Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex
Abstract
:1. Introduction
2. Results
2.1. Establishment of HPLC Methodology
2.2. Optimization of Three Curcumin Preparations
2.3. Characterization of Three Preparations of Curcumin
2.3.1. Results of Scanning Electron Microscopy
2.3.2. Results of Fourier Transform Infrared
2.3.3. Results of X-Ray Diffraction
2.4. Establishment of UPLC–MS Methodology
2.5. Pharmacokinetic Study
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Determination of Curcumin Content In Vitro
HPLC Conditions
4.3. Preparation of Three Curcumin Preparations
4.3.1. Curcumin β-Cyclodextrin Complex
4.3.2. Curcumin Solid Dispersion
4.3.3. Curcumin Phospholipid Complex
4.4. Optimization of Three Curcumin Preparations
4.5. Characterization of Three Curcumin Preparations
4.6. Pharmacokinetics of Beagle Dogs In Vivo
4.6.1. UPLC–MS Conditions
4.6.2. Detection of Beagle Dog Plasma Samples
Group and Administration of Beagle Dogs
Pretreatment of Beagle Dog Plasma Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tung, B.T.; Dong, T.N.; Hai, N.T.; Dang, K.T. Curcuma longa, the polyphenolic curcumin compound and pharmacological effects on liver. Diet. Interv. Liver Dis. 2019, 125–134. [Google Scholar] [CrossRef]
- Nagpal, M.; Sood, S. Role of curcumin in systemic and oral health: An overview. J. Nat. Sci. Biol. M 2013, 4, 3–7. [Google Scholar]
- Vafaeipour, Z.; Razavi, B.M.; Hosseinzadeh, H. Effects of turmeric (curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. J. Integr. Med. 2022, 20, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.J. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin e2 production. Cancer Res. 2001, 61, 1058–1064. [Google Scholar]
- Jin, C.Y.; Lee, J.D.; Park, C.; Choi, Y.H.; Kim, G.Y. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated bv2 microglia. Acta Pharmacol. Sin. 2007, 28, 1645–1651. [Google Scholar] [CrossRef] [Green Version]
- Joe, B.; Vijaykumar, M.; Lokesh, B.R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2004, 44, 97–111. [Google Scholar] [CrossRef]
- Schraufstätter, E.; Bernt, H. Antibacterial action of curcumin and related compounds. Nature 1949, 164, 456–457. [Google Scholar] [CrossRef]
- Teow, S.Y.; Ali, S.A. Synergistic antibacterial activity of curcumin with antibiotics against staphylococcus aureus. Pak. J. Pharm. Sci. 2015, 28, 2109–2114. [Google Scholar]
- Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kim, Y.C.; Lee, D.S.; Shin, D.W.; Kweon, K.T. Synergistic antibacterial effect of curcumin against methicillin-resistant staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef]
- Su-Hyun, M.; Sung-Bae, K.; Kong, R.; Jang-Gi, C.; Youn-Chul, K.; Dong-Won, S.; Kang, O.H.; Dong-Yeul, K. Curcumin reverse methicillin resistance in staphylococcus aureus. Molecules 2014, 19, 18283–18295. [Google Scholar]
- Kuttan, R.; Sudheeran, P.C.; Josph, C.D. Turmeric and curcumin as topical agents in cancer therapy. Tumori 1987, 73, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Mirzaei, H. Curcumin inhibits nf-kb and wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract. 2019, 215, 152556. [Google Scholar] [CrossRef] [PubMed]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015, 11, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-K.; Kono, K.; Haas, E.; Kim, K.-S.; Drescher, K.M.; Chapman, N.M.; Tracy, S. Characterization of an infectious cdna copy of the genome of a naturally occurring, avirulent coxsackievirus b3 clinical isolate. J. Gen. Virol. 2005, 86, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Lotempio, M.M.; Steele, H.L.; Ramamurthy, B.; Chakrabarti, R.; Calcaterra, T.C.; Srivatsan, E.S.; Wang, M.B.; Waes, C.V. Curcumin suppresses growth of head and neck squamous cell carcinoma. Otolaryngol.—Head Neck Surg. 2004, 131, 179. [Google Scholar] [CrossRef]
- Neelakantan, P.; Subbarao, C.; Sharma, S.; Subbarao, C.V.; Garcia-Godoy, F.; Gutmann, J.L. Effectiveness of curcumin against enterococcus faecalis biofilm. Acta Odontol. Scand. 2013, 71, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.Q.; Zhang, Y.H.; Ke, C.Z.; Chen, H.X.; Ren, P.; He, Y.L.; Hu, P.; Ma, D.Q.; Luo, J.; Meng, Z.J. Curcumin inhibits hepatitis b virus infection by downregulating ccc dna-bound histone acetylation. World J. Gastr. 2017, 23, 6252–6260. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.; Zhao, H.; Huang, L. Antibacterial mechanism of curcumin: A review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef]
- Yeon, K.Y.; Kim, S.A.; Kim, Y.H.; Lee, M.K.; Ahn, D.K.; Kim, H.J.; Kim, J.S.; Jung, S.J.; Oh, S.B. Curcumin produces an antihyperalgesic effect via antagonism of trpv1. J. Dent. Res. 2010, 89, 170–174. [Google Scholar] [CrossRef]
- Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (curcuma longa). J. Altern. Complementary Med. 2003, 1, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.T.; Yuan, X.P.; Dai, X.L.; Xue, Y.; Pharmacy, D.O. Study on toxicity of single and multiple dose curcumin in animals. Chin. J. Clin. Pharmacol. 2019, 35, 69–72. [Google Scholar]
- Garcea, G. Bioavailability and Pharmacodynamics of Curcumin in Humans with Resectable Colorectal Primaries and Secondary Hepatic Metastases. Master’s Thesis, University of Leicester, Leicester, UK, 2003. [Google Scholar]
- Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Tech. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; A review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, Y.; Jiang, Y.; Ho, C.T.; Huang, Q. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J. Funct. Foods 2014, 7, 112–128. [Google Scholar] [CrossRef]
- Jin-Lan, H.E.; Luo, L.Y.; Zeng, L. Recent advances in research on preparation technologies and applications of tea polyphenol nanoparticles. Food Sci. 2011, 32, 317–322. [Google Scholar]
- Lambert, J.D.; Sang, S.; Hong, J.; Kwon, S.J.; Lee, M.J.; Ho, C.T.; Yang, C.S. Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab. Dispos. 2006, 34, 2111–2116. [Google Scholar] [CrossRef] [Green Version]
- Mangolim, C.S.; Moriwaki, C.; Nogueira, A.C.; Sato, F.; Baesso, M.L.; Neto, A.M.; Matioli, G. Curcumin-β-cyclodextrin inclusion complex: Stability, solubility, characterisation by ft-ir, ft-raman, x-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Vo, L.N.; Park, C.; Lee, B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013, 85, 799–813. [Google Scholar] [CrossRef]
- Kidd, P.; Head, K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (siliphos). Altern. Med. Rev. A J. Clin. Ther. 2005, 10, 193–203. [Google Scholar]
- Pereva, S.; Nikolova, V.; Angelova, S.; Spassov, T.; Dudev, T. Water inside β-cyclodextrin cavity: Amount, stability and mechanism of binding. Beilstein J. Org. Chem. 2019, 15, 1592–1600. [Google Scholar] [CrossRef]
- Hapiot, F.; Ponchel, A.; Tilloy, S.; Monflier, E. Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. Comptes Rendus Chim. 2011, 14, 149–166. [Google Scholar] [CrossRef]
- Sonoda, Y.; Hirayama, F.; Arima, H.; Yamaguchi, Y.; Saenger, W.; Uekama, K. Selective crystallization of the metastable form iv polymorph of tolbutamide in the presence of 2,6-di-o-methyl-β-cyclodextrin in aqueous solution. Cryst. Growth Des. 2006, 6, 1181–1185. [Google Scholar] [CrossRef]
- Duchêne, D.; Bochot, A. Thirty years with cyclodextrins. Int. J. Pharmaceut. 2016, 514, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Chiou, W.L.; Riegelman, S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 2010, 60, 1281–1302. [Google Scholar] [CrossRef]
- Bombardelli, E.; Curri, S.B.; Loggia, R.D.; Negro, P.D.; Gariboldi, P. Complexes between phospholipids and vegetal derivatives of biological interest. Fitoterapia 1989, 60, 1–9. [Google Scholar]
- Lu, M.; Qiu, Q.; Luo, X.; Liu, X.; Sun, J.; Wang, C.; Lin, X.; Deng, Y.; Song, Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2019, 14, 265–274. [Google Scholar] [CrossRef]
- Hashem, F.M.; Mostafa, M.; Shaker, M.; Nasr, M. In vitro and in vivo evaluation of oxatomide β-cyclodextrin inclusion complex. J. Pharm. 2013, 2013, 629593. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wang, R.S.; School, J.M. Pharmacokinetics of curcumin self-microemulsions in beagle dogs. Chin. J. Exp. Tradit. Med. Formulae 2014, 20, 133–135. [Google Scholar]
- Li, L.P.; Zhao, H.L.; Dong, Y. Research progress on pharmacokinetics of three main components of turmeric. J. Dis. Monit. Control. 2020, 14, 64–69. [Google Scholar]
- Teixeira, C.C.C.; Mendonça, L.M.; Bergamaschi, M.M.; Queiroz, R.H.C.; Souza, G.E.P.; Antunes, L.M.G.; Freitas, L.A.P. Microparticles containing curcumin solid dispersion: Stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech 2016, 17, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Patro, N.M.; Sultana, A.; Terao, K.; Nakata, D.; Suresh, S. Comparison and correlation of in vitro, in vivo and in silico evaluations of alpha, beta and gamma cyclodextrin complexes of curcumin. J. Incl. Phenom. 2014, 78, 471–483. [Google Scholar] [CrossRef]
- Wan, S.; Sun, Y.; Qi, X.; Tan, F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS Pharmscitech 2011, 13, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paradkar, A.; Ambike, A.A.; Jadhav, B.K.; Mahadik, K.R. Characterization of curcumin-pvp solid dispersion obtained by spray drying. Int. J. Pharmaceut. 2004, 271, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.M.; Takemoto, J.K.; Brocks, D.R.; Yáñez, J.A. Multiple peaking phenomena in pharmacokinetic disposition. Clin. Pharmacokinet. 2010, 49, 351–377. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.R.; Jiang, F.S.; Ding, Z.S. Advances in studies on curcumin. Chin. Tradit. Herb. Drugs 2009, 40, 828–831. [Google Scholar]
- Marczylo, T.H.; Verschoyle, R.D.; Cooke, D.N.; Morazzoni, P.; Steward, W.P.; Gescher, A.J. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother. Pharm. 2007, 60, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, L.; Zhang, L.; He, D.; Ju, J.; Li, W. Studies on the curcumin phospholipid complex solidified with soluplus®. J. Pharm. Pharmacol. 2018, 70, 242–249. [Google Scholar] [CrossRef]
- Le, X.S.; Lei, B.; Xiao, M.X.; Jian, H.; Shu, Z.P. Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coordin. Chem. Rev. 2009, 253, 1276–1284. [Google Scholar]
- Nair, A.B.; Attimarad, M.; Al-Dhubiab, B.E.; Wadhwa, J.; Harsha, S.; Ahmed, M. Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin. Drug Deliv. 2014, 21, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Tech. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Craig, D.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharmaceut. 2002, 231, 131–144. [Google Scholar] [CrossRef]
- Chaudhari, S.P.; Dugar, R.P. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J. Drug Deliv. Sci. Tec. 2017, 41, 68–77. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Z.; Zheng, J.; Qiu, P.; Zhang, L.; Mcclements, D.J.; Xiao, H. Nanoemulsion-based delivery systems for nutraceuticals: Influence of carrier oil type on bioavailability of pterostilbene. J. Funct. Foods 2015, 13, 61–70. [Google Scholar] [CrossRef]
- Zou, L.; Zheng, B.; Liu, W.; Liu, C.; Xiao, H.; Mcclements, D.J. Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. J. Funct. Foods 2015, 15, 72–83. [Google Scholar] [CrossRef]
Components | Parameters | Unmodified Curcumin | CUR-β-CD | CUR-PEG-6000 | CUR-HSPC |
---|---|---|---|---|---|
CUR | t1/2(h) | / | 22.45 ± 30.48 | 1.60 ± 0.92 | 8.25 ± 5.50 |
Cmax(ng/mL) | 7.95 ± 3.71 | 25.49 ± 27.97 | 35.03 ± 61.29 | 12.66 ± 6.16 | |
Tmax(h) | 0.35 ± 0.24 | 2.72 ± 2.95 | 1.96 ± 3.46 | 2.61 ± 2.86 | |
AUC0-24h(h·ng/mL) | 14.42 ± 15.19 | 31.26 ± 20.98 | 47.07 ± 79.84 | 38.31 ± 14.66 | |
Vd(L/kg) | / | 88,116.10 ± 80,285.16 | 167,082.26 ± 266,551.49 | 40,667.88 ± 12,737.62 | |
CL(L/h/kg) | / | 6103.77 ± 4234.69 | 48,352.49 ± 67,003.59 | 4554.86 ± 3103.81 | |
CUR II | t1/2(h) | / | 27.64 ± 32.54 | 7.12 ± 5.78 | 9.05 ± 5.80 |
Cmax(ng/mL) | 2.37 ± 0.88 | 22.71 ± 44.48 | 11.44 ± 18.46 | 5.42 ± 3.01 | |
Tmax(h) | 0.35 ± 0.24 | 2.89 ± 2.82 | 0.39 ± 0.23 | 1.38 ± 2.52 | |
AUC0-24h(h·ng/mL) | 7.19 ± 9.61 | 46.36 ± 86.65 | 10.45 ± 8.11 | 18.31 ± 11.27 | |
Vd(L/kg) | / | 309,845.96 ± 219,733.66 | 89,392.67 ± 75,834.45 | 100,434.21 ± 56,030.46 | |
CL(L/h/kg) | / | 14,751.09 ± 11,858.04 | 9268.27 ± 2708.14 | 9868.20 ± 6601.76 | |
CUR III | t1/2(h) | 5.69 ± 5.27 | 7.50 ± 3.82 | 11.76 ± 14.20 | 7.49 ± 6.34 |
Cmax(ng/mL) | 7.24 ± 5.71 | 27.03 ± 46.28 | 38.15 ± 38.13 | 12.84 ± 6.47 | |
Tmax(h) | 0.31 ± 0.25 | 5.35 ± 9.40 | 1.54 ± 1.20 | 2.61 ± 2.86 | |
AUC0-24h(h·ng/mL) | 27.83 ± 39.03 | 37.05 ± 37.68 | 77.14 ± 43.37 | 40.49 ± 19.88 | |
Vd(L/kg) | 62,476.37 ± 795.00 | 69,737.54 ± 46,305.10 | 13,509.02 ± 8797.05 | 35,460.51 ± 19,344.44 | |
CL(L/h/kg) | 13,401.24 ± 12,509.88 | 7004.13 ± 4323.30 | 1314.13 ± 674.08 | 4760.87 ± 3179.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Chen, X.; Dai, C.; Lin, D.; Pang, X.; Zhang, D.; Liu, G.; Jin, Y.; Lin, J. Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex. Molecules 2022, 27, 2998. https://doi.org/10.3390/molecules27092998
Song W, Chen X, Dai C, Lin D, Pang X, Zhang D, Liu G, Jin Y, Lin J. Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex. Molecules. 2022; 27(9):2998. https://doi.org/10.3390/molecules27092998
Chicago/Turabian StyleSong, Wanrong, Xizhao Chen, Chongshan Dai, Degui Lin, Xuelin Pang, Di Zhang, Gang Liu, Yipeng Jin, and Jiahao Lin. 2022. "Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex" Molecules 27, no. 9: 2998. https://doi.org/10.3390/molecules27092998
APA StyleSong, W., Chen, X., Dai, C., Lin, D., Pang, X., Zhang, D., Liu, G., Jin, Y., & Lin, J. (2022). Comparative Study of Preparation, Evaluation, and Pharmacokinetics in Beagle Dogs of Curcumin β-Cyclodextrin Inclusion Complex, Curcumin Solid Dispersion, and Curcumin Phospholipid Complex. Molecules, 27(9), 2998. https://doi.org/10.3390/molecules27092998