Studying Ice with Environmental Scanning Electron Microscopy
Abstract
:1. Introduction
2. Results
2.1. Environmental SEM and the Study of Ice
2.2. Heterogeneous Ice Nucleation
2.3. Ice Morphology and Dynamics of Ice Formation and Sublimation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bartels-Rausch, T. Ten things we need to know about ice and snow. Nature 2013, 494, 27–29. [Google Scholar] [CrossRef]
- Björneholm, O.; Hansen, M.H.; Hodgson, A.; Liu, L.M.; Limmer, D.T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; et al. Water at Interfaces. Chem. Rev. 2016, 116, 7698–7726. [Google Scholar] [CrossRef]
- Holden, M.A.; Whale, T.F.; Tarn, M.D.; O’Sullivan, D.; Walshaw, R.D.; Murray, B.J.; Meldrum, F.C.; Christenson, H.K. High-speed imaging of ice nucleation in water proves the existence of active sites. Sci. Adv. 2019, 5, eaav4316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pach, E.; Rodriguez, L.; Verdaguer, A. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study. J. Phys. Chem. B 2018, 122, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Verdaguer, A.; Sacha, G.M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.K.; Maier, S.; Verdaguer, A.; Velasco-Velez, J.J.; Salmeron, M. Water at surfaces and interfaces: From molecules to ice and bulk liquid. Prog. Surf. Sci. 2018, 93, 87–107. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.; Verdaguer, A. Imaging Water Thin Films in Ambient Conditions Using Atomic Force Microscopy. Materials 2016, 9, 182. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.; Bachmann, F.; Pedevilla, P.; Cox, S.J.; Michaelides, A.; Gerthsen, D.; Leisner, T. Active sites in heterogeneous ice nucleation-the example of K-rich feldspars. Science 2017, 355, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Cao, D.; Zhu, C.; Tian, Y.; Peng, J.; Guo, J.; Chen, J.; Li, X.-Z.; Francisco, J.S.; Zeng, X.C.; et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 2020, 577, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Llombart, P.; Bergua, R.M.; Noya, E.G.; Macdowell, L.G. Structure and water attachment rates of ice in the atmosphere: Role of nitrogen. Phys. Chem. Chem. Phys. 2019, 21, 19594–19611. [Google Scholar] [CrossRef] [PubMed]
- Llombart, P.; Llombart, P.; Noya, E.G.; MacDowell, L.G. Surface phase transitions and crystal habits of ice in the atmosphere. Sci. Adv. 2020, 6, eaay9322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, Y.; Zhu, X.; Fei, L.; Huang, H.; Wang, Y. Applications of ESEM on Materials Science: Recent Updates and a Look Forward. Small Methods 2020, 4, 1900588. [Google Scholar] [CrossRef]
- Bogner, A.; Jouneau, P.H.; Thollet, G.; Basset, D.; Gauthier, C. A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron 2007, 38, 390–401. [Google Scholar] [CrossRef]
- Danilatos, G.D. Review and outline of environmental SEM at present. J. Microsc. 1991, 162, 391–402. [Google Scholar] [CrossRef]
- Danilatos, G.D. Introduction to the ESEM instrument. Microsc. Res. Tech. 1993, 25, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R. Environmental Scanning Microscopy: An Introduction to ESEM®; Philips Electron Optics: Eindhoven, The Netherlands, 1996; pp. 1–56. [Google Scholar]
- BIGG, E.K. A new Technique for Counting Ice-Forming Nuclei in Aerosols. Tellus 1957, 9, 394–400. [Google Scholar] [CrossRef]
- Langer, G. Evaluation of NCAR Ice Nucleus Counter. Part I: Basic Operation. J. Appl. Meteorol. 1973, 12, 1000–1011. [Google Scholar] [CrossRef]
- Rogers, D.C. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res. 1988, 22, 149–181. [Google Scholar] [CrossRef]
- Bigg, E.K. Measurement of concentrations of natural ice nuclei. Atmos. Res. 1990, 25, 397–408. [Google Scholar] [CrossRef]
- Rogers, D.C.; DeMott, P.J.; Cooper, W.A.; Rasmussen, R.M. Ice formation in wave clouds-Comparison of aircraft observations with measurements of ice nuclei. In Proceedings of the 2th International Conference on Clouds and Precipitation, Zurich, Switzerland, 19–23 August 1996; p. 137. [Google Scholar]
- Schnell, R.C. Ice Nuclei in Seawater, Fog Water and Marine Air off the Coast of Nova Scotia: Summer 1975. J. Atmos. Sci. 1977, 34, 1299–1305. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.A.; Schneider, G.F.; Shevkoplyas, S.S.; Hashimoto, M.; Ibanescu, M.; Wiley, B.J.; Whitesides, G.M. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 2009, 9, 2293. [Google Scholar] [CrossRef]
- Reicher, N.; Segev, L.; Rudich, Y. The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust. Atmos. Meas. Tech. 2018, 11, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, T.; Polen, M.; Cheng, P.; Ekambaram, V.; Somers, J.; Anna, S.L.; Sullivan, R.C. Development and characterization of a “store and create” microfluidic device to determine the heterogeneous freezing properties of ice nucleating particles. Aerosol Sci. Technol. 2020, 54, 79–93. [Google Scholar] [CrossRef]
- Tarn, M.D.; Sikora, S.N.F.; Porter, G.C.E.; Wyld, B.V.; Alayof, M.; Reicher, N.; Harrison, A.D.; Rudich, Y.; Shim, J.; Murray, B.J. On-chip analysis of atmospheric ice-nucleating particles in continuous flow. Lab Chip 2020, 20, 2889–2910. [Google Scholar] [CrossRef] [PubMed]
- Marcolli, C.; Gedamke, S.; Peter, T.; Zobrist, B. Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys. 2007, 7, 5081–5091. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, D.H.; MacKenzie, A.P. Effect of Solute on Ice-Solution Interfacial Free Energy; Calculation from Measured Homogeneous Nucleation Temperatures. In Water Structure at the Water-Polymer Interface; Springer: Boston, MA, USA, 1972; pp. 126–145. [Google Scholar]
- Koop, T.; Bertram, A.K.; Molina, L.T.; Molina, M.J. Phase Transitions in Aqueous NH4 HSO4 Solutions. J. Phys. Chem. A 1999, 103, 9042–9048. [Google Scholar] [CrossRef]
- Bertram, A.K.; Koop, T.; Molina, L.T.; Molina, M.J. Ice Formation in (NH 4)2SO4−H2O Particles. J. Phys. Chem. A 2000, 104, 584–588. [Google Scholar] [CrossRef]
- Zobrist, B.; Weers, U.; Koop, T. Ice nucleation in aqueous solutions of poly [ethylene glycol] with different molar mass. J. Chem. Phys. 2003, 118, 10254–10261. [Google Scholar] [CrossRef]
- Zuberi, B.; Bertram, A.K.; Koop, T.; Molina, L.T.; Molina, M.J. Heterogeneous Freezing of Aqueous Particles Induced by Crystallized (NH4)2SO4, Ice, and Letovicite. J. Phys. Chem. A 2001, 105, 6458–6464. [Google Scholar] [CrossRef]
- Zobrist, B.; Marcolli, C.; Koop, T.; Luo, B.P.; Murphy, D.M.; Lohmann, U.; Zardini, A.A.; Krieger, U.K.; Corti, T.; Cziczo, D.J.; et al. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect. Atmos. Chem. Phys. 2006, 6, 3115–3129. [Google Scholar] [CrossRef] [Green Version]
- Libbrecht, K.G. The physics of snow crystals. Rep. Prog. Phys. 2005, 68, 855–895. [Google Scholar] [CrossRef] [Green Version]
- Walden, V.P.; Warren, S.G.; Tuttle, E. Atmospheric ice crystals over the Antarctic Plateau in winter. J. Appl. Meteorol. 2003, 42, 1391–1405. [Google Scholar] [CrossRef]
- Tamtögl, A.; Bahn, E.; Sacchi, M.; Zhu, J.; Ward, D.J.; Jardine, A.P.; Jenkins, S.J.; Fouquet, P.; Ellis, J.; Allison, W. Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nat. Commun. 2021, 12, 4–11. [Google Scholar] [CrossRef]
- Cheng, Z.; Sharma, N.; Tseng, K.P.; Kovarik, L.; China, S. Direct observation and assessment of phase states of ambient and lab-generated sub-micron particles upon humidification. RSC Adv. 2021, 11, 15264–15272. [Google Scholar] [CrossRef]
- Murray, B.J.; O’Sullivan, D.; Atkinson, J.D.; Webb, M.E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [Green Version]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, F.; Ebert, M.; Worringen, A.; Schütz, L.; Weinbruch, S. Environmental scanning electron microscopy (ESEM) as a new technique to determine the ice nucleation capability of individual atmospheric aerosol particles. Atmos. Environ. 2007, 41, 8219–8227. [Google Scholar] [CrossRef]
- Vali, G.; DeMott, P.J.; Möhler, O.; Whale, T.F. Technical Note: A proposal for ice nucleation terminology. Atmos. Chem. Phys. 2015, 15, 10263–10270. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, F.; Weinbruch, S.; Schütz, L.; Hofmann, H.; Ebert, M.; Kandler, K.; Worringen, A. Ice nucleation properties of the most abundant mineral dust phases. J. Geophys. Res. 2008, 113, D23204. [Google Scholar] [CrossRef]
- Ewing, G.E. Ambient thin film water on insulator surfaces. Chem. Rev. 2006, 106, 1511–1526. [Google Scholar] [CrossRef] [PubMed]
- Verdaguer, A.; Cardellach, M.; Fraxedas, J. Thin water films grown at ambient conditions on BaF2 (111) studied by scanning polarization force microscopy. J. Chem. Phys. 2008, 129, 174705. [Google Scholar] [CrossRef]
- Verdaguer, A.; Segura, J.J.; López-Mir, L.; Sauthier, G.; Fraxedas, J. Communication: Growing room temperature ice with graphene. J. Chem. Phys. 2013, 138, 121101. [Google Scholar] [CrossRef] [Green Version]
- Calò, A.; Domingo, N.; Santos, S.; Verdaguer, A. Revealing water films structure from force reconstruction in dynamic AFM. J. Phys. Chem. C 2015, 119, 8258–8265. [Google Scholar] [CrossRef]
- Marcolli, C. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. 2014, 14, 2071–2104. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Knopf, D.A.; China, S.; Arey, B.W.; Harder, T.H.; Gilles, M.K.; Laskin, A. Direct observation of ice nucleation events on individual atmospheric particles. Phys. Chem. Chem. Phys. 2016, 18, 29721–29731. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, J.D.; Murray, B.J.; Woodhouse, M.T.; Whale, T.F.; Baustian, K.J.; Carslaw, K.S.; Dobbie, S.; O’Sullivan, D.; Malkin, T.L. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 2013, 498, 355–358. [Google Scholar] [CrossRef]
- Harrison, A.D.; Whale, T.F.; Carpenter, M.A.; Holden, M.A.; Neve, L.; O’Sullivan, D.; Vergara Temprado, J.; Murray, B.J. Not all feldspars are equal: A survey of ice nucleating properties across the feldspar group of minerals. Atmos. Chem. Phys. 2016, 16, 10927–10940. [Google Scholar] [CrossRef] [Green Version]
- Bryant, G.W.; Hallett, J.; Mason, B.J. The epitaxial growth of ice on single-crystalline substrates. J. Phys. Chem. Solids 1960, 12, 189–195. [Google Scholar] [CrossRef]
- Caslavsky, J.L.; Vedam, K. Epitaxial growth of ice crystals on the muscovite cleavage plane and their relation to partial dislocations. J. Appl. Phys. 1971, 42, 516–520. [Google Scholar] [CrossRef]
- Egerton, R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer: Boston, MA, USA, 2011; ISBN 9781441995827. [Google Scholar]
- Vonnegut, B. The nucleation of ice formation by silver iodide. J. Appl. Phys. 1947, 18, 593–595. [Google Scholar] [CrossRef]
- Cox, S.J.; Raza, Z.; Kathmann, S.M.; Slater, B.; Michaelides, A. The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals. Faraday Discuss. 2013, 167, 389–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croteau, T.; Bertram, A.K.; Patey, G.N. Adsorption and structure of water on kaolinite surfaces: Possible insight into ice nucleation from grand canonical Monte Carlo calculations. J. Phys. Chem. A 2008, 112, 10708–10712. [Google Scholar] [CrossRef]
- Croteau, T.; Bertram, A.K.; Patey, G.N. Simulation of water adsorption on kaolinite under atmospheric conditions. J. Phys. Chem. A 2009, 113, 7826–7833. [Google Scholar] [CrossRef]
- Hu, X.L.; Michaelides, A. Water on the hydroxylated (0 0 1) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer. Surf. Sci. 2008, 602, 960–974. [Google Scholar] [CrossRef]
- Zielke, S.A.; Bertram, A.K.; Patey, G.N. Simulations of Ice Nucleation by Kaolinite (001) with Rigid and Flexible Surfaces. J. Phys. Chem. B 2016, 120, 1726–1734. [Google Scholar] [CrossRef]
- Fletcher, N.H.; Fletcher, N.H. Active Sites and Ice Crystal Nucleation. J. Atmos. Sci. 1969, 26, 1266–1271. [Google Scholar] [CrossRef]
- Christenson, H.K. Two-step crystal nucleation via capillary condensation. CrystEngComm 2013, 15, 2030–2039. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 2010; Volume 18, ISBN 978-0-7923-4211-3. [Google Scholar]
- Anderson, B.J.; Hallett, J. Supersaturation and time dependence of ice nucleation from the vapor on single crystal substrates. J. Atmos. Sci. 1976, 33, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Fitzner, M.; Sosso, G.C.; Cox, S.J.; Michaelides, A. The Many Faces of Heterogeneous Ice Nucleation: Interplay between Surface Morphology and Hydrophobicity. J. Am. Chem. Soc. 2015, 137, 13658–13669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.L.; Michaelides, A. Ice formation on kaolinite: Lattice match or amphoterism? Surf. Sci. 2007, 601, 5378–5381. [Google Scholar] [CrossRef]
- Lupi, L.; Hudait, A.; Molinero, V. Heterogeneous nucleation of ice on carbon surfaces. J. Am. Chem. Soc. 2014, 136, 3156–3164. [Google Scholar] [CrossRef]
- Lupi, L.; Molinero, V. Does hydrophilicity of carbon particles improve their ice nucleation ability? J. Phys. Chem. A 2014, 118, 7330–7337. [Google Scholar] [CrossRef]
- Pedevilla, P.; Fitzner, M.; Michaelides, A. What makes a good descriptor for heterogeneous ice nucleation on OH-patterned surfaces. Phys. Rev. B 2017, 96, 115441. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Fei, L.; Rao, Z.; Liu, D.; Leung, C.W.; Wang, Y. In Situ Observation of Ice Formation from Water Vapor by Environmental SEM. Cryst. Growth Des. 2018, 18, 6602–6608. [Google Scholar] [CrossRef]
- David, R.O.; Marcolli, C.; Fahrni, J.; Qiu, Y.; Perez Sirkin, Y.A.; Molinero, V.; Mahrt, F.; Brühwiler, D.; Lohmann, U.; Kanji, Z.A. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles. Proc. Natl. Acad. Sci. USA 2019, 116, 8184–8189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pach, E.; Verdaguer, A. Pores Dominate Ice Nucleation on Feldspars. J. Phys. Chem. C 2019, 123, 20998–21004. [Google Scholar] [CrossRef]
- Marcolli, C. Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice. Atmos. Chem. Phys 2020, 20, 3209–3230. [Google Scholar] [CrossRef] [Green Version]
- Rosen, H.A.; Hansen, A.D.; Dod, R.L.; Novakov, T. Soot in urban atmospheres: Determination by an optical absorption technique. Science 1980, 208, 741–744. [Google Scholar] [CrossRef]
- Dymarska, M.; Murray, B.J.; Sun, L.; Eastwood, M.L.; Knopf, D.A.; Bertram, A.K. Deposition ice nucleation on soot at temperatures relevant for the lower troposphere. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Möhler, O.; Griffiths, S.; Zou, L. Enhanced Ice Nucleation and Growth by Porous Composite of RGO and Hydrophilic Silica Nanoparticles. J. Phys. Chem. C 2020, 124, 677–685. [Google Scholar] [CrossRef]
- Zhang, Z.; Ying, Y.; Xu, M.; Zhang, C.; Rao, Z.; Ke, S.; Zhou, Y.; Huang, H.; Fei, L. Atomic Steps Induce the Aligned Growth of Ice Crystals on Graphite Surfaces. Nano Lett. 2020, 20, 8112–8119. [Google Scholar] [CrossRef] [PubMed]
- Coluzza, I.; Creamean, J.; Rossi, M.J.; Wex, H.; Alpert, P.A.; Bianco, V.; Boose, Y.; Dellago, C.; Felgitsch, L.; Fröhlich-Nowoisky, J.; et al. Perspectives on the future of ice nucleation research: Research needs and Unanswered questions identified from two international workshops. Atmosphere 2017, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Kunert, A.T.; Pöhlker, M.L.; Tang, K.; Krevert, C.S.; Wieder, C.; Speth, K.R.; Hanson, L.E.; Morris, C.E.; Schmale, D.G.; Pöschl, U.; et al. Macromolecular fungal ice nuclei in Fusarium: Effects of physical and chemical processing. Biogeosciences 2019, 16, 4647–4659. [Google Scholar] [CrossRef] [Green Version]
- Schnell, R.; Vali, G. Atmospheric Ice Nuclei from Decomposing Vegetation. Nature 1972, 236, 163–165. [Google Scholar] [CrossRef]
- Sahyoun, M.; Korsholm, U.S.; Sørensen, J.H.; Šantl-Temkiv, T.; Finster, K.; Gosewinkel, U.; Nielsen, N.W. Impact of bacterial ice nucleating particles on weather predicted by a numerical weather prediction model. Atmos. Environ. 2017, 170, 33–44. [Google Scholar] [CrossRef]
- Conen, F.; Yakutin, M.V. Soil rich in biological ice-nucleating particles abound in ice-nucleating macromolecules likely produced by fungi. Biogeosciences 2018, 15, 4381–4385. [Google Scholar] [CrossRef] [Green Version]
- Hiranuma, N.; Möhler, O.; Yamashita, K.; Tajiri, T.; Saito, A.; Kiselev, A.; Hoffmann, N.; Hoose, C.; Jantsch, E.; Koop, T.; et al. Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci. 2015, 8, 273–277. [Google Scholar] [CrossRef]
- Lybrand, R.A.; Veghte, D.P.; China, S.; Zaharescu, D.G.; Anderton, C.R.; Aleman, R.; Schroeder, P.A.; Qafoku, O. Deciphering the Incipient Phases of Ice-Mineral Interactions as a Precursor of Physical Weathering. ACS Earth Sp. Chem. 2021, 5, 1233–1241. [Google Scholar] [CrossRef]
- Schott, R.T.; Nebel, M.; Roth-Nebelsick, A. Comparison of the freezing behavior of two liverwort species–Conocephalum salebrosum and Marchantia polymorpha subsp. ruderalis. Lindbergia 2021, 2021, 01135. [Google Scholar] [CrossRef]
- Bentley, W.A.; Humphreys, W.J. Snow Crystals; McGraw-Hill Book Co., Inc.: New York, NY, USA, 1931. [Google Scholar]
- Nakaya, U. Snow Crystals; Harvard University Press: Cambridge, MA, USA, 1954; ISBN 9780674182769. [Google Scholar]
- Kenneth, G. Libbrecht A Quantitative Physical Model of the Snow Crystal Morphology Diagram. Mater. Sci. 2019, arXiv:1910.09067. [Google Scholar]
- Magee, N.B.; Miller, A.; Amaral, M.; Cumiskey, A. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys 2014, 14, 12357–12371. [Google Scholar] [CrossRef] [Green Version]
- Cascajo-castresana, M.; Morin, S.; Bittner, A.M. The ice-vapor interface during growth and sublimation. Atmos. Chem. Phys. 2021. in review. [Google Scholar] [CrossRef]
- Pedersen, C.; Mihranyan, A.; Strømme, M. Surface Transition on Ice Induced by the Formation of a Grain Boundary. PLoS ONE 2011, 6, e24373. [Google Scholar] [CrossRef] [Green Version]
- Pfalzgraff, W.C.; Hulscher, R.M.; Neshyba, S.P. Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys. 2010, 10, 2927–2935. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shu, J.; Chen, Q. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental. Nat. Publ. Gr. 2017, 7, 46680. [Google Scholar] [CrossRef] [Green Version]
- Nair, M.; Husmann, A.; Cameron, R.E.; Best, S.M. In situ ESEM imaging of the vapor-pressure-dependent sublimation-induced morphology of ice. Phys. Rev. Mater. 2018, 2, 040401. [Google Scholar] [CrossRef] [Green Version]
- McNeill, V.F.; Grannas, A.M.; Abbatt, J.P.D.; Ammann, M.; Ariya, P.; Bartels-Rausch, T.; Domine, F.; Donaldson, D.J.; Guzman, M.I.; Heger, D.; et al. Organics in environmental ices: Sources, chemistry, and impacts. Atmos. Chem. Phys. 2012, 12, 9653–9678. [Google Scholar] [CrossRef] [Green Version]
- Bartels-Rausch, T.; Jacobi, H.-W.; Kahan, T.F.; Thomas, J.L.; Thomson, E.S.; Abbatt, J.P.D.; Ammann, M.; Blackford, J.R.; Bluhm, H.; Pettersson, J.B.C.; et al. Atmospheric Chemistry and Physics A review of air-ice chemical and physical interactions (AICI): Liquids, quasi-liquids, and solids in snow. Atmos. Chem. Phys 2014, 14, 1587–1633. [Google Scholar] [CrossRef] [Green Version]
- Lignell, A.; Gudipati, M.S. Mixing of the immiscible: Hydrocarbons in water-ice near the ice crystallization temperature. J. Phys. Chem. A 2015, 119, 2607–2613. [Google Scholar] [CrossRef]
- De Angelis, M.; Steffensen, J.P.; Legrand, M.; Clausen, H.; Hammer, C. Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: Comparison with east Antarctic records. J. Geophys. Res. Ocean. 1997, 102, 26681–26698. [Google Scholar] [CrossRef]
- Wolff, E.W.; Rankin, A.M.; Röthlisberger, R. An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett. 2003, 30, 2158. [Google Scholar] [CrossRef]
- Fischer, H.; Fundel, F.; Ruth, U.; Twarloh, B.; Wegner, A.; Udisti, R.; Becagli, S.; Castellano, E.; Morganti, A.; Severi, M.; et al. Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth Planet. Sci. Lett. 2007, 260, 340–354. [Google Scholar] [CrossRef] [Green Version]
- Legrand, M.; McConnell, J.; Fischer, H.; Wolff, E.W.; Preunkert, S.; Arienzo, M.; Chellman, N.; Leuenberger, D.; Maselli, O.; Place, P.; et al. Boreal fire records in Northern Hemisphere ice cores: A review. Clim. Past 2016, 12, 2033–2059. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Neděla, V.; Runštuk, J.; Ondrušková, G.; Krausko, J.; Vetráková, L.; Heger, D. Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation. Atmos. Chem. Phys. 2017, 17, 6291–6303. [Google Scholar] [CrossRef] [Green Version]
- Krausko, J.; Runštuk, J.; Neděla, V.; Klán, P.; Heger, D. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures. Langmuir 2014, 30, 5441–5447. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhuo, Y.; He, J.; Zhang, Z. Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter 2018, 14, 4846–4851. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Long, C.; An, K.; Hu, C.; Liu, C. Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances. J. Colloid Interface Sci. 2019, 548, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Golovin, K.; Dhyani, A.; Thouless, M.D.; Tuteja, A. Low-interfacial toughness materials for effective large-scale deicing. Science 2019, 364, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Z. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. J. Mater. Chem. A 2018, 6, 13549–13581. [Google Scholar] [CrossRef]
- Lv, J.; Song, Y.; Jiang, L.; Wang, J. Bio-Inspired Strategies for Anti-Icing. ACS Nano 2014, 8, 3152–3169. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.R.; McClintic, W.T.; Lester, K.C.; Collier, C.P.; Boreyko, J.B. Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Appl. Mater. Interfaces 2017, 9, 24308–24317. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.W.; Sahoo, V.; Lu, M.C. Control of Ice Formation. ACS Nano 2017, 11, 2665–2674. [Google Scholar] [CrossRef]
- Wang, J.; Wu, M.; Liu, J.; Xu, F.; Hussain, T.; Scotchford, C.; Hou, X. Metallic skeleton promoted two-phase durable icephobic layers. J. Colloid Interface Sci. 2021, 587, 47–55. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Z.; Fan, Q.; Lv, J.; Wang, J. Anti-Ice coating inspired by ice skating. Small 2014, 10, 4693–4699. [Google Scholar] [CrossRef]
- Shibraen, M.H.M.A.; Yagoub, H.; Zhang, X.; Xu, J.; Yang, S. Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film. Appl. Surf. Sci. 2016, 370, 1–5. [Google Scholar] [CrossRef]
- Lo, C.W.; Li, J.X.; Lu, M.C. Frosting and defrosting on the hydrophilic nylon-6 nanofiber membrane–coated surfaces. Appl. Therm. Eng. 2021, 184, 116300. [Google Scholar] [CrossRef]
- Bespaly, A.; Dey, I.; Papeer, J.; Shaham, A.; Komm, P.; Hadad, I.; Marcus, G.; Zigler, A. Control of amorphous solid water target morphology induced by deposition on a charged surface. High Power Laser Sci. Eng. 2021, 9, E37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pach, E.; Verdaguer, A. Studying Ice with Environmental Scanning Electron Microscopy. Molecules 2022, 27, 258. https://doi.org/10.3390/molecules27010258
Pach E, Verdaguer A. Studying Ice with Environmental Scanning Electron Microscopy. Molecules. 2022; 27(1):258. https://doi.org/10.3390/molecules27010258
Chicago/Turabian StylePach, Elzbieta, and Albert Verdaguer. 2022. "Studying Ice with Environmental Scanning Electron Microscopy" Molecules 27, no. 1: 258. https://doi.org/10.3390/molecules27010258
APA StylePach, E., & Verdaguer, A. (2022). Studying Ice with Environmental Scanning Electron Microscopy. Molecules, 27(1), 258. https://doi.org/10.3390/molecules27010258