Comparative Metabolomic Analysis of Four Fabaceae and Relationship to In Vitro Nematicidal Activity against Xiphinema index
Abstract
:1. Introduction
2. Results
2.1. In Vitro Antagonistic Effect against X. index of the Aerial and Root Parts of Different Fabaceae
2.2. Targeted Comparative Metabolomic Analyses of Fabaceae Extracts
2.3. Impact of Sainfoin Pellets Extract on the Cuticle of X. index
3. Discussion
4. Materials and Methods
4.1. Xiphinema index Culture
4.2. Plant Materials and Plant Extracts
4.3. Nematode Survival Bioassay in Aqueous Medium
4.4. Metabolite Extraction for Metabolomic Analyses
4.5. Metabolomic Analyses
4.6. Microscopic Observations
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andret-Link, P.; Laporte, C.; Valat, L.; Ritzenthaler, C.; Demangeat, G.; Vigne, E.; Laval, V.; Pfeiffer, P.; Stussi-Garaud, C.; Fuchs, M. Grapevine Fanleaf Virus: Still a Major Threat to the Grapevine Industry. J. Plant Pathol. 2004, 86, 183–195. [Google Scholar] [CrossRef]
- Martelli, G.P. An Overview on Grapevine Viruses, Viroids, and the Diseases They Cause. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 31–46. ISBN 978-3-319-57704-3. [Google Scholar]
- Vigne, E.; Bergdoll, M.; Guyader, S.; Fuchs, M. Population Structure and Genetic Variability within Isolates of Grapevine Fanleaf Virus from a Naturally Infected Vineyard in France: Evidence for Mixed Infection and Recombination. J. Gen. Virol. 2004, 85, 2435–2445. [Google Scholar] [CrossRef] [PubMed]
- van Zyl, S.; Vivier, M.A.; Walker, M.A. Xiphinema index and Its Relationship to Grapevines: A Review. S. Afr. J. Enol. Vitic. 2012, 33, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Andret-Link, P.; Marmonier, A.; Belval, L.; Hleibieh, K.; Ritzenthaler, C.; Demangeat, G. Ectoparasitic Nematode Vectors of Grapevine Viruses P. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 505–529. ISBN 978-3-319-57704-3. [Google Scholar]
- Hewitt, W.B.; Raski, D.J.; Goheen, A.C. Nematode Vector of Soil-Borne Fanleaf Virus of Grapevines. Phytopathology 1958, 48, 586–595. [Google Scholar]
- Lamberti, F.; Taylor, C.E.; Seinhorst, J.W. Nematode Vectors of Plant Viruses; Plenum Press; Lamberti, F., Taylor, C.E., Seinhorst, J.W., Eds.; Springer: Boston, MA, USA, 1975; ISBN 978-1-4684-0843-0. [Google Scholar]
- Wyss, U. Feeding Behaviour of Plant-Parasitic Nematodes. In The Biology of Nematodes; Lee, D.L., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 233–260. [Google Scholar]
- Weischer, B.; Wyss, U. Development, Histology and Ultrastructure of Root-Tip Galls Induced by the Ectoparasitic Nematode Xiphinema index. Bull. Soc. Bot. Fr. Actual. Bot. 1980, 127, 67–69. [Google Scholar] [CrossRef]
- Raski, D.J.; Goheen, A.C.; Lider, L.A.; Meredith, C.P. Strategies against Grapevine Fanleaf Virus and Its Nematode Vector. Plant Dis. 1983, 67, 335–339. [Google Scholar] [CrossRef]
- European Commission. Council Decision of 20 September 2007. Concerning the no inclusion of 1,3-dichloropropene in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance (notified under document number C(2007) 4281). Off. J. Eur. Union 2007, L249, 11–13. [Google Scholar]
- Abawi, G.; Widmer, T. Impact of Soil Health Management Practices on Soilborne Pathogens, Nematodes and Root Diseases of Vegetable Crops. Appl. Soil Ecol. 2000, 15, 37–47. [Google Scholar] [CrossRef]
- Demangeat, G.; Voisin, R.; Minot, J.; Bosselut, N.; Fuchs, M.; Esmenjaud, D. Survival of Xiphinema index in Vineyard Soil and Retention of Grapevine Fanleaf Virus over Extended Time in the Absence of Host Plants. Phytopathology 2005, 95, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Esmenjaud, D.; Bouquet, A.; Demangeat, G.; Van Helden, M.; Ollat, N. Nematode-Resistant Rootstocks as a Major Component of the Management Alternative for Grapevine FanLeaf Virus Control in Grape. Acta Hortic. 2011, 904, 111–115. [Google Scholar] [CrossRef]
- Gambino, G.; Perrone, I.; Carra, A.; Chitarra, W.; Boccacci, P.; Marinoni, D.T.; Barberis, M.; Maghuly, F.; Laimer, M.; Gribaudo, I. Transgene Silencing in Grapevines Transformed with GFLV Resistance Genes: Analysis of Variable Expression of Transgene, SiRNAs Production and Cytosine Methylation. Transgenic Res. 2010, 19, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Vigne, E.; Komar, V.; Fuchs, M. Field Safety Assessment of Recombination in Transgenic Grapevines Expressing the Coat Protein Gene of Grapevine Fanleaf Virus. Transgenic Res. 2004, 13, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Jelly, N.S.; Schellenbaum, P.; Walter, B.; Maillot, P. Transient Expression of Artificial MicroRNAs Targeting Grapevine Fanleaf Virus and Evidence for RNA Silencing in Grapevine Somatic Embryos. Transgenic Res. 2012, 21, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, C.; Djennane, S.; Ackerer, L.; Hleibieh, K.; Marmonier, A.; Gersch, S.; Garcia, S.; Vigne, E.; Komar, V.; Perrin, M.; et al. Nanobody-Mediated Resistance to Grapevine Fanleaf Virus in Plants. Plant Biotechnol. J. 2018, 16, 660–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Carlos, B.; Gamboa-Angulo, M. Insecticidal and Nematicidal Contributions of Mexican Flora in the Search for Safer Biopesticides. Molecules 2019, 24, 897. [Google Scholar] [CrossRef] [Green Version]
- Osei, K.; Gowen, S.R.; Pembroke, B.; Brandenburg, R.L.; Jordan, D.L. Potential of Leguminous Cover Crops in Management of a Mixed Population of Root-Knot Nematodes (Meloidogyne spp.). J. Nematol. 2010, 42, 173–178. [Google Scholar]
- Villate, L.; Morin, E.; Demangeat, G.; Van Helden, M.; Esmenjaud, D. Control of Xiphinema index Populations by Fallow Plants under Greenhouse and Field Conditions. Phytopathology 2012, 102, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Regos, I.; Treutter, D. Optimization of a High-Performance Liquid Chromatography Method for the Analysis of Complex Polyphenol Mixtures and Application for Sainfoin Extracts (Onobrychis viciifolia). J. Chromatogr. A 2010, 1217, 6169–6177. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Chen, L.; Zhang, Y.; Chen, Y. Compounds from Lotus corniculatus. Chem. Nat. Compd. 2019, 55, 719–721. [Google Scholar] [CrossRef]
- Krähmer, A.; Gudi, G.; Weiher, N.; Gierus, M.; Schütze, W.; Schulz, H. Characterization and Quantification of Secondary Metabolite Profiles in Leaves of Red and White Clover Species by NIR and ATR-IR Spectroscopy. Vib. Spectrosc. 2013, 68, 96–103. [Google Scholar] [CrossRef]
- Akbaribazm, M.; Khazaei, M.R.; Khazaei, M. Phytochemicals and Antioxidant Activity of Alcoholic/Hydroalcoholic Extract of Trifolium pratense. Chin. Herb. Med. 2020, 12, 326–335. [Google Scholar] [CrossRef]
- Gruffat, D.; Durand, D.; Rivaroli, D.; do Prado, I.N.; Prache, S. Comparison of Muscle Fatty Acid Composition and Lipid Stability in Lambs Stall-Fed or Pasture-Fed Alfalfa with or without Sainfoin Pellet Supplementation. Animal 2020, 14, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Niderkorn, V.; Barbier, E.; Macheboeuf, D.; Torrent, A.; Mueller-Harvey, I.; Hoste, H. In Vitro Rumen Fermentation of Diets with Different Types of Condensed Tannins Derived from Sainfoin (Onobrychis viciifolia Scop.) Pellets and Hazelnut (Corylus avellana L.) Pericarps. Anim. Feed Sci. Technol. 2020, 259, 114357. [Google Scholar] [CrossRef]
- Gaudin, E.; Simon, M.; Quijada, J.; Lespine, A.; Hoste, H. Veterinary Parasitology Efficacy of Sainfoin (Onobrychis viciifolia) Pellets against Multi Resistant Haemonchus Contortus and Interaction with Oral Ivermectin: Implications for on-Farm Control. Vet. Parasitol. 2016, 227, 122–129. [Google Scholar] [CrossRef]
- Legendre, H.; Hoste, H.; Gidenne, T. Nutritive Value and Anthelmintic Effect of Sainfoin Pellets Fed to Experimentally Infected Growing Rabbits. Animal 2017, 11, 1464–1471. [Google Scholar] [CrossRef] [Green Version]
- Desrues, O.; Peña-Espinoza, M.; Hansen, T.V.A.; Enemark, H.L.; Thamsborg, S.M. Anti-Parasitic Activity of Pelleted Sainfoin (Onobrychis viciifolia) against Ostertagia ostertagi and Cooperia oncophora in Calves. Parasites Vectors 2016, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Legendre, H.; Saratsi, K.; Voutzourakis, N.; Saratsis, A.; Stefanakis, A.; Gombault, P.; Hoste, H.; Gidenne, T.; Sotiraki, S. Coccidiostatic Effects of Tannin-Rich Diets in Rabbit Production. Parasitol. Res. 2018, 117, 3705–3713. [Google Scholar] [CrossRef]
- Taylor, C.E.; Brown, D.J. Nematode Vectors of Plant Viruses; CAB International: Wallingford, UK, 1997; 286p.
- French, K.E.; Harvey, J.; McCullagh, J.S.O. Targeted and Untargeted Metabolic Profiling of Wild Grassland Plants Identifies Antibiotic and Anthelmintic Compounds Targeting Pathogen Physiology, Metabolism and Reproduction. Sci. Rep. 2018, 8, 1695. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Sun, Y.; Foo, L.Y.; McNabb, W.C.; Molan, A.L. Phenolic Glycosides of Forage Legume Onobrychis viciifolia. Phytochemistry 2000, 55, 67–75. [Google Scholar] [CrossRef]
- Martínez-Ortíz-de-Montellano, C.; Arroyo-López, C.; Fourquaux, I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Hoste, H. Scanning Electron Microscopy of Haemonchus contortus Exposed to Tannin-Rich Plants under In Vivo and In Vitro Conditions. Exp. Parasitol. 2013, 133, 281–286. [Google Scholar] [CrossRef]
- Williams, A.R.; Fryganas, C.; Ramsay, A.; Mueller-Harvey, I.; Thamsborg, S.M. Direct Anthelmintic Effects of Condensed Tannins from Diverse Plant Sources against Ascaris suum. PLoS ONE 2014, 9, e97053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldera-Silva, A.; Seyfried, M.; Campestrini, L.H.; Zawadzki-Baggio, S.F.; Minho, A.P.; Molento, M.B.; Maurer, J.B.B. Assessment of Anthelmintic Activity and Bio-Guided Chemical Analysis of Persea Americana Seed Extracts. Vet. Parasitol. 2018, 251, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Vildina, J.D.; Ndjonka, D.; Schmidt, T.J.; Liebau, E. Identification of Anti-Caenorhabditis and Anti-Onchocerca Constituents from Leaves of Annona senegalensis Pers. (Annonaceae). S. Afr. J. Bot. 2021, 138, 84–93. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Carbonara, T.; Argentieri, M.P.; Radicci, V.; Leonetti, P.; Villanova, L.; Avato, P. Nematicidal Potential of Artemisia annua and Its Main Metabolites. Eur. J. Plant Pathol. 2013, 137, 295–304. [Google Scholar] [CrossRef]
- Wuyts, N.; Swennen, R.; De Waele, D. Effects of Plant Phenylpropanoid Pathway Products and Selected Terpenoids and Alkaloids on the Behaviour of the Plant-Parasitic Nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 2006, 8, 89–101. [Google Scholar] [CrossRef]
- Castillo-Mitre, G.F.; Olmedo-Juárez, A.; Rojo-Rubio, R.; González-Cortázar, M. Caffeoyl and Coumaroyl Derivatives from Acacia cochliacantha Exhibit Ovicidal Activity against Haemonchus contortus. J. Ethnopharmacol. 2017, 204, 125–131. [Google Scholar] [CrossRef]
- Mancilla-Montelongo, G.; Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Borges-Argáez, R. Evaluation of Cinnamic Acid and Six Analogues against Eggs and Larvae of Haemonchus contortus. Vet. Parasitol. 2019, 270, 25–30. [Google Scholar] [CrossRef]
- von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de Gives, P.; Valles-de la Mora, B.; González-Cortazar, M.; Zamilpa, A.; Castillo-Gallegos, E. Elucidation of Leucaena leucocephala Anthelmintic-like Phytochemicals and the Ultrastructural Damage Generated to Eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef]
- Escareño-Díaz, S.; Alonso-Díaz, M.A.; De Gives, P.M.; Castillo-Gallegos, E. Anthelmintic-like Activity of Polyphenolic Compounds and Their Interactions against the Cattle Nematode Cooperia punctata. Vet. Parasitol. 2019, 274, 108909. [Google Scholar] [CrossRef]
- Lima, C.S.; Pereira, M.H.; Gainza, Y.A.; Hoste, H.; Regasini, L.O.; de Souza Chagas, A.C. Anthelmintic Effect of Pterogyne nitens (Fabaceae) on Eggs and Larvae of Haemonchus contortus: Analyses of Structure-Activity Relationships Based on Phenolic Compounds. Ind. Crops Prod. J. 2021, 164, 113348. [Google Scholar] [CrossRef]
- Hussein, D.; El-Shiekh, R.A.; Saber, F.R.; Attia, M.M.; Mousa, M.R.; Atta, A.H.; Abdel-Sattar, E.; Mouneir, S.M. Unravelling the Anthelmintic Bioactives from Jasminum grandiflorum L. Subsp. floribundum Adopting In Vitro Biological Assessment. J. Ethnopharmacol. 2021, 275, 114083. [Google Scholar] [CrossRef] [PubMed]
- Mead, J.R.; McNair, N. Antiparasitic Activity of Flavonoids and Isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol. Lett. 2006, 259, 153–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangster, N.C. P-Glycoproteins in Nematodes. Parasitol. Today 1994, 10, 319–322. [Google Scholar] [CrossRef]
- Kerboeuf, D.; Blackhall, W.; Kaminsky, R.; von Samson-Himmelstjerna, G. P-Glycoprotein in Helminths: Function and Perspectives for Anthelmintic Treatment and Reversal of Resistance. Int. J. Antimicrob. Agents 2003, 22, 332–346. [Google Scholar] [CrossRef]
- David, M.; Lebrun, C.; Duguet, T.; Talmont, F.; Beech, R.; Orlowski, S.; André, F.; Prichard, R.K.; Lespine, A. Structural Model, Functional Modulation by Ivermectin and Tissue Localization of Haemonchus contortus P-Glycoprotein-13. IJP Drugs Drug Resist. 2018, 8, 145–157. [Google Scholar] [CrossRef]
- Desrues, O.; Fryganas, C.; Ropiak, H.M.; Mueller-Harvey, I.; Enemark, H.L.; Thamsborg, S.M. Impact of Chemical Structure of Flavanol Monomers and Condensed Tannins on in Vitro Anthelmintic Activity against Bovine Nematodes. Parasitology 2016, 143, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Brunet, S.; Fourquaux, I.; Hoste, H. Parasitology International Ultrastructural Changes in the Third-Stage, Infective Larvae of Ruminant Nematodes Treated with Sainfoin (Onobrychis viciifolia) Extract. Parasitol. Int. 2011, 60, 419–424. [Google Scholar] [CrossRef]
- Martínez-Ortíz-de-Montellano, C.; Torres-Acosta, J.F.J.; Fourquaux, I.; Sandoval-Castro, C.A.; Hoste, H. Ultrastructural Study of Adult Haemonchus contortus Exposed to Polyphenol-Rich Materials under In Vivo Conditions in Goats. Parasite 2019, 26, 65. [Google Scholar] [CrossRef] [Green Version]
- Flegg, J.J.M. Extraction of Xiphinema and Longidorus Species from Soil by a Modification of Cobb’s Decanting and Sieving Technique. Ann. Appl. Biol. 1967, 60, 429–437. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-2. 2018. Available online: https://CRAN.R-project.org/package=vegan2018 (accessed on 3 February 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrel, L.; Baltenweck, R.; Demangeat, G.; Le Bohec-Dorner, F.; Rustenholz, C.; Velt, A.; Gertz, C.; Bieler, E.; Dürrenberger, M.; Gombault, P.; et al. Comparative Metabolomic Analysis of Four Fabaceae and Relationship to In Vitro Nematicidal Activity against Xiphinema index. Molecules 2022, 27, 3052. https://doi.org/10.3390/molecules27103052
Negrel L, Baltenweck R, Demangeat G, Le Bohec-Dorner F, Rustenholz C, Velt A, Gertz C, Bieler E, Dürrenberger M, Gombault P, et al. Comparative Metabolomic Analysis of Four Fabaceae and Relationship to In Vitro Nematicidal Activity against Xiphinema index. Molecules. 2022; 27(10):3052. https://doi.org/10.3390/molecules27103052
Chicago/Turabian StyleNegrel, Lise, Raymonde Baltenweck, Gerard Demangeat, Françoise Le Bohec-Dorner, Camille Rustenholz, Amandine Velt, Claude Gertz, Eva Bieler, Markus Dürrenberger, Pascale Gombault, and et al. 2022. "Comparative Metabolomic Analysis of Four Fabaceae and Relationship to In Vitro Nematicidal Activity against Xiphinema index" Molecules 27, no. 10: 3052. https://doi.org/10.3390/molecules27103052
APA StyleNegrel, L., Baltenweck, R., Demangeat, G., Le Bohec-Dorner, F., Rustenholz, C., Velt, A., Gertz, C., Bieler, E., Dürrenberger, M., Gombault, P., Hugueney, P., & Lemaire, O. (2022). Comparative Metabolomic Analysis of Four Fabaceae and Relationship to In Vitro Nematicidal Activity against Xiphinema index. Molecules, 27(10), 3052. https://doi.org/10.3390/molecules27103052