Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Glutinous Rice Husk Extracts
2.2. Chemical Composition of Glutinous Rice Husk Extracts
2.3. Antioxidant Activities of Glutinous Rice Husk Extracts
2.4. Anti-Aging Activities of Glutinous Rice Husk Extracts
2.5. In Vitro Irritation Properties of Glutinous Rice Husk Extracts
3. Materials and Methods
3.1. Plant Materials
3.2. Chemical Materials
3.3. Extraction of Glutinous Rice Husk
3.3.1. Solvent Extraction
3.3.2. Aqueous Enzymatic Extraction
3.4. Determination of Total Phenolic Content by Folin–Ciocalteu Method
3.5. Determination of Vanillic Acid, Ferulic Acid, and Cellulase Content by High-Performance Liquid Chromatography (HPLC)
3.6. Antioxidant Activity Determination
3.6.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Assay
3.6.2. 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Assay
3.6.3. Ferric Reducing Antioxidant Power (FRAP) Assay
3.7. Anti-Aging Activity Determination
3.7.1. Determination of Collagenase Inhibitory Activity
3.7.2. Determination of Hyaluronidase Inhibitory Activity
3.8. Irritation Test of Glutinous Rice Husk Extracts by Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Verma, D.K.; Srivastav, P.P. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends Food Sci. Technol. 2020, 97, 355–365. [Google Scholar] [CrossRef]
- Maurya, S. Development of a Database for Oryza sativa: A medicinally important food crops in india. J. Ravishankar Univ. 2016, 29, 93–94. [Google Scholar]
- Sattaka, P. Geographical distribution of glutinous rice in the greater mekong sub-region. JMS 2016, 12, 27–48. [Google Scholar] [CrossRef]
- Govindarao, V.M. Utilization of rice husk-a preliminary analysis. J. Sci. Ind. Res. 1980, 39, 495–515. [Google Scholar]
- Sierra-Vargas, M.P.; Teran, L.M. Air pollution: Impact and prevention. Respirology 2012, 17, 1031–1038. [Google Scholar] [CrossRef]
- Junjian, R.; Mingtao, F.; Yahui, L.; Guowei, L.; Zhengyang, Z.; Jun, L. Optimisation of ultrasonic-assisted extraction of polyphenols from apple peel employing cellulase enzymolysis. Food Sci. Technol. 2013, 48, 910–917. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Kan, H.; Chen, S.X.; Thakur, K.; Wang, S.; Zhang, J.G.; Shang, Y.F.; Wei, Z.J. Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem. 2020, 321, 126672. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Akyüz, A.; Ersus, S. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Man, Y.C.; Asbi, A.B.; Azudin, M.N.; Wei, L.S. Aqueous enzymatic extraction of coconut oil. J. Am. Oil Chem. Soc. 1996, 73, 683–686. [Google Scholar] [CrossRef]
- Rosenthal, A.; Pyle, D.L.; Niranjan, K.; Gilmour, S.; Trinca, L. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme Microb. Technol. 2001, 28, 499–509. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, F. Aqueous enzymatic sesame oil and protein extraction. Food Chem. 2011, 125, 679–684. [Google Scholar] [CrossRef]
- Prommaban, A.; Kuanchoom, R.; Seepuan, N.; Chaiyana, W. Evaluation of fatty acid compositions, antioxidant, and pharmacological activities of pumpkin (Cucurbita moschata) seed oil from aqueous enzymatic extraction. Plants 2021, 10, 1582. [Google Scholar] [CrossRef] [PubMed]
- Ozay, Y.; Ozdemir, S.; Gonca, S.; Canli, O.; Dizge, N. Phenolic compounds recovery from pistachio hull using pressure-driven membrane process and a cleaner production of biopesticide. Environ. Technol. Innov. 2021, 24, 101993. [Google Scholar] [CrossRef]
- Chen, G.; Sui, X.; Liu, T.; Wang, H.; Zhang, J.; Sun, J.; Xu, T. Application of cellulase treatment in ionic liquid based enzyme-assisted extraction in combine with in-situ hydrolysis process for obtaining genipin from Eucommia ulmoides Olive barks. J. Chromatogr. A 2018, 569, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Gligor, O.; Mocan, A.; Moldovan, C.; Locatelli, M.; Crișan, G.; Ferreira, I.C. Enzyme-assisted extractions of polyphenols–A comprehensive review. Trends Food Sci. Technol. 2019, 88, 302–315. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Passos, C.P.; Yilmaz, S.; Silva, C.M.; Coimbra, M.A. Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chem. 2009, 115, 48–53. [Google Scholar] [CrossRef]
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef]
- Sharada, R.; Venkateswarlu, G.; Venkateswar, S.; Rao, M.A. Applications of cellulases-review. Int. J. Pharm. Chem. Biol. Sci. 2014, 4, 424–437. [Google Scholar]
- Sadhu, S.; Maiti, T.K. Cellulase production by bacteria: A review. Br. Microbiol. Res. J. 2013, 3, 235–258. [Google Scholar] [CrossRef] [Green Version]
- Sukumaran, R.K.; Singhania, R.R.; Pandey, A. Microbial cellulases-production, applications and challenges. J. Sci. Ind. Res. 2005, 64, 832–844. [Google Scholar]
- Neagu, D.; Leopold, L.F.; Thonart, P.; Destain, J.; Socaciu, C. Enzyme-assisted extraction of carotenoids and phenolic derivatives from tomatoes. Bull. UASVM Anim. Sci. Biotechnol. 2014, 71, 20–26. [Google Scholar] [CrossRef]
- Kabir, F.; Sultana, M.S.; Kurnianta, H. Polyphenolic contents and antioxidant activities of underutilized grape (Vitis vinifera L.) pomace extracts. Prev. Nutr. Food Sci. 2015, 20, 210–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Wanyo, P.; Meeso, N.; Siriamornpun, S. Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem. 2014, 157, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Butsat, S.; Siriamornpun, S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 2010, 119, 606–613. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, F.; Cui, Q.; Lu, M.; Song, X.; Tang, H.; Li, Q. Measurement and correlation of the solubility of vanillic acid in eight pure and water+ ethanol mixed solvents at temperatures from (293.15 to 323.15) K. J. Chem. Eng. Data. 2016, 61, 420–429. [Google Scholar] [CrossRef]
- Shakeel, F.; Salem-Bekhit, M.M.; Haq, N.; Siddiqui, N.A. Solubility and thermodynamics of ferulic acid in different neat solvents: Measurement, correlation and molecular interactions. J. Mol. Liq. 2017, 236, 144–150. [Google Scholar] [CrossRef]
- Balsan, G.; Astolfi, V.; Benazzi, T.; Meireles, M.A.A.; Maugeri, F.; Di Luccio, M.; Dal Prá, V.; Mossi, A.J.; Treichel, H.; Mazutti, M.A. Characterization of a commercial cellulase for hydrolysis of agro industrial substrates. Bioprocess. Biosyst. Eng. 2012, 35, 1229–1237. [Google Scholar] [CrossRef]
- Yusoff, M.M.; Gordon, M.H.; Ezeh, O.; Niranjan, K. Aqueous enzymatic extraction of Moringa oleifera oil. Food Chem. 2016, 211, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, M.M.; Gordon, M.H.; Ezeh, O.; Niranjan, K. High pressure pre-treatment of Moringa oleifera seed kernels prior to aqueous enzymatic oil extraction. Innov. Food Sci. Emerg. Technol. 2017, 39, 129–136. [Google Scholar] [CrossRef]
- Zhang, S.B.; Wang, Z.; Xu, S.Y. Optimization of the aqueous enzymatic extraction of rapeseed oil and protein hydrolysates. J. Am. Oil Chem. Soc. 2007, 84, 97–105. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Z.G.; Gai, Q.Y.; Li, X.J.; Wei, F.Y.; Fu, Y.J.; Ma, W. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem. 2014, 147, 17–24. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Cheng, S.; Han, F. Aqueous enzymatic extraction of oil and protein hydrolysates from peanut. Food Sci. Technol. Res. 2008, 14, 533. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Hao, L.; Chen, F.; Yang, C. Study on extraction of peanut protein and oil bodies by aqueous enzymatic extraction and characterization of protein. J. Chem. 2020, 2020, 5148967. [Google Scholar] [CrossRef] [Green Version]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar] [CrossRef]
- Chaovanalikit, A.; Mingmuang, A.; Kitbunluewit, T.; Choldumrongkool, N.; Sondee, J.; Chupratum, S. Anthocyanin and total phenolics content of mangosteen and effect of processing on the quality of mangosteen products. Food Res. J. 2012, 19, 1047. [Google Scholar]
- Daly, C.H. Biomechanical properties of dermis. J. Investig. Dermatol. 1982, 79, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Uitto, J.; Santa Cruz, D.J.; Eisen, A.Z. Connective tissue nevi of the skin: Clinical, genetic, and histopathologic classification of hamartomas of the collagen, elastin, and proteoglycan type. J. Am. Acad. Dermatol. 1980, 3, 441–461. [Google Scholar] [CrossRef]
- Baumann, L. Skin ageing and its treatment. J. Pathol. 2007, 211, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Kwon, S.H.; Huh, C.H.; Park, K.C.; Youn, S.W. The influences of skin visco-elasticity, hydration level and aging on the formation of wrinkles: A comprehensive and objective approach. Skin Res. Technol. 2013, 19, e349–e355. [Google Scholar] [CrossRef] [PubMed]
- Laurent, T.C.; Laurent, U.B.; Fraser, J.R.E. The structure and function of hyaluronan: An overview. Immunol. Cell Biol. 1996, 74, a1–a7. [Google Scholar] [CrossRef] [PubMed]
- Koppes, S.A.; Ljubojević Hadžavdić, S.; Jakasa, I.; Franceschi, N.; Riethmüller, C.; Jurakić Tončic, R.; Marinovic, B.; Raj, N.; Rawlings, A.V.; Voegeli, R.; et al. Effect of allergens and irritants on levels of natural moisturizing factor and corneocyte morphology. Contact Dermat. 2017, 76, 287–295. [Google Scholar] [CrossRef]
- Steiling, W.; Bracher, M.; Courtellemont, P.; De Silva, O. The HET–CAM, a useful in vitro assay for assessing the eye irritation properties of cosmetic formulations and ingredients. Toxicol. In Vitro 1999, 13, 375–384. [Google Scholar] [CrossRef]
- Wilson, T.D.; Steck, W.F. A modified HET–CAM assay approach to the assessment of anti-irritant properties of plant extracts. Food Chem. Toxicol. 2000, 38, 867–872. [Google Scholar] [CrossRef]
- Poomanee, W.; Chaiyana, W.; Intasai, N.; Leelapornpisid, P. Biological activities and characterization of the pod extracts from sompoi (Acacia concinna linn) grown in northern Thailand. Int. J. Pharm. Pharm. Sci. 2015, 7, 237–241. [Google Scholar]
- Brem, B.; Seger, C.; Pacher, T.; Hartl, M.; Hadacek, F.; Hofer, O.; Vajrodaya, S.; Greger, H. Antioxidant dehydrotocopherols as a new chemical character of Stemona species. Phytochemistry 2004, 65, 2719–2729. [Google Scholar] [CrossRef]
- Chaiyana, W.; Punyoyai, C.; Somwongin, S.; Leelapornpisid, P.; Ingkaninan, K.; Waranuch, N.; Srivilai, J.; Thitipramote, N.; Wisuitiprot, W.; Schuster, R.; et al. Inhibition of 5α- reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex vaucher extract as functional food and nutraceuticals ingredients. Nutrients 2017, 9, 1105. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Saeio, K.; Chaiyana, W.; Okonogi, S. Antityrosinase and antioxidant activities of essential oils of edible Thai plants. Drug Discov. Ther. 2011, 5, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K.H.; Lin, W.C.; Lue, S.C.; Viernstein, H.; Mueller, M. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod. 2019, 127, 217–224. [Google Scholar] [CrossRef]
- Somwongin, S.; Chantawannakul, P.; Chaiyana, W. Antioxidant activity and irritation property of venoms from Apis species. Toxicon 2018, 145, 32–39. [Google Scholar] [CrossRef] [PubMed]
Glutinous Rice Husk Extract | Weigh of Yield (g) 5 | Yield (% w/w) |
---|---|---|
EtOH 1 | 2.0 ± 0.2 d | 1.3 ± 0.1 d |
CE0.5 2 | 2.9 ± 0.1 c | 1.9 ± 0.1 c |
CE1.0 3 | 3.6 ± 0.1 b | 2.4 ± 0.0 b |
CE1.5 4 | 4.0 ± 0.1 a | 2.7 ± 0.0 a |
Glutinous Rice Husk Extract | TPC (mg GAE/g Extract) 5 |
---|---|
EtOH 1 | 255.8 ± 2.0 a |
CE0.5 2 | 180.0 ± 1.7 b |
CE1.0 3 | 92.0 ± 0.2 d |
CE1.5 4 | 103.0 ± 0.8 c |
Samples | IC50 on DPPH 1 (µg/mL) | TEAC 2 (µg Trolox/mg Extract) | EC1 3 (mM FeSO4/mg Extract) |
---|---|---|---|
AS 4 | 4.3 ± 0.2 a | 12.3 ± 0.0 a | 238.3 ± 0.2 a |
VA 5 | 1750.7 ± 321.0 c | 5.4 ± 0.1 c | 126.7 ± 1.3 c |
FA 6 | 37.9 ± 0.8 a | 12.3 ± 0.0 a | 234.5 ± 1.0 b |
CE 7 | N.D. 12 | 0.0 ± 0.1 e | 0.0 ± 0.3 g |
EtOH 8 | 184.0 ± 20.8 a | 0.0 ± 0.8 e | 74.9 ± 0.4 d |
CE0.5 9 | 201.3 ± 13.7 a | 6.5 ± 0.3 b | 38.1 ± 0.9 e |
CE1.0 10 | 614.8 ± 17.3 b | 3.2 ± 0.2 d | 34.7 ± 1.1 e |
CE1.5 11 | 847.6 ± 90.5 b | 3.1 ± 0.2 d | 21.6 ± 2.7 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiamphun, S.; Chaiyana, W. Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction. Molecules 2022, 27, 3317. https://doi.org/10.3390/molecules27103317
Jiamphun S, Chaiyana W. Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction. Molecules. 2022; 27(10):3317. https://doi.org/10.3390/molecules27103317
Chicago/Turabian StyleJiamphun, Sudarat, and Wantida Chaiyana. 2022. "Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction" Molecules 27, no. 10: 3317. https://doi.org/10.3390/molecules27103317
APA StyleJiamphun, S., & Chaiyana, W. (2022). Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction. Molecules, 27(10), 3317. https://doi.org/10.3390/molecules27103317