OES. Microchim. Acta 2016, 183, 1289–1297. [Google Scholar] [CrossRef]
- Hoga, C.A.; Reche, K.V.G.; Almeida, F.L.; Reis, V.R.; Cordeiro, R.P.; Anadón, A.; Reyes, F.G.R. Development and validation of an analytical method for the determination of 17β-estradiol residues in muscle of tambaqui (Colossoma macropomum Cuvier, 1818) by LC-MS/MS and its application in samples from a fish sexual reversion study. J. Chromatogr. B 2019, 1128, 121774. [Google Scholar] [CrossRef]
- Oliveira, L.C.A.; Rios, R.V.R.A.; Fabris, J.D.; Garg, V.; Sapag, K.; Lago, R.M. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 2003, 40, 2177–2183. [Google Scholar] [CrossRef]
- Filippou, O.; Deliyanni, E.A.; Samanidou, V.F. Fabrication and evaluation of magnetic activated carbon as adsorbent for ultrasonic assisted magnetic solid phase dispersive extraction of bisphenol A from milk prior to high performance liquid chromatographic analysis with ultraviolet detection. J. Chromatogr. A 2017, 1479, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, J.; Shi, Y.-P. Magnetic reduced graphene oxide functionalized with β-cyclodextrin as magnetic solid-phase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography. J. Chromatogr. A 2016, 1441, 24–33. [Google Scholar] [CrossRef]
- Martendal, E.; Budziak, D.; Carasek, E. Application of fractional factorial experimental and Box-Behnken designs for optimization of single-drop microextraction of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole from wine samples. J. Chromatogr. A 2007, 1148, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Wilnkison, L. Revising the Pareto chart. Am. Stat. 2006, 60, 332–334. [Google Scholar]
- Mpupa, A.; Mashile, G.P.; Nomngongo, P.N. Vortex assisted-supramolecular solvent based microextraction coupled with spectrophotometric determination of triclosan in environmental water samples. Open Chem. 2017, 15, 255–262. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Rastogi, N.K. β-Cyclodextrin capped graphene-magnetite nanocomposite for selective adsorption of Bisphenol-A. Carbohydr. Polym. 2017, 168, 129–137. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Liu, S.; Hu, X.; Zeng, G.; Hu, X.; Liu, S.; Liu, S.; Huang, B.; Li, M. Fabrication of β-cyclodextrin/poly (l-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17β-estradiol. Chem. Eng. J. 2017, 308, 597–605. [Google Scholar] [CrossRef]
- Mashile, G.P.; Mpupa, A.; Nomngongo, P.N. In-Syringe Micro Solid-Phase Extraction Method for the Separation and Preconcentration of Parabens in environmental water. Molecules 2018, 23, 1450–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, K.; Mei, M.; Li, H.; Huang, X. Multiple monolithic fiber solid-phase microextraction based on a polymeric ionic liquid with high-performance liquid chromatography for the determination of steroid sex hormones in water and urine. J. Sep. Sci. 2016, 39, 566–575. [Google Scholar] [CrossRef]
- Sampaio, N.M.F.M.; Castilhos, N.D.B.; da Silva, B.C.; Riegel-Vidotti, I.C.; Silva, B.J.G. Evaluation of Polyvinyl Alcohol/Pectin-Based Hydrogel Disks as Extraction Phase for Determination of Steroidal Hormones in Aqueous Samples by GC-MS/MS. Molecules 2019, 24, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaukovi, Z.D.; Gruji, S.D.; Mati, I.V.; Lau, M.D. Determination of sterols and steroid hormones in surface water and wastewater using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Anal. Chim. Acta 2017, 135, 39–47. [Google Scholar] [CrossRef]
- Pessoa, G.P.; de Souza, N.C.; Vidal, C.B.; Alves, J.A.C.; Firmino, P.I.M.; Nascimento, R.F.; Santos, A.B.d. Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Sci. Total Environ. 2014, 490, 288–295. [Google Scholar] [CrossRef]
- Atkinson, S.K.; Marlatt, V.L.; Kimpe, L.E.; Lean, D.R.S.; Trudeau, V.L.; Blais, J.M. The occurrence of steroidal estrogens in south-eastern Ontario wastewater treatment plants. Sci. Total Environ. 2012, 430, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Manzo, V.; Goya-Pacheco, J.; Arismendi, D.; Becerra-Herrera, M.; Castillo-Aguirre, A.; Castillo-Felices, R.; Rosero-Moreano, M.; Carasek, E.; Richter, P. Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Anal. Chim. Acta 2019, 1087, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shishov, A.; Sviridov, I.; Timofeeva, I.; Chibisova, N.; Moskvin, L.; Bulatov, A. An effervescence tablet-assisted switchable solvent-based microextraction: On-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination. J. Mol. Liq. 2017, 247, 246–253. [Google Scholar] [CrossRef]
- Mhuka, V.; Dube, S.; Nindi, M.M. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-OrbitrapTM MS. Emerg. Contam. 2020, 6, 250–258. [Google Scholar] [CrossRef]
- Langmuir, I. The evaporation, condensation and reflection of molecules and the mechanism of adsorption. Phys. Rev. 1916, 8, 149–156. [Google Scholar] [CrossRef]
- Freundlich, H. Über die adsorption in lösungen. Z. Für Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Nqombolo, A.; Mpupa, A.; Gugushe, A.S.; Moutloali, R.M.; Nomngongo, P.N. Adsorptive removal of lead from acid mine drainage using cobalt-methylimidazolate framework as an adsorbent: Kinetics, isotherm, and regeneration. Environ. Sci. Pollut. Res. 2019, 26, 3330–3339. [Google Scholar] [CrossRef] [PubMed]
Factors | −α | Low Level (−1) | Central Point (0) | High Level (+1) | +α |
---|---|---|---|---|---|
Mass of adsorbent (MA) (mg) | 10 | 30 | 50 | ||
pH | 4 | 6.5 | 9 | ||
Extraction time (ET) (min) | 10 | 20 | 30 | ||
Eluent volume (µL) | 400 | 700 | 1000 | ||
Central composite design | −α | +α | |||
Mass of adsorbent (MA) (mg) | 4.25 | 10 | 30 | 50 | 55.74 |
Extraction time (ET) (min) | 7.12 | 10 | 20 | 30 | 32.87 |
Eluent volume (µL) | 313.8 | 400 | 700 | 1000 | 1086 |
Analytical Characteristics | E1 | E2 | HYD | PRO |
---|---|---|---|---|
Linearity (µg L−1) | 0.04–250 | 0.7–300 | 0.1–250 | 0.07–200 |
Correlation coefficient (R2) | 0.9988 | 0.9991 | 0.9969 | 0.9987 |
Limits of detection (LOD) (µg L−1) | 0.01 | 0.02 | 0.03 | 0.02 |
Limits of quantification (LOQ) (µg L−1) | 0.033 | 0.067 | 0.10 | 0.067 |
Enrichment factor | 93 ± 2 | 81 ± 3 | 90 ± 2 | 91 ± 2 |
Recovery (%, mean ± SD, n = 6) | 99.1 ± 2.5 | 98.5 ± 3.1 | 98.9 ± 2.1 | 97.5 ± 3.1 |
Intraday precision (n = 10 measurements), % | 2.3 | 2.5 | 1.1 | 3.4 |
Interday precision (n = 5 working days), % | 4.4 | 3.5 | 3.2 | 4.2 |
Analyte | Matrix | Analytical Technique | LOD (µg L−1) | RSD | Reference |
---|---|---|---|---|---|
Steroid hormones | Water samples | SPE-LC-APCI-MS/MS | 0.0058–0.015 | 1–22 | [48] |
E2 | Water and urine samples | SPME-HPLC | 0.12 | <8 | [46] |
E1, E2 | wastewater | SPE-GC-MS | 0.011–0.060 | 0.10–0.28 | [49] |
Estradiol, testosterone, PRO, HYD | River water | ETA-SHS-ME-HPLC-UV | 0.002–0.0017 | [52] | |
E1, E2 | Wastewater | SPE-HPLC-MS | 0.004–0.014 | [50] | |
E1, E2 | Wastewater | RDSE-GC-MS | 0.003–0.006 | 5–9 | [51] |
E1, E2, PRO | Surface water | SPE-GC-MS | 0.13–0.3 | 0.2–22 | [47] |
E1, E2, PRO | Wastewater and river water | SPE-HPLC-MS/MS | 0.00002–0.0009 | <15 | [6] |
E1, E2, HYD, PRO | Wastewater and river water | MSPME-HPLC-DAD | 0.01–0.03 | 2.1–3.1 | Current work |
Analytes | Influent | Effluent | River | ||||
---|---|---|---|---|---|---|---|
Added (µg L−1) | Found (µg L−1) | % R | Found (µg L−1) | % R | Found (µg L−1) | % R | |
E1 | 0 | 0.120 ± 0.005 | 0.0631 ± 0.001 | 0.037 ± 0.001 | |||
1 | 1.07 ± 0.04 | 95.2 ± 3.7 | 1.03 ± 0.02 | 97.1 ± 1.9 | 1.02 ± 0.03 | 98.2 ± 2.9 | |
5 | 4.96 ± 0.12 | 96.7 ± 2.4 | 4.98 ± 0.15 | 98.3 ± 1.2 | 4.96 ± 0.13 | 98.5 ± 2.6 | |
E2 | 0 | 2.41 ± 0.11 | 1.67 ± 0.02 | 0.52 ± 0.01 | |||
1 | 3.39 ± 0.08 | 97.8 ± 2.4 | 2.65 ± 0.05 | 98.3 ± 1.9 | 1.51 ± 0.05 | 98.5 ± 3.3 | |
5 | 7.37 ± 0.14 | 99.1 ± 1.9 | 6.77 ± 0.21 | 102 ± 3.1 | 5.67 ± 0.21 | 103 ± 3.7 | |
HYD | 0 | ND | ND | ND | |||
1 | 0.96 ± 0.03 | 95.6 ± 3.1 | 0.97 ± 0.04 | 96.7 ± 4.1 | 0.99 ± 0.04 | 98.5 ± 4.1 | |
5 | 4.87 ± 0.11 | 97.3 ± 2.6 | 4.92 ± 0.13 | 98.4 ± 2.6 | 4.97 ± 0.13 | 99.3 ± 2.6 | |
PRO | 0 | ND | ND | ND | |||
1 | 0.92 ± 0.01 | 92.3 ± 1.1 | 0.94 ± 0.02 | 93.5 ± 2.1 | 0.97 ± 0.04 | 96.6 ± 4.1 | |
5 | 4.78 ± 0.14 | 95.5 ± 2.9 | 4.82 ± 0.17 | 96.3 ± 3.5 | 4.88 ± 0.17 | 97.6 ± 3.5 |
Analytes | Influent Wastewater (n = 35) | Effluent Wastewater (n = 35) | River Water (n = 20) | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
E1 | 15.7 | 126 | 35.9 | 10.4 | 57.8 | 32.3 | 10.4 | 63.1 | 30.0 |
E2 | 143 | 6234 | 2414 | 67.4 | 2207 | 1132 | 124 | 948 | 463 |
HYD | <LOQ | 87.5 | 2.50 | <LOQ | 37.3 | 1.07 | <LOQ | <LOQ | <LOQ |
PRO | <LOQ | 127 | 6.35 | <LOQ | 78.3 | 3.92 | <LOQ | 68.3 | 3.42 |
Parameters | E1 | E2 | HYD | PRO | |
---|---|---|---|---|---|
Langmuir | qmax (mg g−1) | 217 | 244 | 270 | 294 |
KL (L mg−1) | 9.2 | 6.8 | 6.2 | 4.9 | |
R2 | 0.9972 | 0.9975 | 0.9989 | 0.9984 | |
Freundlich | KF | 190 | 201 | 223 | 239 |
n | 3.5 | 3.2 | 3.9 | 2.9 | |
R2 | 0.8203 | 0.8112 | 0.9371 | 0.9271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpupa, A.; Nqombolo, A.; Mizaikoff, B.; Nomngongo, P.N. Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules 2022, 27, 248. https://doi.org/10.3390/molecules27010248
Mpupa A, Nqombolo A, Mizaikoff B, Nomngongo PN. Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules. 2022; 27(1):248. https://doi.org/10.3390/molecules27010248
Chicago/Turabian StyleMpupa, Anele, Azile Nqombolo, Boris Mizaikoff, and Philiswa Nosizo Nomngongo. 2022. "Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis" Molecules 27, no. 1: 248. https://doi.org/10.3390/molecules27010248
APA StyleMpupa, A., Nqombolo, A., Mizaikoff, B., & Nomngongo, P. N. (2022). Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules, 27(1), 248. https://doi.org/10.3390/molecules27010248