Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of Adipic Acid-Capped Silver Nanoparticles
2.2. SEM and XRD Measurement
2.3. Antibacterial Activity
2.4. Detection of Hg2+ Ions by AgNPs@AA
2.5. Systematic Performance of the Optical Sensor for the Detection of Hg2+
2.6. Effect of Response Time on Colorimetric Assay
2.7. Effect of pH and Temperature on Colorimetric Assay
2.8. Real Sample Analysis
3. Materials and Methods
3.1. Preparation of Adipic Acid-Capped Silver Nanoparticles
3.2. Characterization of AgNPs@AA
3.3. Antibacterial Activity
3.4. Colorimetric Detection of Hg2+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batool, A.I.; Rehman, F.U.; Naveed, N.H.; Shaheen, A.; Irfan, S. Hairs as biomonitors of hazardous metals present in a work environment. Afr. J. Biotechnol. 2011, 10, 3603–3607. [Google Scholar]
- Batool, A.I.; Arshad, M.; Inayat, I.; Robinson, T.; Jabeen, S.H.; Noreen, A.; Bibi, H.; Idress, F.; Khanum, A.; Rehman, M.F.U. Biological Samples as a Tool for Analysis of Metals in Serum of Cataract Patients. Curr. Trends Biomed. Eng. Biosci. 2017, 1, 63–67. [Google Scholar]
- Inayat, I.; Batool, A.I.; Rehman, M.F.; Ali, N.; Jabeen, S.H. Seasonal bioaccumulation of heavy metals in the right and left gills of edible fishes. World J. Fish Mar. Sci. 2014, 6, 195–200. [Google Scholar]
- Naveed, N.H.; Batool, A.I.; Rehman, F.U.; Hameed, U. Leaves of roadside plants as bioindicator of traffic related lead pollution during different seasons in Sargodha, Pakistan. Afr. J. Environ. Sci. Technol. 2010, 4, 770–774. [Google Scholar]
- Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Holmes, P.; James, K.A.F.; Levy, L.S. Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 2009, 408, 171–182. [Google Scholar] [CrossRef]
- Ganzagh, M.A.A.; Yousefpour, M.; Taherian, Z. The removal of mercury (II) from water by Ag supported on nanomesoporous silica. J. Chem. Biol. 2016, 9, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.; Kabir, M.F.; Gurung, A.; Reza, K.M.; Pathak, R.; Ghimire, N.; Baride, A.; Wang, Z.; Kumar, M.; Qiao, Q. Graphene oxide–silver nanowire nanocomposites for enhanced sensing of Hg2+. ACS Appl. Nano Mater. 2019, 2, 4842–4851. [Google Scholar] [CrossRef]
- Lai, C.; Liu, S.; Zhang, C.; Zeng, G.; Huang, D.; Qin, L.; Liu, X.; Yi, H.; Wang, R.; Huang, F. Electrochemical aptasensor based on sulfur–nitrogen codoped ordered mesoporous carbon and thymine–Hg2+–thymine mismatch structure for Hg2+ detection. ACS Sens. 2018, 3, 2566–2573. [Google Scholar] [CrossRef]
- Liu, S.-J.; Nie, H.-G.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Electrochemical sensor for mercury (II) based on conformational switch mediated by interstrand cooperative coordination. Anal. Chem. 2009, 81, 5724–5730. [Google Scholar] [CrossRef]
- Liu, T.; Wang, W.; Jian, D.; Li, J.; Ding, H.; Yi, D.; Liu, F.; Wang, S. Quantitative remote and on-site Hg2+ detection using the handheld smartphone based optical fiber fluorescence sensor (SOFFS). Sens. Actuators B Chem. 2019, 301, 127168. [Google Scholar] [CrossRef]
- Hallaj, R.; Hosseinchi, Z.; Babamiri, B.; Zandi, S. Synthesis and characterization of novel bithiazolidine derivatives-capped CdTe/CdS quantum dots used as a novel Hg2+ fluorescence sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Pei, X.; Cheng, Y.; Zhang, C.; Zhang, J.; Yan, Y.; Ding, C.; Xian, Y. Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sens. 2017, 2, 576–582. [Google Scholar] [CrossRef]
- Xu, D.; Yu, S.; Yin, Y.; Wang, S.; Lin, Q.; Yuan, Z. Sensitive colorimetric Hg2+ detection via amalgamation-mediated shape transition of gold nanostars. Front. Chem. 2018, 6, 566. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, Y.; Zhu, Y.; Zheng, L.; Ding, J.; Quan, Y.; Wang, L.; Qi, B. Highly sensitive colorimetric sensor for Hg2+ detection based on cationic polymer/DNA interaction. Biosens. Bioelectron. 2015, 69, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Ciotta, E.; Paoloni, S.; Richetta, M.; Prosposito, P.; Tagliatesta, P.; Lorecchio, C.; Venditti, I.; Fratoddi, I.; Casciardi, S.; Pizzoferrato, R. Sensitivity to heavy-metal ions of unfolded fullerene quantum dots. Sensors 2017, 17, 2614. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Kanwal, F.; Ma, M.; Rehman, M.F.u.; Khan, F.-u.; Elizur, S.E.; Batool, A.I.; Wang, C.C.; Tabassum, T.; Lu, C.; Wang, Y. Aspirin Repurposing in Folate-Decorated Nanoparticles: Another Way to Target Breast Cancer. Front. Mol. Biosci. 2022, 8, 788279. [Google Scholar] [CrossRef] [PubMed]
- Shurpik, D.N.; Sevastyanov, D.A.; Zelenikhin, P.V.; Padnya, P.L.; Evtugyn, V.G.; Osin, Y.N.; Stoikov, I.I. Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: Synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549. Beilstein J. Nanotechnol. 2020, 11, 421–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkoçi, A. Electrochemical biosensing with nanoparticles. FEBS J. 2007, 274, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Amin, H.M. Silver Nanoparticles Modified Electrodes for Electroanalysis: An Updated Review and a Perspective. Microchem. J. 2022, 107166, 15719–15726. [Google Scholar] [CrossRef]
- Abbas, A.; Amin, H.M.; Akhtar, M.; Hussain, M.A.; Batchelor-McAuley, C.; Compton, R.G. Eco-friendly polymer succinate capping on silver nano-particles for enhanced stability: A UV-Vis and electrochemical particle impact study. Chem. Naissensis 2020, 3, 50–70. [Google Scholar]
- Wei, H.; Chen, C.; Han, B.; Wang, E. Enzyme colorimetric assay using unmodified silver nanoparticles. Anal. Chem. 2008, 80, 7051–7055. [Google Scholar] [CrossRef]
- Awan, M.; Rauf, S.; Abbas, A.; Nawaz, M.H.; Yang, C.; Shahid, S.A.; Amin, N.; Hayat, A. A sandwich electrochemical immunosensor based on antibody functionalized-silver nanoparticles (Ab-Ag NPs) for the detection of dengue biomarker protein NS1. J. Mol. Liq. 2020, 317, 114014. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Muthukumaran, U.; Hoti, S.; Khater, H.F.; Benelli, G. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors. J. Photochem. Photobiol. B Biol. 2016, 161, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Cavallaro, A.; Christo, S.N.; Smith, L.E.; Majewski, P.; Barton, M.; Hayball, J.D.; Vasilev, K. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 2014, 35, 4601–4609. [Google Scholar] [CrossRef]
- Juby, K.; Dwivedi, C.; Kumar, M.; Kota, S.; Misra, H.; Bajaj, P. Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr. Polym. 2012, 89, 906–913. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 37–45. [Google Scholar] [CrossRef]
- Taglietti, A.; Diaz Fernandez, Y.A.; Amato, E.; Cucca, L.; Dacarro, G.; Grisoli, P.; Necchi, V.; Pallavicini, P.; Pasotti, L.; Patrini, M. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 2012, 28, 8140–8148. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 2017, 63, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiesaro, I.; Burratti, L.; Meneghini, C.; Fratoddi, I.; Prosposito, P.; Lim, J.; Scheu, C.; Venditti, I.; Iucci, G.; Battocchio, C. Hydrophilic Silver Nanoparticles for Hg(II) Detection in Water: Direct Evidence for Mercury–Silver Interaction. J. Phys. Chem. C 2020, 124, 25975–25983. [Google Scholar] [CrossRef]
- Erikandath, S.; Bootharaju, M.; Anshup; Thalappil, P. A Practical Silver Nanoparticle-Based Adsorbent for the Removal of Hg2+ from Water. J. Hazard. Mater. 2011, 189, 450–457. [Google Scholar] [CrossRef]
- Pilaquinga, F.; Morey, J.; Vivas-Rodríguez, M.; Yánez-Jácome, G.; Fernández, L.; de las Nieves Piña, M. Colorimetric Detection and Adsorption of Mercury Using Silver Nanoparticles: A Bibliographic and Patent Review. Nanosci. Nanotechnol. Asia 2021, 11, 3–22. [Google Scholar] [CrossRef]
- Korobeinyk, A.V.; Inglezakis, V.J. Silver Nanoparticles Synthesised within the Silica Matrix in Hyperstoichiometrical of Mercury from Aqueous Solutions. IOP Conf. Ser. Earth Environ. Sci. 2018, 182, 012013. [Google Scholar] [CrossRef] [Green Version]
- Niska, K.; Knap, N.; Kędzia, A.; Jaskiewicz, M.; Kamysz, W.; Inkielewicz-Stepniak, I. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice. Int. J. Med. Sci. 2016, 13, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Begum, I.; Ameen, F.; Soomro, Z.; Shamim, S.; AlNadhari, S.; Almansob, A.; Al-Sabri, A.; Arif, A. Facile fabrication of malonic acid capped silver nanoparticles and their antibacterial activity. J. King Saud Univ. Sci. 2021, 33, 101231. [Google Scholar] [CrossRef]
- Ameen, F.; Srinivasan, P.; Selvankumar, T.; Kamala-Kannan, S.; Al Nadhari, S.; Almansob, A.; Dawoud, T.; Govarthanan, M. Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorg. Chem. 2019, 88, 102970. [Google Scholar] [CrossRef]
- Kalhapure, R.; Akamanchi, K.; Mocktar, C.; Govender, T. Synthesis and Antibacterial Activity of Silver Nanoparticles Capped with a Carboxylic Acid-terminated Generation 1 Oleodendrimer. Chem. Lett. 2014, 43, 1110–1112. [Google Scholar] [CrossRef]
- Saenchoopa, A.; Boonta, W.; Talodthaisong, C.; Srichaiyapol, O.; Patramanon, R.; Kulchat, S. Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119433. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, T.; Hu, Y.; Qin, Y.; Wei, W. In Situ Synthesis of Dicarboxylic Acid Functionalized Upconversion Nanoparticles for Bioimaging Applications. ChemPhotoChem 2019, 3, 145–150. [Google Scholar] [CrossRef]
- Prosposito, P.; Burratti, L.; Venditti, I. Silver Nanoparticles as Colorimetric Sensors for Water Pollutants. Chemosensors 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016, 6, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B 1999, 103, 9533–9539. [Google Scholar] [CrossRef]
- Rawat, K.A.; Singhal, R.K.; Kailasa, S.K. One-pot synthesis of silver nanoparticles using folic acid as a reagent for colorimetric and fluorimetric detections of 6-mercaptopurine at nanomolar concentration. Sens. Actuators B Chem. 2017, 249, 30–38. [Google Scholar] [CrossRef]
- Ashraf, J.M.; Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep. 2016, 6, 20414. [Google Scholar] [CrossRef] [Green Version]
- Gaddam, S.A.; Kotakadi, V.S.; Sai Gopal, D.V.R.; Subba Rao, Y.; Varada Reddy, A. Efficient and robust biofabrication of silver nanoparticles by Cassia alata leaf extract and their antimicrobial activity. J. Nanostruct. Chem. 2014, 4, 82. [Google Scholar] [CrossRef] [Green Version]
- Bamal, D.; Singh, A.; Chaudhary, G.; Kumar, M.; Singh, M.; Rani, N.; Mundlia, P.; Sehrawat, A.R. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials 2021, 11, 2086. [Google Scholar] [CrossRef]
- Falamarzpour, P.; Behzad, T.; Zamani, A. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. Int. J. Mol. Sci. 2017, 18, 396. [Google Scholar] [CrossRef] [Green Version]
- Sambalova, O.; Thorwarth, K.; Heeb, N.V.; Bleiner, D.; Zhang, Y.; Borgschulte, A.; Kroll, A. Carboxylate Functional Groups Mediate Interaction with Silver Nanoparticles in Biofilm Matrix. ACS Omega 2018, 3, 724–733. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chowdhury, D.; Kotcherlakota, R.; Patra, S.; Vinothkumar, B.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System). Theranostics 2014, 4, 316–335. [Google Scholar] [CrossRef] [Green Version]
- Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.-A.-R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In Vitro Antimicrobial Activity of Green Synthesized Silver Nanoparticles against Selected Gram-negative Foodborne Pathogens. Front. Microbiol. 2018, 9, 1555. [Google Scholar] [CrossRef] [PubMed]
- Oei, J.D.; Zhao, W.W.; Chu, L.; DeSilva, M.N.; Ghimire, A.; Rawls, H.R.; Whang, K. Antimicrobial acrylic materials with in situ generated silver nanoparticles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 409–415. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Castañon, G.-A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Lara, H.H.; Ayala-Núñez, N.V.; Ixtepan Turrent, L.d.C.; Rodríguez Padilla, C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010, 26, 615–621. [Google Scholar] [CrossRef]
- Matsuda, T.; Yano, T.; Maruyama, A.; Kumagai, H. Antimicrobial Activities of Organic Acids Determined by Minimum Inhibitory Concentrations at Different pH Ranged from 4.0 to 7.0. Nippon. Shokuhin Kogyo Gakkaishi 1994, 41, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.-H.; Chen, C.S.; Chen, Y.-C.; Jiang, N.-E.; Farn, C.J.; Shen, Y.-S.; Hsu, M.-L.; Chang, C.-H. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: Bio-compatibility, drug release, antimicrobial activity, and biofilm model. J. Microbiol. Immunol. Infect. 2020, 53, 525–531. [Google Scholar] [CrossRef]
- Su, W.-Y.; Chen, Y.-C.; Lin, F.-H. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomater. 2010, 6, 3044–3055. [Google Scholar] [CrossRef]
- Farouk, M.M.; El-Molla, A.; Salib, F.A.; Soliman, Y.A.; Shaalan, M. The Role of Silver Nanoparticles in a Treatment Approach for Multidrug-Resistant Salmonella Species Isolates. Int. J. Nanomed. 2020, 15, 6993–7011. [Google Scholar] [CrossRef]
- Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2016, 42, 173–180. [Google Scholar] [CrossRef]
- Ravi, S.; Christena, R.; Nagarajan, S.; Anthony, S. Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst 2013, 138, 4370–4377. [Google Scholar] [CrossRef]
- Agasti, N.; Kaushik, N. One Pot Synthesis of Crystalline Silver Nanoparticles. Am. J. Nanomater. 2014, 2, 4–7. [Google Scholar] [CrossRef]
- Duan, J.; Yin, H.; Wei, R.; Wang, W. Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles. Biosens. Bioelectron. 2014, 57, 139–142. [Google Scholar] [CrossRef]
- Farhadi, K.; Forough, M.; Molaei, R.; Hajizadeh, S.; Rafipour, A. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens. Actuators B Chem. 2012, 161, 880–885. [Google Scholar] [CrossRef]
- Aminu, A.; Oladepo, S.A. Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury (II) Ions. Arab. J. Sci. Eng. 2021, 46, 5477–5487. [Google Scholar] [CrossRef]
- Ghosh, S.; Maji, S.; Mondal, A. Study of selective sensing of Hg2+ ions by green synthesized silver nanoparticles suppressing the effect of Fe3+ ions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 324–331. [Google Scholar] [CrossRef]
- Choudhary, M.K.; Garg, S.; Kaur, A.; Kataria, J.; Sharma, S. Green biomimetic silver nanoparticles as invigorated colorimetric probe for Hg2+ ions: A cleaner approach towards recognition of heavy metal ions in aqueous media. Mater. Chem. Phys. 2020, 240, 122164. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Fitriani, I.; Wyantuti, S.; Hartati, Y.W.; Khaydarov, R.; McAlister, J.A.; Obata, H.; Gamo, T. Colorimetric Detection of Mercury(II) Ion in Aqueous Solution Using Silver Nanoparticles. Anal. Sci. 2017, 33, 831–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Jiang, L.; Shao, Q.; Liu, X.; Marks, R.S.; Ma, J.; Chen, X. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2013, 9, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zheng, Y.; Ying, J.Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem. Commun. 2010, 46, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Kanjanawarut, R.; Su, X. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal. Chem. 2009, 81, 6122–6129. [Google Scholar] [CrossRef] [PubMed]
- Detsri, E.; Seeharaj, P. Colorimetric detection of glutathione based on phthalic acid assisted synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2017, 533, 125–132. [Google Scholar] [CrossRef]
- Ngamchuea, K.; Batchelor-McAuley, C.; Sokolov, S.V.; Compton, R.G. Dynamics of silver nanoparticles in aqueous solution in the presence of metal ions. Anal. Chem. 2017, 89, 10208–10215. [Google Scholar] [CrossRef]
- Rasheed, F.; Saeed, M.; Alikhan, N.-F.; Baker, D.; Khurshid, M.; Ainsworth, E.V.; Turner, A.K.; Imran, A.A.; Rasool, M.H.; Saqalein, M. Emergence of resistance to fluoroquinolones and third-generation cephalosporins in Salmonella Typhi in Lahore, Pakistan. Microorganisms 2020, 8, 1336. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Shahid, M.; ur Rehman, F.; Murtaza, M.A.; Sharif, S.; Ata, A.; Noor, S. Production optimization and characterization of a low molecular weight bacteriocin from Lactococcus lactis subsp. lactis. Afr. J. Microbiol. Res. 2012, 6, 5924–5933. [Google Scholar]
- Aslam, M.; Shahid, M.; Rehman, F.u.; Naveed, N.H.; Batool, A.I.; Sharif, S.; Asia, A. Purification and characterization of bacteriocin isolated from Streptococcus thermophilus. Afr. J. Microbiol. Res. 2011, 5, 2642–2648. [Google Scholar] [CrossRef] [Green Version]
Zone of Inhibition (MM) | MIC (µG/ML) | |||||
---|---|---|---|---|---|---|
Bacterial Strains | AgNPs | AA | AgNPs@AA | Cefixime | AgNPs@AA | Cefixime |
B. subtilis | 16.8 ± 3.2 | 3.0 ± 2.1 | 20.1 ± 2.5 | 18.0 ± 1.1 | 4.5 ± 0.9 | 3.3 ± 0.8 |
S. typhi | 3.0 ± 0.2 | ND | 17.7 ± 1.3 | 7.0 ± 3.2 | 16.2 ± 1.0 | 64.1 ± 0.4 |
S. aureus | 20.8 ± 1.4 | ND | 26.1 ± 4.0 | 24.3 ± 2.1 | 5.1 ± 1.1 | 9.4 ± 0.5 |
E. coli | 13.3 ± 1.0 | 5.0 ± 1.3 | 19.7 ± 2.4 | 27.1 ± 1.5 | 13.7 ± 0.8 | 5.4 ± 0.1 |
Surface Stabilizing Media | Linear Range (µM) | LOD (µM) | Reference |
---|---|---|---|
Soap-root plant-based AgNPs | 10–100 | 2.2 | [66] |
Fast orange peel-mediated AgNPs | 1.0–100 | 1.2 | [67] |
Garlic extract AgNPs | 2.0–75.0 | 2.0 | [68] |
Green biomimetic AgNPs | 0.1–1.0 | 0.13 | [69] |
Citrate and γ-aminobutyric acid stabilized AgNPs | 5.0–35.0 | 2.4 | [41] |
Peptide-conjugated AgNPs | 1.0–100 | 4.1 | [69] |
Adipic acid stabilized AgNPs | 0.6–1.6 | 0.1 | Present Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, M.I.; Amjad, F.; Abbas, A.; Rehman, M.F.u.; Kanwal, F.; Saeed, M.; Ullah, S.; Lu, C. Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules 2022, 27, 3363. https://doi.org/10.3390/molecules27113363
Irfan MI, Amjad F, Abbas A, Rehman MFu, Kanwal F, Saeed M, Ullah S, Lu C. Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules. 2022; 27(11):3363. https://doi.org/10.3390/molecules27113363
Chicago/Turabian StyleIrfan, Muhammad Imran, Fareeha Amjad, Azhar Abbas, Muhammad Fayyaz ur Rehman, Fariha Kanwal, Muhammad Saeed, Sami Ullah, and Changrui Lu. 2022. "Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents" Molecules 27, no. 11: 3363. https://doi.org/10.3390/molecules27113363
APA StyleIrfan, M. I., Amjad, F., Abbas, A., Rehman, M. F. u., Kanwal, F., Saeed, M., Ullah, S., & Lu, C. (2022). Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules, 27(11), 3363. https://doi.org/10.3390/molecules27113363