Proximate Composition, Bioactive Compounds, and Antioxidant Potential of Wild Halophytes Grown in Coastal Salt Marsh Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Plant Samples Collection
2.2. Soil Analysis
2.3. Proximate Composition Analysis
2.4. Quantitative Estimation of Some Secondary Compounds
2.5. Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Properties of Soil Supporting Studied Halophytes
3.2. Proximate Composition of the Studied Halophytes
3.3. Secondary Metabolites
3.4. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Kafi, M.; Khan, M.A. Crop and Forage Production Using Saline Waters; Daya Publishing House: Delhi, India, 2008. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhanian, H.; Aghaei, K.; Komatsu, S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteom. 2011, 74, 1323–1337. [Google Scholar] [CrossRef] [PubMed]
- O’leary, J.W.; Glenn, E.P. Global Distribution and Potential for Halophytes. In Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands; Springer: Berlin, Germany; Dordrecht, The Netherlands, 1994; pp. 7–17. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Ghanem, A.E.-M.F.; Mohamed, E.; Kasem, A.M.; El-Ghamery, A.A. Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants 2021, 10, 1100. [Google Scholar] [CrossRef]
- Grigore, M.-N.; Toma, C. Morphological and anatomical adaptations of halophytes: A review. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed.; Springer: Cham, Switzerland, 2021; pp. 1079–1221. [Google Scholar]
- de la Fuente, V.; Sánchez-Gavilán, I.; Ramírez, E.; Rufo, L.; Sánchez-Mata, D. Morphological Variability of Halophytes: Salicornioideae on Iberian Peninsula. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1223–1258. [Google Scholar]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015, 6, 537. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.; Mangu, V.R.; Bedre, R.; Sanchez, L.; Pilcher, W.; Zandkarimi, H.; Baisakh, N. salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants. In Elucidation of Abiotic Stress Signaling in Plants; Springer: New York, NY, USA, 2015; pp. 243–279. [Google Scholar]
- Menzel, U.; Lieth, H. Halophyte Database. In Halophyte Uses in Different Climates II. Halophyte Crop Development for Different Climates, Progress in Biometeorology; Lieth, H., Ed.; Backuys Publishers: Leiden, The Netherlands, 2003; Volume 14, pp. 127–133. [Google Scholar]
- Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Mhamdi, B.; Chaieb, K.; Bakrouf, A.; Magné, C.; Abdelly, C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 2009, 47, 2083–2091. [Google Scholar] [CrossRef]
- Shabala, S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, H.; Zhao, Q.; Yoo, M.-J.; Zhu, N.; Yu, J.; Yu, J.; Guo, S.; Miao, Y.; Chen, S. Physiological and comparative proteomic analyses of saline-alkali NaHCO3- responses in leaves of halophyte Puccinellia tenuiflora. Plant Soil 2019, 437, 137–158. [Google Scholar] [CrossRef]
- Yuan, F.; Guo, J.; Shabala, S.; Wang, B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 2019, 9, 1954. [Google Scholar] [CrossRef]
- Rozentsvet, O.; Nesterov, V.; Bogdanova, E. Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russ. J. Plant Physiol. 2017, 64, 464–477. [Google Scholar] [CrossRef]
- Lastiri-Hernández, M.; Cruz-Cárdenas, G.; Álvarez-Bernal, D.; Vázquez-Sánchez, M.; Bermúdez-Torres, K. Ecological Niche Modeling for Halophyte Species with Possible Anthropogenic Use in Agricultural Saline Soils. Environ. Model. Assess. 2020, 25, 429–440. [Google Scholar] [CrossRef]
- Zahran, M.A.; Willis, A.J. The Vegetation of Egypt, 2nd ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2009. [Google Scholar]
- El-Amier, Y.A.; Abd El-Gawad, A.M. Plant communities along the international coastal highway of Nile delta, Egypt. J. Sci. Agric. 2017, 1, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Abd-ElGawad, A.M.; Rashad, Y.M.; Abdel-Azeem, A.M.; Al-Barati, S.A.; Assaeed, A.M.; Mowafy, A.M. Calligonum polygonoides L. shrubs provide species-specific facilitation for the understory plants in coastal ecosystem. Biology 2020, 9, 232. [Google Scholar] [CrossRef]
- Abd El Gawad, A.; El-Amier, Y. Allelopathy and potential impact of invasive Acacia saligna (Labill.) Wendl. on plant diversity in the nile delta coast of egypt. Int. J. Environ. Res. 2015, 9, 923–932. [Google Scholar]
- Shaltout, M.; El Gindy, A.; Omstedt, A. Recent climate trends and future scenarios along the Egyptian Mediterranean coast. Geofizika 2013, 30, 19–41. [Google Scholar]
- Tackholm, V. Students’ Flora of Egypt, 2nd ed.; Cairo University Press: Cairo, Egypt, 1974. [Google Scholar]
- Boulos, L. Flora of Egypt. Volume 2: Geraniaceae-Boraginaceae; All Hadara Publishing: Cairo, Egypt, 2000. [Google Scholar]
- Boulos, L. Flora of Egypt. Volume 1: Azollaceae-Oxalidaceae; All Hadara Publishing: Cairo, Egypt, 1999. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Interscience Publishers, Inc.: New York, NY, USA, 1947. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Constable and Co. Ltd.: London, UK, 1962. [Google Scholar]
- Pierce, W.C.; Haenisch, E.L.; Sawyer, D.T. Quantitative Analysis; Wiley Toppen: Tokyo, Japan, 1958. [Google Scholar]
- Allen, S.E.; Grimshaw, H.M.; Parkinson, J.A.; Quarmby, C.; Roberts, J.D. Chemical Analysis of Ecological Materials; Blackwell Scientific Publications: London, UK, 1974. [Google Scholar]
- Abd-ElGawad, A.M.; El-Amier, Y.A.; Assaeed, A.M.; Al-Rowaily, S.L. Interspecific variations in the habitats of Reichardia tingitana (L.) Roth leading to changes in its bioactive constituents and allelopathic activity. Saudi J. Biol. Sci. 2020, 27, 489–499. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Pirie, N.W. Proteins. In Modern Methods of Plant Analysis; Paech, K., Tracey, M.V., Eds.; Springer: Berlin, Germany, 1955; Volume IV, pp. 23–68. [Google Scholar]
- Feteris, W. A serum glucose method without protein precipitation. Am. J. Med. Technol. 1965, 31, 17–21. [Google Scholar]
- Yuan, Z.; Kapu, N.S.; Beatson, R.; Chang, X.F.; Martinez, D.M. Effect of alkaline pre-extraction of hemicelluloses and silica on kraft pulping of bamboo (Neosinocalamus affinis Keng). Ind. Crops Prod. 2016, 91, 66–75. [Google Scholar] [CrossRef]
- Allen, S.E. (Ed.) Chemical Analysis of Ecological Materials, 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1989. [Google Scholar]
- van Handel, E. Direct microdetermination of sucrose. Anal. Biochem. 1968, 22, 280–283. [Google Scholar] [CrossRef]
- Southgate, D.A.T. Determination of Food Carbohydrates, 2nd ed.; Elsevier Applied Science: London, UK, 1991. [Google Scholar]
- Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT Food Sci. Technol. 2012, 46, 548–555. [Google Scholar] [CrossRef]
- Sadasivam, S.; Manickam, A. Biochemical Methods, 3rd ed.; New Age International Publishers: New Delhi, India, 2008. [Google Scholar]
- Obadoni, B.; Ochuko, P. Phytochemical studies and comparative efficacy of crude extracts of some homeostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 2002, 8, 203–208. [Google Scholar]
- Harborne, J. Phytochemical Methods; Chapman and Hall, Ltd.: London, UK, 1973; Volume 4, pp. 49–188. [Google Scholar]
- Stankovic, M.S. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujev. J. Sci. 2011, 33, 63–72. [Google Scholar]
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. Flavour Fragr. J. 2010, 25, 219–312. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Santos, C.A.d.; Alves, P.R.L.; Paula, A.M.d.; Nakatani, A.S.; Pereira, J.d.M.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Shumsky, S.A.; Hickey, G.M.; Pelletier, B.; Johns, T. Understanding the contribution of wild edible plants to rural social-ecological resilience in semi-arid Kenya. Ecol. Soc. 2014, 19, 34. [Google Scholar] [CrossRef] [Green Version]
- Ulian, T.; Diazgranados, M.; Pironon, S.; Padulosi, S.; Liu, U.; Davies, L.; Howes, M.J.R.; Borrell, J.S.; Ondo, I.; Pérez-Escobar, O.A. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2020, 2, 421–445. [Google Scholar] [CrossRef]
- Seal, T.; Chaudhuri, K.; Pillai, B.; Chakrabarti, S.; Auddy, B.; Mondal, T. Wild-edible plants of Meghalaya State in India: Nutritional, minerals, antinutritional, vitamin content and toxicity studies. Pharmacogn. Mag. 2020, 16, 142. [Google Scholar] [CrossRef]
- Okello, J.; Okullo, J.; Eilu, G.; Nyeko, P.; Obua, J. Proximate composition of wild and on-farm Tamarindus indica LINN fruits in the agro-ecological zones of Uganda. J. Nutr. Health Food Eng. 2018, 8, 310–317. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; Abd-ElGawad, A.M.; Alghanem, S.M.; Al-Taisan, W.a.A.; El-Amier, Y.A. Nutritional value, mineral composition, secondary metabolites, and antioxidant activity of some wild geophyte sedges and grasses. Plants 2019, 8, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Amier, Y.A.; Al-hadithy, O.N. Phytochemical constituents, antioxidant and allelopathic activities of Aizoon canariense L. On Zea mays (L.) and associated weeds. Plant Arch. 2020, 20, 303–310. [Google Scholar]
- Zahran, M.A.; El-Amier, Y.A. Non-traditional fodders from the halophytic vegetation of the deltaic Mediterranean coastal desert, Egypt. J. Biol. Sci. 2013, 13, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants 2021, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.; Abd-ElGawad, A.M.; El-Amier, Y.A.; El Gendy, A.; Al-Rowaily, S. Interspecific variation, antioxidant and allelopathic activity of the essential oil from three Launaea species growing naturally in heterogeneous habitats in Egypt. Flavour Fragr. J. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- Hassan, E.M.; El Gendy, A.E.-N.G.; Abd-ElGawad, A.M.; Elshamy, A.I.; Farag, M.A.; Alamery, S.F.; Omer, E.A. Comparative chemical profiles of the essential oils from different varieties of Psidium guajava L. Molecules 2021, 26, 119. [Google Scholar] [CrossRef]
- Assaeed, A.; Elshamy, A.; El Gendy, A.E.-N.; Dar, B.; Al-Rowaily, S.; Abd-ElGawad, A. Sesquiterpenes-rich essential oil from above ground parts of Pulicaria somalensis exhibited antioxidant activity and allelopathic effect on weeds. Agronomy 2020, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- Singha, B.L.; Hassan, Y. Analysis of carbohydrate, moisture content and specific gravity of bambusa tulda with special reference to its harvesting season. Int. J. Sci. Res. 2017, 6, 279–283. [Google Scholar]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Aumeeruddy-Elalfi, Z.; Mollica, A.; Yilmaz, M.A.; Mahomoodally, M.F. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—A source of innovative phytopharmaceuticals from nature. Phytomedicine 2018, 38, 35–44. [Google Scholar] [CrossRef]
- de Carvalho, D.M.; Moser, C.; Lindström, M.E.; Sevastyanova, O. Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Ind. Crops Prod. 2019, 127, 203–211. [Google Scholar] [CrossRef]
- Ishida, H.; Suzuno, H.; Sugiyama, N.; Innami, S.; Tadokoro, T.; Maekawa, A. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem. 2000, 68, 359–367. [Google Scholar] [CrossRef]
- Eugenio, M.E.; Ibarra, D.; Martín-Sampedro, R.; Espinosa, E.; Bascón, I.; Rodríguez, A. Alternative raw materials for pulp and paper production in the concept of a lignocellulosic biorefinery. Cellulose 2019, 12, 78. [Google Scholar]
- Kiaei, M.; Samariha, A.; Kasmani, J.E. Characterization of biometry and the chemical and morphological properties of fibers from bagasse, corn, sunflower, rice and rapeseed residues in Iran. Afr. J. Agric. Res. 2011, 6, 3762–3767. [Google Scholar]
- Saeed, H.A.; Liu, Y.; Lucia, L.A.; Chen, H. Sudanese dicots as alternative fiber sources for pulp and papermaking. Wood Ind. Drvna Ind. 2018, 69, 175–182. [Google Scholar] [CrossRef]
- Suh, M.C.; Hahne, G.; Liu, J.R.; Stewart, C.N. Plant lipid biology and biotechnology. Plant Cell Rep. 2015, 34, 517–518. [Google Scholar] [CrossRef] [Green Version]
- Satter, M.M.A.; Khan, M.M.R.L.; Jabin, S.A.; Abedin, N.; Islam, M.F.; Shaha, B. Nutritional quality and safety aspects of wild vegetables consume in Bangladesh. Asian Pac. J. Trop. Biomed. 2016, 6, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Berto, A.; da Silva, A.F.; Visentainer, J.V.; Matsushita, M.; de Souza, N.E. Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res. Int. 2015, 77, 441–449. [Google Scholar] [CrossRef]
- Costa e Silva, L.F.; de Campos Valadares Filho, S.; Engle, T.E.; Rotta, P.P.; Marcondes, M.I.; Silva, F.A.S.; Martins, E.C.; Tokunaga, A.T. Macrominerals and trace element requirements for beef cattle. PLoS ONE 2015, 10, e0144464. [Google Scholar]
- Underwood, E.; Suttle, N. The Mineral Nutrition of Livestock, 3rd ed.; CABI Publishing: New York, NY, USA, 1999. [Google Scholar]
- Abbasi, M.K.; Tahir, M.M.; Shah, A.H.; Batool, F. Mineral nutrient composition of different ecotypes of white clover and their nutrient credit to soil at Rawalkot Azad Jammu and Kashmir. Pak. J. Bot. 2009, 41, 41–51. [Google Scholar]
- Vejnovic, J.; Djuric, B.; Lombnæs, P.; Singh, B.R. Concentration of trace and major elements in natural grasslands of Bosnia and Herzegovina in relation to soil properties and plant species. Acta Agric. Scand. B-Soil Plant Sci. 2018, 68, 243–254. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Mineral nutrition. In Plant Physiological Ecology, 3rd ed.; Lambers, H., Oliveira, R.S., Eds.; Springer: Cham, Switzerland, 2019; pp. 301–384. [Google Scholar]
- El-Shora, H.M.; Abd El-Gawad, A.M. Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresen. Environ. Bull. 2015, 24, 386–393. [Google Scholar]
- Berini, J.L.; Brockman, S.A.; Hegeman, A.D.; Reich, P.B.; Muthukrishnan, R.; Montgomery, R.A.; Forester, J.D. Combinations of abiotic factors differentially alter production of plant secondary metabolites in five woody plant species in the boreal-temperate transition zone. Front. Plant Sci. 2018, 9, 1257. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.J.; Gangadhar, K.N.; Vizetto-Duarte, C.; Wubshet, S.G.; Nyberg, N.T.; Barreira, L.; Varela, J.; Custódio, L. Maritime halophyte species from southern Portugal as sources of bioactive molecules. Mar. Drugs 2014, 12, 2228–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chekroun-Bechlaghem, N.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; Gismondi, A.; Nanni, V.; Di Marco, G.; Canuti, L.; Canini, A.; El Haci, I.; Atik Bekkara, F. Phytochemical analysis and antioxidant activity of Tamarix africana, Arthrocnemum macrostachyum and Suaeda fruticosa, three halophyte species from Algeria. Plant Biosyst. 2019, 153, 843–852. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- ElNaker, N.A.; Yousef, A.F.; Yousef, L.F. A review of Arthrocnemum (Arthrocaulon) macrostachyum chemical content and bioactivity. Phytochem. Rev. 2020, 19, 1427–1448. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Saad-Allah, K.; Fareed, M.; Ali, A.; El-Badry, A.; El-Zawawy, N.A.; Wu, J.; Sun, J.; Mao, G.-H. Phytochemical analysis and assessment of antioxidant and antimicrobial activities of some medicinal plant species from Egyptian flora. J. Appl. Biomed. 2018, 16, 289–300. [Google Scholar] [CrossRef]
- Handoussa, H.; AbdAllah, W.; AbdelMohsen, M. UPLC–ESI-PDA–MSn profiling of phenolics involved in biological activities of the medicinal plant Halocnemum strobilaceum (Pall.). Iran. J. Pharm. Res. 2019, 18, 422. [Google Scholar]
- Bakr, R.O.; El Raey, M.A.E.-A.; Ashour, R.S. Phenolic content, radical scavenging activity and cytotoxicity of Tamarix nilotica (Ehrenb.) bunge growing in Egypt. J. Pharmacogn. Phytother. 2013, 5, 47–52. [Google Scholar]
- Alshamsi, M.; Alnuaimi, A.; Alshamsi, R.; Senthilkumar, A.; Karthishwaran, K.; Al-Zayadneh, W.; Cheruth, A.J. Phytochemical analysis and antioxidant activity of Haloxylon salicarnicum, Ochradenus arabicus and Tamarix nilotica. J. Phytol. 2019, 11, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Riaguas, A.; Zengin, G.; Sinan, K.I.; Salazar-Mendías, C.; Llorent-Martínez, E.J. Phenolic profile, antioxidant activity, and enzyme inhibitory properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. J. Chem. 2020, 2020, 1016208. [Google Scholar] [CrossRef] [Green Version]
- Bakhouche, I.; Aliat, T.; Boubellouta, T.; Gali, L.; Şen, A.; Bellik, Y. Phenolic contents and in vitro antioxidant, anti-tyrosinase, and anti-inflammatory effects of leaves and roots extracts of the halophyte Limonium delicatulum. S. Afr. J. Bot. 2021, 139, 42–49. [Google Scholar] [CrossRef]
- Trabelsi, N.; Falleh, H.; Jallali, I.; Daly, A.B.; Hajlaoui, H.; Smaoui, A.; Abdelly, C.; Ksouri, R. Variation of phenolic composition and biological activities in Limoniastrum monopetalum L. organs. Acta Physiol. Plant. 2012, 34, 87–96. [Google Scholar] [CrossRef]
- Trabelsi, N.; Megdiche, W.; Ksouri, R.; Falleh, H.; Oueslati, S.; Soumaya, B.; Hajlaoui, H.; Abdelly, C. Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT Food Sci. Technol. 2010, 43, 632–639. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Soundararajan, P.; Manivannan, A.; Jeong, B.R. Different antioxidant defense systems in halophytes and glycophytes to overcome salinity stress. In Sabkha Ecosystems; Gul, B., Böer, B., Khan, M., Clüsener-Godt, M., Hameed, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 335–347. [Google Scholar]
- Abd El-Maboud, M.M. Seasonal variations effect on antioxidant compounds and their role in the adaptation of some halophytes at Wadi Gharandal, Southwest Sinai. Ann. Agric. Sci. 2019, 64, 161–166. [Google Scholar] [CrossRef]
- Nikalje, G.C.; Bhaskar, S.D.; Yadav, K.; Penna, S. Halophytes: Prospective Plants for Future. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019; pp. 221–234. [Google Scholar]
Botanical Name | Common Name | Duration | Life Form | Chorotype | Habitat |
---|---|---|---|---|---|
Arthrocnemum macrostachyum (Moric.)K. koch. | Shenan | Perennial | Ch | ME + SA | Sd, Sf, Sm, La |
Halocnemum strobilaceum (pall) M. Bieb. | Hatab Ahmar | Perennial | Ch | ME + IR + SA | Sf, Sm, La |
Limoniastrum monopetalum (L.) Boiss. | Zeita | Perennial | Ch | ME | Sf, La |
Limonium pruinosum (L.) Chaz. | Molleih | Perennial | G, He | SA | Sf, Sm, La |
Tamarix nilotica (Ehrenb). Bunge | Tarfa | Perennial | Nph | SA + SZ | Sm, Rw, Hw, Wi, Af, Dr, La |
Parameters | Halophytes Species | LSD0.05 | ||||
---|---|---|---|---|---|---|
A. macrostachyum | H. strobilaceum | L. monopetalum | L. pruinosum | T. nilotica | ||
Moisture content | 16.68 ± 0.64 b | 20.25 ± 0.78 a | 9.11 ± 0.35 cd | 7.13 ± 0.27 d | 11.24 ± 0.43 c | 2.74 *** |
Dry matter | 83.32 ± 3.20 b | 79.75 ± 3.07 b | 90.89 ± 3.50 a | 92.87 ± 3.57 a | 88.76 ± 3.41 a | 4.76 *** |
Total ash | 9.58 ± 0.64 a | 5.94 ± 0.23 b | 6.56 ± 0.25 b | 7.69 ± 0.30 b | 7.54 ± 0.29 b | 4.25 *** |
Crude fiber (%) | 17.55 ± 0.67 a | 22.78 ± 0.49 b | 7.92 ± 0.30 c | 8.79 ± 0.34 bc | 9.61 ± 0.37 bc | 2.74 ** |
Holocellulose (%) | 61.36 ± 2.45 b | 64.68 ± 3.21 ab | 51.89 ± 2.11 c | 52.78 ± 2.18 c | 68.97 ± 3.52 a | 4.75 *** |
Cellulose (%) | 41.71 ± 1.65 b | 38.11 ± 1.89 c | 31.54 ± 2.07 e | 33.37 ± 1.08 d | 46.61 ± 2.84 a | 2.22 *** |
Hemicellulose (%) | 19.65 ± 0.87 a | 16.57 ± 0.67 b | 20.35 ± 0.94 a | 19.41 ± 0.64 a | 22.36 ± 0.57 a | 4.25 * |
Lignin (%) | 9.81 ± 0.07 d | 10.66 ± 0.12 c | 12.98 ± 0.5 b | 10.68 ± 0.23 c | 15.72 ± 0.53 a | 0.37 *** |
Lipid % | 1.45 ± 0.06 c | 5.88 ± 0.23 a | 1.41 ± 0.05 c | 1.17 ± 0.04 c | 2.15 ± 0.08 b | 0.37 *** |
Crude protein % | 6.88 ± 0.26 c | 12.36 ± 0.48 b | 18.00 ± 0.69 a | 12.81 ± 0.49 b | 5.97 ± 0.23 c | 1.61 *** |
Glucose (mg g−1 DW) | 0.63 ± 0.02 e | 1.66 ± 0.06 c | 2.65 ± 0.10 a | 1.36 ± 0.05 d | 1.88 ± 0.07 b | 0.09 *** |
Sucrose (mg g−1 DW) | 2.87 ± 0.11 b | 8.31 ± 0.32 a | 3.17 ± 0.12 b | 2.31 ± 0.09 b | 3.26 ± 0.13 b | 1.11 *** |
TSS (mg g−1 DW) | 52.55 ± 2.02 d | 149.51 ± 5.75 a | 87.30 ± 3.36 b | 55.05 ± 2.12 d | 77.10 ± 2.97 c | 6.65 *** |
TC (mg g−1 DW) | 323.67 ± 6.92 d | 354.62 ± 7.58 c | 371.87 ± 7.95 bc | 391.15 ± 8.36 b | 420.34 ± 8.98 a | 19.89 *** |
NV (kcal 100 g−1 DW) | 110.77 ± 5.32 b | 193.48 ± 7.32 a | 116.37 ± 4.69 c | 96.93 ± 3.58 d | 81.67 ± 2.69 e | 12.35 *** |
Macro-elements (mg g−1 DW) | ||||||
Na+ | 27.18 ± 0.58 a | 20.50 ± 0.44 b | 18.97 ± 0.41 b | 20.37 ± 0.39 b | 23.72 ± 0.51 ab | 5.99 ns |
K+ | 64.21 ± 1.37 a | 26.70 ± 0.57 b | 12.21 ± 0.26 c | 13.97 ± 0.30 c | 12.42 ± 0.27 c | 4.89 *** |
Ca2+ | 47.27 ± 1.01 a | 32.82 ± 0.70 b | 14.83 ± 0.32 c | 15.73 ± 0.34 c | 15.83 ± 0.32 c | 9.31 *** |
Mg2+ | 13.25 ± 0.28 a | 11.32 ± 0.24 ab | 8.77 ± 0.19 b | 9.83 ± 0.21 ab | 10.33 ± 0.22 ab | 3.63 ns |
Plant Species | Tannins | Saponins | Total Flavonoids | Alkaloids | Total Phenolics |
---|---|---|---|---|---|
A. macrostachyum | 4.42 ± 0.13 e | 13.03 ± 0.39 d | 8.23 ± 0.25 a | 6.07 ± 0.18 a | 41.83 ± 1.27 a |
H. strobilaceum | 22.38 ± 0.51 a | 22.29 ± 0.36 a | 7.10 ± 0.29 ab | 6.67 ± 0.25 a | 18.72 ± 0.83 c |
L. monopetalum | 14.25 ± 0.39 c | 19.77 ± 0.20 c | 4.93 ± 0.08 bc | 7.13 ± 0.15 a | 17.01 ± 0.21 d |
L. pruinosum | 15.81 ± 0.43 b | 21.10 ± 0.60 b | 5.26 ± 0.15 bc | 7.36 ± 0.22 a | 18.46 ± 0.52 c |
T. nilotica | 11.82 ± 0.36 d | 6.72 ± 0.20 e | 4.52 ± 0.14 c | 3.36 ± 0.10 b | 22.49 ± 0.68 b |
LSD0.05 | 0.92 *** | 1.12 *** | 2.22 * | 2.43 * | 0.37 *** |
Concentration (mg mL−1) | Halophytes Species | ||||
---|---|---|---|---|---|
A. macrostachyum | H. strobilaceum | L. monopetalum | L. pruinosum | T. nilotica | |
50 | 71.63 ± 2.65 a | 58.67 ± 2.17 a | 66.88 ± 2.48 a | 65.15 ± 2.41 a | 70.47 ± 2.61 a |
40 | 63.81 ± 2.36 b | 46.58 ± 1.73 b | 56.62 ± 2.10 b | 54.89 ± 2.03 b | 58.21 ± 2.16 b |
30 | 52.24 ± 1.93 c | 39.53 ± 1.46 c | 43.17 ± 1.60 c | 41.44 ± 1.53 c | 46.76 ± 1.73 c |
20 | 43.63 ± 1.62 d | 24.33 ± 0.91 d | 27.97 ± 1.04 d | 26.24 ± 0.97 d | 31.56 ± 1.17 d |
10 | 32.54 ± 1.21 e | 17.19 ± 0.64 e | 20.83 ± 0.77 e | 19.78 ± 0.71 e | 24.42 ± 0.90 e |
5 | 23.94 ± 0.89 f | 9.40 ± 0.35 f | 13.04 ± 0.48 f | 10.81 ± 0.42 f | 16.63 ± 0.62 f |
LSD0.05 | 6.13 *** | 4.29 *** | 2.67 *** | 4.91 *** | 5.58 *** |
SC50 (mg mL−1) | 27.79 | 28.62 | 35.72 | 37.15 | 33.13 |
Concentration (mg mL−1) | Ascorbic Acid | ||||
20 | 67.48 ± 1.17 a | ||||
15 | 58.74 ± 0.69 b | ||||
10 | 47.70 ± 0.47 c | ||||
5 | 40.71 ± 0.15 c | ||||
2.5 | 9.84 ± 0.07 d | ||||
1 | 2.85 ± 0.03 d | ||||
LSD0.05 | 8.55 *** | ||||
SC50 (mg mL−1) | 12.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Amier, Y.A.; Soufan, W.; Almutairi, K.F.; Zaghloul, N.S.; Abd-ElGawad, A.M. Proximate Composition, Bioactive Compounds, and Antioxidant Potential of Wild Halophytes Grown in Coastal Salt Marsh Habitats. Molecules 2022, 27, 28. https://doi.org/10.3390/molecules27010028
El-Amier YA, Soufan W, Almutairi KF, Zaghloul NS, Abd-ElGawad AM. Proximate Composition, Bioactive Compounds, and Antioxidant Potential of Wild Halophytes Grown in Coastal Salt Marsh Habitats. Molecules. 2022; 27(1):28. https://doi.org/10.3390/molecules27010028
Chicago/Turabian StyleEl-Amier, Yasser A., Walid Soufan, Khalid F. Almutairi, Nouf S. Zaghloul, and Ahmed M. Abd-ElGawad. 2022. "Proximate Composition, Bioactive Compounds, and Antioxidant Potential of Wild Halophytes Grown in Coastal Salt Marsh Habitats" Molecules 27, no. 1: 28. https://doi.org/10.3390/molecules27010028
APA StyleEl-Amier, Y. A., Soufan, W., Almutairi, K. F., Zaghloul, N. S., & Abd-ElGawad, A. M. (2022). Proximate Composition, Bioactive Compounds, and Antioxidant Potential of Wild Halophytes Grown in Coastal Salt Marsh Habitats. Molecules, 27(1), 28. https://doi.org/10.3390/molecules27010028