New Cu+2 Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Description
2.1.1. Crystal Structure of [Cu(L1)2(H2O)3](C1)
2.1.2. Crystal Structure of [Cu(L2)2(py)2(H2O)] (C2)
2.2. Powder X-ray Diffraction Analysis
2.3. Hirshfeld Surfaces and Fingerprint Plots Analysis
2.4. Spectroscopic and Magnetic Properties
2.5. In Vitro Biological Assays
2.5.1. DNA Cleavage
- Interaction of ligands (deprotonated sulfonamide L- and pyridine) with nitrogenous bases in the DNA molecule by π stacking and/or hydrogen bonding.
- Reduction of Cu+2 to Cu+1 ion within the complex molecule.
- Fenton or Haber–Wiess reactions with active radical production (HO• and O2−), which will break the helical chains in the DNA structure in one place, with the appearance of the circular shape, or in two points of the same chain, with the appearance of the linear one. A possible pathway for ROS generation involved in the degradation of DNA molecules is outlined as follows (Figure 11):
2.5.2. SOD Mimetic Activity
2.5.3. Cell Culture and Cytotoxicity Assays
2.5.4. Evaluation of Antibacterial Activity
2.6. In Vivo Toxicity Study of C2 Complex
3. Materials and Methods
3.1. Synthesis of the Complex [Cu(N-(5-(4-Methylphenyl)-[1,3,4]-Thiadiazole-2-yl) Naphtalenesulfonamidate)2(H2O)3] (C1)
3.2. Synthesis of the Complex [Cu(N-(5-Ethyl--[1,3,4]-Thiadiazole-2-yl) Naphtalenesulfonamidate)2(py)2(H2O)] (C2)
3.3. X-ray Single Crystal Diffraction and Structures Refinement
3.4. X-ray Powder Diffraction
3.5. 3D Hirshfeld Surfaces and Related Fingerprint Plots Analysis
3.6. In Vitro Biological Assays
3.6.1. DNA Cleavage
3.6.2. SOD Mimetic Activity
3.6.3. Cell Culture and Cytotoxicity Assays
Cell Culture
Cytotoxicity Assays
3.6.4. Evaluation of Antibacterial Activity
3.7. In Vivo Toxicity Study of C2 Complex
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Van Rijt, S.H.; Sadler, P.J. Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov. Today 2009, 14, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol. 2014, 19, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Cetean, S.; Ciuleanu, T.; Leucuța, D.C.; Căinap, C.; Constantin, A.M.; Cazacu, I.; Căinap, S.; Gherman, A.; Oprean, L.; Hangan, A.; et al. Hypersensitivity reactions to platinum derivatives: Findings of new predictive markers. J. BUON 2015, 20, 1617–1623. [Google Scholar] [PubMed]
- Gheorghe-Cetean, S.; Căinap, C.; Oprean, L.; Hangan, A.; Virag, P.; Fischer-Fodor, E.; Gherman, A.; Căinap, S.; Constantin, A.M.; Laszlo, I.; et al. Platinum derivatives: A multidisciplinary approach. J. BUON 2017, 22, 568–577. [Google Scholar]
- Sathisha, M.P.; Shetti, U.N.; Revankar, V.K.; Pai, K.S. Synthesis and antitumor studies on novel Co(II), Ni(II) and Cu(II) metal complexes of bis (3-acetylcoumarin) thiocarbohydrazone. Eur. J. Med. Chem. 2008, 43, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.J.; Bull, É.S.; Fernandes, C.; Horn, A.; Azeredo, N.F.; Resende, J.A.; Freitas, W.R.; Carvalho, E.C.; Lemos, L.S.; Jerdy, H.; et al. In vitro and in vivo studies of the antineoplastic activity of copper (II) compounds against human leukemia THP-1 and murine melanoma B16-F10 cell lines. Eur. J. Med. Chem. 2016, 123, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Hancock, C.N.; Stockwin, L.H.; Han, B.; Divelbiss, R.D.; Jun, J.H.; Malhotra, S.V.; Hollingshead, M.G.; Newton, D.L. A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic. Biol. Med. 2011, 50, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Zhang, Y.; Gou, Y.; Zhang, Z.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H. Developing an anticancer copper (II) prodrug based on the His242 residue of the human serum albumin carrier IIA subdomain. Mol. Pharm. 2016, 13, 1501–1507. [Google Scholar] [CrossRef]
- Denoyer, D.; Clatworthy, S.A.S.; Cater, M.A. Copper complexes in cancer therapy. Met. Ions Life Sci. 2018, 5, 18–29. [Google Scholar]
- Molinaro, C.; Wambang, N.; Bousquet, T.; Vercoutter-Edouart, A.S.; Pélinski, L.; Cailliau, K.; Martoriati, A. A Novel copper(II) indenoisoquinoline complex inhibits topoisomerase I, induces G2 phase arrest, and autophagy in three adenocarcinomas. Front. Oncol. 2022, 12, 837373. [Google Scholar] [CrossRef]
- Palma, E.; Raposinho, P.; Campello, M.P.C.; Belo, D.; Guerreiro, J.F.; Alves, V.; Fonseca, A.; Abrunhosa, A.J.; Paulo, A.; Mendes, F. Anticancer activity and mode of action of copper (II)-bis (thiosemicarbazonato) complexes with pendant nitrogen heterocycles. Eur. J. Inorg. Chem. 2021, 14, 1337–1348. [Google Scholar] [CrossRef]
- Malis, G.; Geromichalou, E.; Geromichalos, G.D.; Hatzidimitriou, A.G.; Psomas, G. Copper(II) complexes with non-steroidal anti-inflammatory drugs: Structural characterization, in vitro and in silico biological profile. J. Inorg. Biochem. 2021, 224, 111563. [Google Scholar] [CrossRef] [PubMed]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper coordination compounds as biologically active agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef] [PubMed]
- Hangan, A.; Borras, J.; Liu-Gonzalez, M.; Oprean, L. Synthesis, crystal structures and properties of [Cu(L1)2(py)2(H2O)](H2O) [HL1=N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)- toluenesulfonamidate] and [Cu(L2)2(py)2(H2O)] [HL2 = N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)- benzenesulfonamidate]. Z. Anorg. Allg. Chem. 2007, 633, 1837–1841. [Google Scholar] [CrossRef]
- Hangan, A.; Borodi, G.; Filip, X.; Tripon, C.; Morari, C.; Oprean, L.; Filip, C. Structure of N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)-toluenesulfonamide by combined X-ray powder diffraction, 13C solid-state NMR and molecular modelling. Acta Cryst. 2010, 6, 615–621. [Google Scholar] [CrossRef]
- Hangan, A.; Bodoki, A.; Oprean, L.; Crisan, O.; Mihalca, I. Synthesis of new N-substituted heterocyclic sulfonamides. Farmacia 2012, 6, 932–938. [Google Scholar]
- Hangan, A.; Turza, A.; Stan, R.L.; Ștefan, R.; Oprean, L.S. Synthesis, crystal structure, proprieties and nuclease activity of a new Cu(II) complex [Cu(L)2(Py)2(H2O)] (HL=N-(5-(4-methylphenyl)-[1,3,4]-thiadiazole-2-yl)-toluenesulfonamide). Russ. J. Coord. Chem. 2015, 41, 395–404. [Google Scholar] [CrossRef]
- Hangan, A.C.; Turza, A.; Stan, R.L.; Sevastre, B.; Pall, E.; Cetean, S.; Oprean, L.S. Synthesis, crystal structure and characterization of new biologically active Cu(II) complexes with ligand derived from N-subtituted sulfonamide. J. Chem. Sci. 2016, 128, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Hangan, A.C.; Stan, R.; Turza, A.; Oprean, L.; Pall, E.; Gheorghe-Cetean, S.; Sevastre, B. Synthesis, crystal structures, characterization and antitumor activities of two copper(II) complexes of a sulfonamide ligand. Transit. Met. Chem. 2017, 42, 153–164. [Google Scholar] [CrossRef]
- Hangan, A.C.; Borodi, G.; Stan, R.L.; Pall, E.; Cenariu, M.; Oprean, L.S.; Sevastre, B. Synthesis, crystal structure, DNA cleavage and antitumor activity of two copper(II) complexes with N-sulfonamide ligand. Inorg. Chim. Acta 2018, 482, 884–893. [Google Scholar] [CrossRef]
- Diaz, J.R.A.; Camí, G.E.; Liu-González, M.; Vega, D.R.; Vullo, D.; Juárez, A.; Pedregosa, J.C.; Supuran, C.T. Salts of 5-amino-2-sulfonamide-1,3,4-thiadiazole, a structural and analog of acetazolamide, show interesting carbonic anhydrase inhibitory properties, diuretic, and anticonvulsant action. J. Enzyme Inhib. Med. Chem. 2016, 31, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Nakahata, D.; Paiva, R.; Lustri, W.; Corbi, P. Sulfonamide-containing copper(II) complexes: New insights on biophysical interactions and antibacterial activities. New J. Chem. 2020, 44, 17236–17244. [Google Scholar] [CrossRef]
- Brichet, J.; Arancibia, P.; Berrino, E.; Supuran, C.T. Bioorganometallic derivatives of 4-hydrazino-benzenesulphonamide as carbonic anhydrase inhibitors: Synthesis, characterisation and biological evaluation. J. Enzyme Inhib. Med. Chem. 2020, 35, 622–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodoki, A.; Hangan, A.; Oprean, L.; Alzuet, G.; Castiñeiras, A.; Borrás, J. Oxidative DNA cleavage by copper ternary complexes of 1,10-phenanthroline and ethylenediamine-sulfonamide derivatives. Polyhedron 2009, 28, 2537–2544. [Google Scholar] [CrossRef]
- Grosu, I.G.; Martin, F.; Turza, A.; Miclăuș, M.; Kacso, I.; Borodi, G. Structural studies of various olmesartan solvates. Acta Cryst. C 2022, 78, 240–249. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef]
- Rohl, A.L.; Moret, M.; Kaminsky, W.; Claborn, K.; Mackinon, J.J.; Kahr, B. Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: Pentamorphic 1,8-Dihydroxyanthraquinone. Cryst. Growth Des. 2008, 8, 4517–4525. [Google Scholar] [CrossRef]
- Shiver, D.F.; Atkins, P.W.; Langdorf, C.H. Espectros electronicos de complejos. In Quimica Inorganica; Editorial Reverté: Barcelona, Spain, 1998. [Google Scholar]
- Garcia-Raso, A.; Fiol, J.J.; Martorell, G.; Lopez-Zafra, A.; Quiros, M. Metallation of 2-sulfanilamidopyrimidine (sulfadiazine). X-ray diffraction structure and solution behaviour of bis(sulfadiazinato) mercury(II) bis(dimethylsulfoxide). Polyhedron 1997, 16, 613–619. [Google Scholar] [CrossRef]
- Otter, C.A.; Couchman, S.M.; Jeffery, J.C.; Mann, K.L.V.; Psillakis, E.; Ward, M.D. Coordination chemistry of mixed pyridine-phenol ligands; mononuclear palladium(II) and dinuclear copper(II) complexes of derivatives of bidentate N,O-chelating ligands based on 2-(2-hydroxyphenyl)pyridine. Inorg. Chim. Acta 1998, 278, 178–182. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal Design Structure and Function Perspectives in Supramolecular Chemistry; John Wiley&Sons: Chichester, UK, 2003; pp. 328–369. [Google Scholar]
- Sundberg, J.; Witt, H.; Cameron, L.; Håkansson, M.; Bendix, J.; McKenzie, C.J. A versatile dinucleating ligand containing sulfonamide groups. Inorg. Chem. 2014, 53, 2873–2882. [Google Scholar] [CrossRef] [PubMed]
- Uhlemann, T.; Berden, G.; Oomens, J. Preferred protonation site of a series of sulfa drugs in the gas phase revealed by IR spectroscopy. Eur. Phys. J. D 2021, 75, 23. [Google Scholar] [CrossRef]
- Dineshkumar, S.; Thirunarayanan, G. Bio-potent sulfonamides. J. Chil. Chem. Soc. 2019, 64, 4386–4391. [Google Scholar] [CrossRef] [Green Version]
- Hathaway, B.J. Comprehensive Coordination Chemistry; Wilkinson&Gillard: New York, NY, USA, 1987; Chapter 9. [Google Scholar]
- Bertini, I.; Drago, R. ESR and NMR of Paramagnetic Species in Biological and Related Systems; Nato Advances Study Institutes Series (ASIC): Dordrecht, Holland, 1979; Volume 52. [Google Scholar]
- Venkateswarlu, K.; Anantha Lakshmi, P.V.; Shivaraj, B. Synthesis, spectroscopic and thermal studies of Cu+2, Ni+2 and Co+3 complexes of Schiff base containing furan moiety. Antitumor, antioxidant, antibacterial and DNA interaction studies. Appl. Organomet. Chem. 2022, 36, e6530. [Google Scholar] [CrossRef]
- Miao, T.; Deng, Q.; Gao, H.; Fu, X.; Li, S. Theoretical studies on DNA-cleavage mechanism of copper(II) complexes: Probing generation of reactive oxygen species. J. Chem. Inf. Model. 2018, 58, 859–866. [Google Scholar] [CrossRef]
- Čapek, J.; Roušar, T. Detection of oxidative stress induced by nanomaterials in cells -The roles of reactive oxygen species and glutathione. Molecules 2021, 26, 4710. [Google Scholar] [CrossRef]
- Jungwirth, U.; Kowol, C.R.; Keppler, B.K.; Hartinger, C.G.; Berger, W.; Heffeter, P. Anticancer activity of metal complexes: Involvement of redox processes. Antioxid. Redox Signal. 2021, 15, 1085. [Google Scholar] [CrossRef] [Green Version]
- Devereux, M.; McCann, M.; O’Shea, D.; O’Connor, M.; Kiely, E.; McKee, V.; Naughton, D.; Fisher, A.; Kellett, A.; Walsh, M.; et al. Synthesis, superoxide dismutase mimetic and anticancer activities of metal complexes of 2,2-dimethylpentanedioic acid (2dmepdaH2) and 3,3-dimethylpentanedioic acid(3dmepdaH2): X-ray crystal structures of [Cu(3dmepda)(bipy)]2·6H2O and [Cu(2dmepda)(bipy)(EtOH)]2· 4EtOH (bipy = 2,2’ bipyridine). Bioinorg. Chem. Appl. 2006, 2006, 80283. [Google Scholar]
- Gonzalez-Alvarez, M.; Alzuet, G.; Borras, J.; Agudo, L.C.; Montejo-Bernardo, J.M.; Garcia-Granada, S. Development of novel copper(II) complexes of benzothiazole-N-sulfonamides as protective agents against superoxide anion. Crystal structures of [Cu(N–2-(4-methylbenzothiazole)benzenesulfonamidate)2(py)2] and [Cu(N–2-(6-nitrobenzothiazole) naphthalensulfonamidate)2(py)2]. J. Biol. Inorg. Chem. 2003, 8, 112–120. [Google Scholar]
- Gonzalez-Alvarez, M.; Alzuet, G.; Borras, J.; del Castillo Agudo, L.; Garcia-Granda, S.; Montejo-Bernardo, J.M. Strong protective action of copper (II) N-substituted sulfonamide complexes against reactive oxygen species. J. Inorg. Biochem. 2004, 98, 189–198. [Google Scholar] [CrossRef]
- Casanova, J.; Alzuet, G.; Sacramento, F.; Latorre, J.; Ramirez, J.A.; Borras, J. Superoxide dismutase activity of thernary copper complexes of sulfathiazole and imidazole derivatives. Synthesis and properties of [CuL2(R-Him)2] [HL = 4-amino-N-(thiazol-2-yl) benzensulfonamide, R-Him=4-methylimidazole, 4,4-dimethylimidazoline or 1,2-dimethylimidazole].Crystal structure of [CuL2(4,4-dimethylimidazole]. Inorg. Chim. Acta 2000, 304, 170–177. [Google Scholar]
- Hangan, A.C.; Stan, R.L.; Sevastre, B.; Gheorghe-Cetean, S.; Oprean, L. DNA cleavage study and SOD-mimetic activity of a new Cu(II) complex. Farmacia 2017, 65, 368–373. [Google Scholar]
- Casanova, J.; Alzuet, G.; Borras, J.; Timoneda, J.; Granda, S.G.; Gonzalez, I. Coordination behavior of sulfathiazole. Crystal structure of dichloro-disulfathiazole ethanol Cu(II) complex. Superoxide dismutase activity. J. Inorg. Biochem. 1994, 56, 65–76. [Google Scholar] [CrossRef]
- Hrapkiewicz, K.; Medina, L. Clinical Laboratory Animal Medicine: An Introduction; Blackwell Publishing Professional: Ames, IA, USA, 2013. [Google Scholar]
- Rusu, D.; Stănilă, A.; Marian, I.O.; Marian, C.O.; Rusu, M.; Lucaciu, R. Synthesis and caracterization of some cobalt (II) complexes with amino acids having biological activities. Rev. Chim. 2009, 60, 939–943. [Google Scholar]
- Hangan, A.; Bodoki, A.; Oprean, L.; Alzuet, G.; Liu-Gonzalez, M.; Borras, J. Synthesis, crystallographic, spectroscopic characterization and magnetic properties of dimer and monomer ternary copper(II) complexes with sulfonamide derivatives and 1,10-phenantroline. Nuclease activity by the oxidative mechanism. Polyhedron 2010, 29, 1305–1313. [Google Scholar] [CrossRef]
- CrysAlis PRO; Rigaku Oxford Diffraction: Yarnton, UK, 2015.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.J. OLEX2: A complete structure solution, refinement and analysis program. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Comm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer1; University of Western Australia: The Nedlands, WA, Australia, 2017. [Google Scholar]
- Hangan, A.; Vicaș, L.; Stan, R.L.; Pall, E.; Oprean, L.; Ionescu, C.; Andrei, S.; Sevastre- Berghian, A.; Marian, E.; Sevastre, B. Synthesis, characterization and biological activity of two new Copper (II) complexes with N-sulfonamide ligand. Rev. Chim. 2019, 70, 4060–4067. [Google Scholar] [CrossRef]
- Oberlay, L.W.; Spitz, D.R. Handbook of Methods for Oxygen Radicals Research; RA Greenwald CRC Press: Boca Raton, FL, USA, 1986; pp. 217–220. [Google Scholar]
- Grozav, A.; Porumb, I.D.; Găină, L.I.; Filip, L.; Hanganu, D. Cytotoxicity and antioxidant potential of novel 2-(2-((1H-indol-5-yl) methylene)-hydrazinyl)-thiazole derivatives. Molecules 2017, 22, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevastre, B.; Sarpataki, O.; Stan, R.L.; Taulescu, M.; Sevastre-Berghian, A.C.; Olah, N.K.; Furtuna, F.; Hanganu, D.; Hangan, A.C.; Cenariu, M.; et al. Anticancer activity of Euonymus europaeus fruit extract on human melanoma cells. Farmacia 2017, 65, 56–62. [Google Scholar]
- Marian, E.; Duțeanu, N.; Vicaș, L.; Rusu, G.; Jurca, T.; Mureșan, M.; Micle, O.; Hangan, A.C.; Stan, R.L.; Ionescu, C.; et al. Synthesis, characterization of inclusion compounds of amygdalin with β-cyclodextrin and sod-like activity and cytotoxicity on hela tumor cells. Arab. J. Chem. 2020, 13, 6828–6837. [Google Scholar] [CrossRef]
- Stan, R.L.; Sevastre, B.; Ionescu, C.; Olah, N.K.; Vicaș, L.G.; Pall, E.; Moisa, C.; Hanganu, D.; Sevastre-Berghian, A.C.; Andrei, S.; et al. Artemisia annua L. extract: A new phytoproduct with SOD-like and antitumor activity. Farmacia 2020, 68, 812–821. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Marian, E.; Vicaș, L.G.; Jurca, T.; Mureșan, M.; Pallag, A.; Stan, R.L.; Sevastre, B.; Diaconeasa, Z.; Ionescu, C.; Hangan, A.C. Salvia officinalis L. and Verbascum phlomoides L. Chemical, antimicrobial, antioxidant and antitumor investigations. Rev. Chim. 2018, 69, 365–370. [Google Scholar] [CrossRef]
- Benedec, D.; Hanganu, D.; Filip, L.; Oniga, I.; Tiperciuc, B.; Olah, N.K.; Gheldiu, A.M.; Raita, O. Chemical, antioxidant and antibacterial studies of romanian Heracleum sphondylium. Farmacia 2017, 65, 252–256. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Document M02: Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; CLSI: Wayne, NJ, USA, 2018; pp. 15–41. [Google Scholar]
- Ansel, C.W.; Norred, W.P.; Roth, I.L. Antimicrobial activity of dimethyl sulfoxide against Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium. J. Pharm. Sci. 1969, 58, 836–839. [Google Scholar] [CrossRef]
- Markey, B.K.; Leonard, F.C.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology, 2nd ed.; Elsevier: Edinburgh, UK, 2013; pp. 3–48, 105–288. [Google Scholar]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Fitzpatrick, E.S.; Fanning, S.; Hartigan, P.J. Veterinary Microbiology and Microbial Disease, 2nd ed.; Wiley-BlackWell: Hoboken, NJ, USA, 2011; pp. 149–292. [Google Scholar]
- Sevastre, B.; Sarpataki, O.; Olah, N.K.; Stan, R.L.; Taulescu, M.; Marcus, I.; Cătoi, C. Anti-tumor effect of Euonymus Europaeus on Ehrlich tumor cells in vivo. Farmacia 2014, 62, 907–917. [Google Scholar]
- Stan, R.L.; Sevastre, B.; Hangan, A.C.; Bota, S.; Hanganu, D.; Ionescu, C.M.L.; Popovici, C.; Sevastre-Berghian, A.C.; Dreancă, A.; Vicaș, L.G. Artemisia annua L.: Chemical characterization, in vitro antioxidant investigations and in vivo toxicity studies. Rev. Chim. 2019, 70, 1893–1898. [Google Scholar] [CrossRef]
Identification Code | Complex C1 | Complex C2 |
---|---|---|
Empirical formula | C38H34CuN6O7S4 | C38H36CuN8O5S4 |
Formula weight | 878.49 | 876.53 |
Temperature/K | 293(2) | 293(2) |
Crystal system | monoclinic | monoclinic |
Space group | P21/c | C2/c |
a/Å | 5.6797(2) | 24.6386(5) |
b/Å | 42.8168(16) | 9.3411(2) |
c/Å | 17.2267(5) | 18.5012(4) |
α/° | 90 | 90 |
β/° | 92.742(3) | 108.467(2) |
γ/° | 90 | 90 |
Volume/Å3 | 4184.5(2) | 4038.82(15) |
Z | 4 | 4 |
ρcalcg/cm3 | 1.394 | 1.442 |
μ/mm−1 | 3.055 | 3.139 |
F (000) | 1812.0 | 1812.0 |
Crystal size/mm3 | 0.11× 0.10 × 0.07 | 0.11 × 0.10 × 0.09 |
Radiation | CuKα (λ = 1.54184) | CuKα (λ = 1.54184) |
2Θ range for data collection/° | 8.048 to 141.334 | 7.566 to 140.94 |
Index ranges | −6 ≤ h ≤ 4, −51 ≤ k ≤ 49, −20 ≤ l ≤ 21 | −29 ≤ h ≤ 26, −11 ≤ k ≤ 5, −22 ≤ l ≤ 21 |
Reflections collected | 15281 | 7314 |
Independent reflections | 7828 [Rint = 0.0350, Rsigma = 0.0458] | 3784 [Rint = 0.0351, Rsigma = 0.0344] |
Data/restraints/parameters | 7828/0/510 | 3784/2/264 |
Goodness-of-fit on F2 | 1.061 | 1.106 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0784, wR2 = 0.2281 | R1 = 0.0592, wR2 = 0.1521 |
Final R indexes [all data] | R1 = 0.0894, wR2 = 0.2403 | R1 = 0.0614, wR2 = 0.1547 |
Largest diff. peak/hole/e Å−3 | 1.19/−1.27 | 0.65/−1.40 |
Cells | Complex | IC50 (µM) | ||
---|---|---|---|---|
24 h | 48 h | 72 h | ||
HeLa cells | C1 | 33.18 ± 0.19 | 16.36 ± 0.12 | 6.47 ± 0.06 |
C2 | 8.79 ± 0.21 | 4.06 ± 0.05 | 1.45 ± 0.09 | |
Cisplatin | 21.03 ± 0.14 | 6.02 ± 0.19 | 2.39 ± 0.04 | |
WM35 cells | C1 | 41.35 ± 0.19 | 23.87 ± 0.17 | 15.42 ± 0.08 |
C2 | 13.01 ± 0.15 | 8.11 ± 0.13 | 4.66 ± 0.07 | |
Cisplatin | 26.07 ± 0.43 | 11.15 ± 0.09 | 5.98 ± 0.03 | |
HFL1 cells | C1 | 44.67 ± 0.51 | 7.38 ± 0.12 | 3.75 ± 0.15 |
C2 | 17.99 ± 1.08 | 5.55 ± 0.22 | 2.03 ± 0.04 | |
Cisplatin | 13.22 ± 0.89 | 3.99 ± 0.22 | 1.18 ± 0.13 |
Bacterial Strains | Antibiotics | C1 Complex | C2 Complex | Negative Control | |
---|---|---|---|---|---|
Amoxicillin | Norfloxacin | ||||
Staphylococcus aureus ATCC 6538P | 19 ± 0.14 | 16 ± 0.21 | 13 ± 0.17 | 15 ± 0.44 | R |
Bacillus cerreus ATCC 14579 | 13 ± 0.22 | 18 ± 0.19 | 11 ± 0.25 | 12 ± 0.34 | R |
Escherichia coli ATCC 10536 | 18 ± 0.09 | 20 ± 0.11 | 14 ± 0.11 | 16 ± 0.21 | R |
Pseudomonas aeruginosa ATCC 27853 | R | 25 ± 0.24 | 15 ± 0.32 | 19 ± 0.19 | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hangan, A.C.; Turza, A.; Lucaciu, R.L.; Sevastre, B.; Páll, E.; Oprean, L.S.; Borodi, G. New Cu+2 Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents. Molecules 2022, 27, 3338. https://doi.org/10.3390/molecules27103338
Hangan AC, Turza A, Lucaciu RL, Sevastre B, Páll E, Oprean LS, Borodi G. New Cu+2 Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents. Molecules. 2022; 27(10):3338. https://doi.org/10.3390/molecules27103338
Chicago/Turabian StyleHangan, Adriana Corina, Alexandru Turza, Roxana Liana Lucaciu, Bogdan Sevastre, Emőke Páll, Luminița Simona Oprean, and Gheorghe Borodi. 2022. "New Cu+2 Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents" Molecules 27, no. 10: 3338. https://doi.org/10.3390/molecules27103338
APA StyleHangan, A. C., Turza, A., Lucaciu, R. L., Sevastre, B., Páll, E., Oprean, L. S., & Borodi, G. (2022). New Cu+2 Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents. Molecules, 27(10), 3338. https://doi.org/10.3390/molecules27103338