Poloxamer 407/188 Binary Thermosensitive Gel as a Moxidectin Delivery System: In Vitro Release and In Vivo Evaluation
Abstract
:1. Introduction
2. Results
2.1. Gelation Temperature Determination
2.2. Stability Analysis
2.3. In Vitro Release
2.3.1. In Vitro Release Determination
2.3.2. Release Kinetic Models and Release Mechanism
2.4. In Vivo Evaluation
2.4.1. HPLC-MS/MS Method Validated
2.4.2. Blood Concentration of MXD in Qinghai Tibetan Sheep
2.4.3. Pharmacokinetics
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Apparatus
4.3. Preparation of MXD-TG
4.4. Gelation Temperature Measurement
4.5. Stability Tests
4.6. In Vitro Studies
4.6.1. In Vitro Release
4.6.2. In Vitro Release Properties
4.7. In Vivo Evaluation
4.7.1. Animal Experiment
4.7.2. Sample Preparation and Analysis
4.7.3. In Vivo Release and Pharmacokinetics
4.8. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasites Vectors 2015, 8, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, E.; Chauvin, A. Immunity against helminths: Interactions with the host and the intercurrent infections. J. Biomed. Biotechnol. 2010, 2010, 428593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, L.S.; Evaristo, A.; Oliveira, G.M.B.; Ferreira, M.S.; Silva, D.L.R.; Azevedo, S.S.; Yamamoto, S.M.; Aratijo, M.M.; Horta, M.C. Anthelmintic resistance of gastrointestinal nematodes in sheep grazing in irrigated and dry areas in the semiarid region of northeastern Brazil. Trop. Anim. Health Prod. 2021, 53, 267. [Google Scholar] [CrossRef]
- Ali, Q.; Rashid, I.; Shabbir, M.Z.; Aziz Ul, R.; Shahzad, K.; Ashraf, K.; Sargison, N.D.; Chaudhry, U. Emergence and the spread of the F200Y benzimidazole resistance mutation in Haemonchus contortus and Haemonchus placei from buffalo and cattle. Vet. Parasitol. 2019, 265, 48–54. [Google Scholar] [CrossRef]
- Sargison, N.D.; MacLeay, M.; Morrison, A.A.; Bartley, D.J.; Evans, M.; Chaudhry, U. Development of amplicon sequencing for the analysis of benzimidazole resistance allele frequencies in field populations of gastrointestinal nematodes. Int. J. Parasitol. Drugs Drug Resist. 2019, 10, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Figueroa, I.; Lara-Bueno, A.; Gonzalez-Garduno, R.; Lopez-Arellano, M.E.; de la Rosa-Arana, J.L.; Maldonado-Siman, E.d.J. Anthelmintic resistance in hair sheep farms in a sub-humid tropical climate, in the Huasteca Potosina, Mexico. Vet. Parasitol. Reg. Stud. Rep. 2019, 17, 100292. [Google Scholar] [CrossRef]
- Sieuchand, S.; Charles, R.; Caruth, J.; Basu, A.; von Samson-Himmelstjerna, G.; Georges, K. A field study on the occurrence of gastrointestinal nematodes in sheep over the wet and dry seasons in two West Indian Islands. Transbound. Emerg. Dis. 2020, 67, 193–200. [Google Scholar] [CrossRef]
- Chhonker, Y.S.; Sleightholm, R.L.; Murry, D.J. Bioanalytical method development and validation of moxidectin in plasma by LC-MS/MS: Application to in vitro metabolism. Biomed. Chromatogr. 2019, 33, e4389. [Google Scholar] [CrossRef]
- Becskei, C.; De Bock, F.; Illambas, J.; Cherni, J.A.; Fourie, J.J.; Lane, M.; Mahabir, S.P.; Six, R.H. Efficacy and safety of a novel oral isoxazoline, sarolaner (Simparica™), for the treatment of sarcoptic mange in dogs. Vet. Parasitol. 2016, 222, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Fazzio, L.E.; Streitenberger, N.; Galvan, W.R.; Sánchez, R.O.; Gimeno, E.J.; Sanabria, R.E. Efficacy and productive performance of moxidectin in feedlot calves infected with nematodes resistant to ivermectin. Vet. Parasitol. 2016, 223, 26–29. [Google Scholar] [CrossRef]
- Becskei, C.; Kryda, K.; Thys, M.; Holzmer, S.; Bowersock, L.; Fernandes, T.; Meyer, L.; Reinemeyer, C.; Mahabir, S.P. Efficacy of a new oral chewable tablet containing sarolaner, moxidectin and pyrantel (Simparica TrioTM) against induced ascarid infections in dogs. Parasites Vectors 2020, 13, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloberas, M.; Alvarez, L.; Entrocasso, C.; Virkel, G.; Ballent, M.; Mate, L.; Lanusse, C.; Lifschitz, A. Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: Impact of drug treatments on parasite P-glycoprotein expression. Int. J. Parasitol. Drugs Drug Resist. 2013, 3, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizk, M.A.; Osman, S.A.; Al-Gaabary, M.H.; El-Khodery, S.A. Comparative clinical and parasitological efficacy of moxidectin pour-on, ivermectin, and piperazine citrate on Toxocara vitulorum infection in buffalo calves (Bubalus bubalis): A randomized clinical trial. Turk. J. Vet. Anim. Sci. 2018, 42, 29–33. [Google Scholar] [CrossRef]
- Di Cesare, A.; Veronesi, F.; Capelli, G.; Deuster, K.; Schaper, R.; Basano, F.S.; Nazzari, R.; Paoletti, B.; Traversa, D. Evaluation of the Efficacy and Safety of an Imidacloprid 10%/Moxidectin 1% Spot-on Formulation (Advantage® Multi) in Cats Naturally Infected with Capillaria aerophila. Parasitol. Res. 2017, 116, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asfour, M.H.; El-Alim, S.H.A.; Awad, G.E.A.; Kassem, A.A. Chitosan/β-glycerophosphate in situ forming thermo-sensitive hydrogel for improved ocular delivery of moxifloxacin hydrochloride. Eur. J. Pharm. Sci. 2021, 167, 106041. [Google Scholar] [CrossRef]
- Deepthi, S.; Jose, J. Novel hydrogel-based ocular drug delivery system for the treatment of conjunctivitis. Int. Ophthalmol. 2019, 39, 1355–1366. [Google Scholar] [CrossRef]
- Akkari, A.C.S.; Papini, J.Z.B.; Garcia, G.K.; Franco, M.K.K.D.; Cavalcanti, L.P.; Gasperini, A.; Alkschbirs, M.I.; Yokaichyia, F.; Paula, E.d.; Tófoli, G.R.; et al. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation. Mater. Sci. Eng. C 2016, 68, 299–307. [Google Scholar] [CrossRef]
- Ban, E.; Jang, D.-J.; Kim, S.-J.; Park, M.; Kim, A. Optimization of thermoreversible poloxamer gel system using QbD principle. Pharm. Dev. Technol. 2017, 22, 939–945. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, F.; Guo, Y.; Zhang, Z.; Wu, F.; Luo, X. Optimization and evaluation of astragalus polysaccharide injectable thermoresponsive in-situ gels. PLoS ONE 2017, 12, e0173949. [Google Scholar] [CrossRef]
- Sivaraman, A.; Banga, A.K. Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv. Transl. Res. 2017, 7, 16–26. [Google Scholar] [CrossRef]
- Lu, C.; Liu, M.; Fu, H.; Zhang, W.; Peng, G.; Zhang, Y.; Cao, H.; Luo, L. Novel thermosensitive in situ gel based on poloxamer for uterus delivery. Eur. J. Pharm. Sci. 2015, 77, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Ilgin, P.; Zorer, O.S.; Ozay, O.; Boran, G. Synthesis and characterization of 2-hydroxyethylmethacrylate/2-(3-indol-yl)ethylmethacrylamide-based novel hydrogels as drug carrier with in vitro antibacterial properties. J. Appl. Polym. Sci. 2017, 134, 45550. [Google Scholar] [CrossRef]
- Yuan, Y.; Cui, Y.; Zhang, L.; Zhu, H.; Guo, Y.; Zhong, B.; Hu, X.; Zhang, L.; Wang, X.; Chen, L. Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide. Int. J. Pharm. 2012, 430, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Varghese, J.S.; Chellappa, N.; Fathima, N.N. Gelatin-carrageenan hydrogels: Role of pore size distribution on drug delivery process. Colloids Surf. B Biointerfaces 2014, 113, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, S.; Piatt, J.H.; Worthington, P.; Sonmez, C.; Satheye, S.; Schneider, J.P.; Pochan, D.J.; Langhans, S.A. Beta hairpin peptide hydrogels as an injectable solid vehicle for neurotrophic growth factor delivery. Biomacromolecules 2015, 16, 2672–2683. [Google Scholar] [CrossRef]
- Chen, N.R.; Ren, R.G.; Wei, X.; Mukundan, R.; Li, G.J.; Xu, X.K.; Zhao, G.; Zhao, Z.F.; Lele, S.M.; Reinhardt, R.A.; et al. Thermoresponsive hydrogel-based local delivery of simvastatin for the treatment of periodontitis. Mol. Pharm. 2021, 18, 1992–2003. [Google Scholar] [CrossRef]
- Kamlungmak, S.; Rugmai, S.; Tinpun, K.; Nakpheng, T.; Srichana, T. Phase behavior, in vitro drug release, and antibacterial activity of thermoresponsive poloxamer-polyvinyl alcohol hydrogel-loaded mupirocin nanoparticles. J. Appl. Polym. Sci. 2020, 137, e49325. [Google Scholar] [CrossRef]
- Liu, X.Y.; Gan, H.; Hu, C.R.; Sun, W.Z.; Zhu, X.X.; Meng, Z.Y.; Gu, R.L.; Wu, Z.N.; Dou, G.F. Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent. Int. J. Nanomed. 2019, 14, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.D.; Blanchard, J. In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine. J. Pharm. Sci. 1998, 87, 226–230. [Google Scholar] [CrossRef]
- Yang, H.M.; Won, Y.H.; Yoon, H.Y.; Kim, C.H.; Goo, Y.T.; Chang, I.H.; Choi, Y.W. Screening of polymer additives in poloxamer 407 hydrogel formulations for intravesical instillation: Evaluation of mechanical properties, gel-forming capacity, and drug release. Polym. Korea 2020, 44, 817–826. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.L.; Lv, L.; Wang, W.J.; Hu, H.; Yang, L.; Xu, D.F. Design and evaluation of a solid dispersion and thermosensitive hydrogel combined local delivery system of dimethoxycurcumin. J. Drug Deliv. Sci. Technol. 2019, 53, 101150. [Google Scholar] [CrossRef]
- Pérez, R.; Núñez, M.J.; Palma, C.; Riquelme, J.; Arboix, M. Plasma disposition kinetics of moxidectin after subcutaneous administration to pregnant sheep. J. Vet. Pharmacol. Ther. 2014, 37, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.J.; Howard, K.D.; Kawalek, J.C. Pharmacokinetic comparison of six anthelmintics in sheep, goats, and cattle. J. Vet. Pharmacol. Ther. 2021, 44, 58–67. [Google Scholar] [CrossRef]
- Vanapalli, S.R.; Hung, Y.P.; Fleckenstein, L.; Dzimianski, M.T.; McCall, J.W. Pharmacokinetics and dose proportionality of oral moxidectin in beagle dogs. Biopharm. Drug Dispos. 2002, 23, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Craven, J.; Bjørn, H.; Hennessy, D.R.; Friis, C. The effects of body composition on the pharmacokinetics of subcutaneously injected ivermectin and moxidectin in pigs. J. Vet. Pharmacol. Ther. 2002, 25, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ng, W.K.; Tan, R.B.H. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations. Nanotechnology 2014, 25, 105102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.R.; Zhou, J.P.; Zou, A.F.; Li, W.Z.; Yao, C.L.; Xie, S.F. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Hentz, S.G.; Fernandes, M.A.M.; Del Bianchi, M.; Reyes, F.G.R.; de Souza, J.K.G.; Giannotti, F.M.; Monteiro, A.L.G. Faecal excretion of moxidectin in lambs and its persistence in different environmental conditions. Small Rumin. Res. 2019, 174, 26–33. [Google Scholar] [CrossRef]
Condition | Batch | Time (Months) | ||
---|---|---|---|---|
1 | 2 | 3 | ||
1 | 101.30 ± 1.47 | 101.18 ± 0.94 | 102.64 ± 4.70 | |
4 °C | 2 | 101.34 ± 2.50 | 100.58 ± 2.98 | 100.27 ± 3.24 |
3 | 100.81 ± 0.72 | 101.00 ± 1.51 | 99.28 ± 2.75 | |
1 | 101.04 ± 1.23 | 101.40 ± 1.24 | 100.21 ± 3.71 | |
25 °C | 2 | 101.99 ± 0.49 | 101.52 ± 1.19 | 100.40 ± 1.16 |
3 | 102.55 ± 0.45 | 99.98 ± 0.62 | 99.76 ± 1.12 |
Model | Equation | R2 | AIC |
---|---|---|---|
Zero-order | Q = 1.190 × t | 0.6898 | 97.43 |
First-order | Q = 100 × [1 − Exp(−0.032 × t)] | 0.9251 | 79.89 |
Higuchi | Q = 9.895 × t0.5 | 0.9888 | 56.37 |
Korsmeyer–Peppas | Q = 10.226 × t0.493 | 0.9917 | 54.83 |
Hixson–Crowell | Q = 100 × [1 − (1−0.008 × t)3] | 0.8897 | 84.44 |
Weibull | Q = 100 × {1 − Exp[−((t + 4.22)0.977)/49.783]} | 0.9805 | 68.07 |
Probit | Q = 100 × Φ[−1.826 + 1.426 × log(t)] | 0.9438 | 79.05 |
Gompertz | Q = 100 × Exp{−5.217 × Exp[−1.602 × log(t)]} | 0.9100 | 87.76 |
Parameters | Male | Female |
---|---|---|
T1/2β (day) | 13.08 ± 8.10 | 19.35 ± 3.97 |
Tmax (day) | 0.24 ± 0.14 | 0.53 ± 0.46 |
Cmax (ng/mL) | 415.19 ± 58.93 | 231.80 ± 112.39 |
AUC0–t (day·ng/mL) | 4690.86 ± 472.67 ** | 1880.26 ± 334.62 |
AUC0–∞ (day·ng/mL) | 5008.83 ± 525.14 ** | 2095.99 ± 478.20 |
Vd (mL/kg) | 3729.00 ± 2077.32 * | 13736.91 ± 4110.70 |
CL (mL/day/kg) | 201.18 ± 21.90 ** | 492.22 ± 99.44 |
MRT0-t (day) | 25.22 ± 0.79 | 21.22 ± 5.14 |
MRT0-∞ (day) | 29.6 ± 3.56 | 28.66 ± 4.52 |
% w/v | |
---|---|
Moxidectin | 2 |
Poloxamers 407 | 22 |
Poloxamers 188 | 1 |
Methyl cellulose | 2 |
Pure water | q.v. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, X.; Hu, J.; Lu, L.; Wang, Y.; Tang, C.; Liu, F.; Gao, X.; Zhang, L.; Wu, H.; Huang, X.; et al. Poloxamer 407/188 Binary Thermosensitive Gel as a Moxidectin Delivery System: In Vitro Release and In Vivo Evaluation. Molecules 2022, 27, 3063. https://doi.org/10.3390/molecules27103063
Ruan X, Hu J, Lu L, Wang Y, Tang C, Liu F, Gao X, Zhang L, Wu H, Huang X, et al. Poloxamer 407/188 Binary Thermosensitive Gel as a Moxidectin Delivery System: In Vitro Release and In Vivo Evaluation. Molecules. 2022; 27(10):3063. https://doi.org/10.3390/molecules27103063
Chicago/Turabian StyleRuan, Xiangchun, Jidong Hu, Lianshou Lu, Youwei Wang, Chunlian Tang, Faquan Liu, Xiuge Gao, Li Zhang, Hao Wu, Xianhui Huang, and et al. 2022. "Poloxamer 407/188 Binary Thermosensitive Gel as a Moxidectin Delivery System: In Vitro Release and In Vivo Evaluation" Molecules 27, no. 10: 3063. https://doi.org/10.3390/molecules27103063
APA StyleRuan, X., Hu, J., Lu, L., Wang, Y., Tang, C., Liu, F., Gao, X., Zhang, L., Wu, H., Huang, X., & Wei, Q. (2022). Poloxamer 407/188 Binary Thermosensitive Gel as a Moxidectin Delivery System: In Vitro Release and In Vivo Evaluation. Molecules, 27(10), 3063. https://doi.org/10.3390/molecules27103063