Rapid Determination of Cellulose and Hemicellulose Contents in Corn Stover Using Near-Infrared Spectroscopy Combined with Wavelength Selection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Data Analysis
2.2. Wavelength Variables Selection
2.2.1. BIPLS-Selected Characteristic Sub-Intervals
2.2.2. CARS-Selected Characteristic Wavelength Variables
2.2.3. BIPLS-CARS-Selected Characteristic Wavelength Variables
2.2.4. BIPLS-GSA- and CARS-GSA-Selected Characteristic Wavelength Variables
2.2.5. Comparison of Optimized Results
2.3. Analysis of Regression Models
3. Materials and Methods
3.1. Sample Collection and Processing
3.2. Acquisition of Spectral Data
3.3. Optimization Method of Wavelength Variables
3.3.1. BIPLS Algorithm
3.3.2. CARS Algorithm
3.3.3. GSA Algorithm
3.4. Model Construction and Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Sun, Y.; Yang, F.; Liu, J. Effect of solar irradiance on photo biochemical transformation process of direct absorption methane digester. Energy Convers. Manag. 2018, 172, 173–181. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Yu, F.; Yan, B.; Chen, G. Comprehensive evaluation of gradient controlled anaerobic digestion and pyrolysis integration processes: A case study of Sargassum treatment. Bioresour. Technol. 2022, 345, 126496. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Z.Z.; Sun, Y.M.; Yang, G.X. One-pot pyrolysis route to Fe–N-Doped carbon nanosheets with outstanding electrochemical performance as cathode materials for microbial fuel cell. Int. J. Agric. Biol. Eng. 2020, 13, 207–214. [Google Scholar] [CrossRef]
- Qu, J.; Sun, Y.; Awasthi, M.K.; Liu, Y.; Xu, X.; Meng, X.; Zhang, H. Effect of different aerobic hydrolysis time on the anaerobic digestion characteristics and energy consumption analysis. Bioresour. Technol. 2021, 320, 124332. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chu, X.; Wang, Z.; Xu, Y.; Li, W.; Sun, Y. Optimization of Characteristic Wavelength Variables of Near Infrared Spectroscopy for Detecting Contents of Cellulose and Hemicellulose in Corn Stover. Spectrosc. Spectr. Anal. 2019, 39, 743–750. [Google Scholar] [CrossRef]
- Chu, X.; Cheng, Q.; Xu, Y.; Luo, L.; Wang, M.; Zheng, G.; Zhang, H.; Yi, W.; Liu, X.; Sun, Y.; et al. Anaerobic digestion of corn straw pretreated by ultrasonic combined with aerobic hydrolysis. Bioresour. Technol. 2021, 341, 125826. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Zhen, F.; Xu, Y.; Liu, J.; Li, N.; Sun, Y.; Luo, L.; Wang, M.; Zhang, L. Biochemical methane potential prediction for mixed feedstocks of straw and manure in anaerobic co-digestion. Bioresour. Technol. 2021, 326, 124745. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Z.; Jiao, F. Rapid identification of the variety of maize seeds based on near-infrared spectroscopy coupled with locally linear embedding. Appl. Opt. 2022, 61, 1704–1710. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, C.; Wang, N.; Shi, J.; Zhang, B.; Liu, C.; Sun, Y. Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics. Energies 2021, 14, 1460. [Google Scholar] [CrossRef]
- Liu, J.; Jin, S.; Bao, C.; Sun, Y.; Li, W. Rapid determination of lignocellulose in corn stover based on near-infrared reflectance spectroscopy and chemometrics methods. Bioresour. Technol. 2021, 321, 124449. [Google Scholar] [CrossRef]
- Li, L.S.; Jang, X.G.; Li, B.; Liu, Y.D. Wavelength selection method for near-infrared spectroscopy based on standard-sample calibration transfer of mango and apple. Comput. Electron. Agric. 2021, 190, 106448. [Google Scholar] [CrossRef]
- Zhang, G.; Tuo, X.; Zhai, S.; Zhu, X.; Luo, L.; Zeng, X. Near-Infrared Spectral Characteristic Extraction and Qualitative Analysis Method for Complex Multi-Component Mixtures Based on TRPCA-SVM. Sensors 2022, 22, 1654. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Li, C.; Wang, Z.; Chen, Y. Algorithm of Stability-Analysis-Based Feature Selection for NIR Calibration Transfer. Sensors 2022, 22, 1659. [Google Scholar] [CrossRef]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Zhang, Y.; Hong, S.; Ai, W.; Mo, L. Improvement of NIR prediction ability by dual model optimization in fusion of NSIA and SA methods. Spectrochim. Acta A 2022, 276, 121247. [Google Scholar] [CrossRef]
- Leardi, R.; Norgaard, L. Sequential application of backward interval partial least squares and genetic of relevant spectral regions. J. Chemometr. 2004, 18, 486–497. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Liu, L.; Wei, J.; Bian, X. Near infrared spectroscopy combined with chemometrics for quantitative analysis of corn oil in edible blend oil. Spectrochim. Acta A 2022, 270, 120841. [Google Scholar] [CrossRef]
- Li, H.D.; Liang, Y.Z.; Xu, Q.S.; Cao, D.S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Q.; Huang, J.; Zhu, J.; Liu, J. Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system. Infrared Phys. Technol. 2021, 116, 103785. [Google Scholar] [CrossRef]
- Liu, J.; Li, N.; Zhen, F.; Xu, Y.; Li, W.; Sun, Y. Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA. Appl. Opt. 2019, 58, 5090–5097. [Google Scholar] [CrossRef]
- Lu, X.G.; Li, X.H.; Zhang, S.M.; Zhang, M.Q.; Jiang, H.T. A Method for Detecting Sucrose in Living Sugarcane with Visible-NIR Transmittance Spectroscopy. Spectrosc. Spectr. Anal. 2021, 41, 3747–3752. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, Z.; Wang, Q.; Fan, S.; Cheng, W.; Wang, H.; Wu, Y. A novel variable selection method based on combined moving window and intelligent optimization algorithm for variable selection in chemical modeling. Spectrochim. Acta A 2021, 246, 118986. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, H.; Zhan, B.; Zhang, Y.; Li, R.; Li, J. Nondestructive firmness measurement of the multiple cultivars of pears by Vis-NIR spectroscopy coupled with multivariate calibration analysis and MC-UVE-SPA method. Infrared Phys. Technol. 2020, 104, 103154. [Google Scholar] [CrossRef]
- Song, D.; Gao, D.H.; Sun, H.; Qiao, L.; Zhao, R.M.; Tang, W.J.; Li, M.Z. Chlorophyll content estimation based on cascade spectral optimizations of interval and wavelength characteristics. Comput. Electron. Agric. 2021, 189, 106413. [Google Scholar] [CrossRef]
- Zareef, M.; Arslan, M.; Mehedi Hassan, M.; Ali, S.; Ouyang, Q.; Li, H.; Wu, X.; Muhammad Hashim, M.; Javaria, S.; Chen, Q. Application of benchtop NIR spectroscopy coupled with multivariate analysis for rapid prediction of antioxidant properties of walnut (Juglans regia). Food Chem. 2021, 359, 129928. [Google Scholar] [CrossRef]
- Yang, H.; Bao, L.; Liu, Y.; Luo, S.; Zhao, F.; Chen, G.; Liu, F. Identification and quantitative analysis of salt-adulterated honeysuckle using infrared spectroscopy coupled with multi-chemometrics. Microchem. J. 2021, 171, 106829. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, W.Q.; Tian, X. Feature Wavelength Selection Based on the Combination of Image and Spectrum for Aflatoxin B-1 Concentration Classification in Single Maize Kernels. Agriculture 2022, 12, 385. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Zhong, G.; Liu, J.; Sun, Y.; Zhang, C. Rapid determination of ammonia nitrogen concentration in biogas slurry based on NIR transmission spectroscopy with characteristic wavelength selection. Infrared Phys. Technol. 2022, 122, 104085. [Google Scholar] [CrossRef]
- Mabood, F.; Boqué, R.; Alkindi, A.Y.; Al-Harrasi, A.; Al Amri, I.S.; Boukra, S.; Jabeen, F.; Hussain, J.; Abbas, G.; Naureen, Z.; et al. Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Sci. 2020, 163, 108084. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Yuan, Y.; Zhang, J.; Wang, J.; Kong, D. Simultaneous detection of different properties of diesel fuel by near infrared spectroscopy and chemometrics. Infrared Phys. Technol. 2020, 104, 103111. [Google Scholar] [CrossRef]
- Ni, H.F.; Si, L.T.; Huang, J.P.; Zan, Q.; Chen, Y.; Luan, L.J.; Wu, Y.J.; Liu, X.S. Rapid determination of active components in Ginkgo biloba leaves by near infrared spectroscopy combined with genetic algorithm joint extreme learning machine. China J. Chin. Mater. Med. 2021, 46, 110–117. [Google Scholar] [CrossRef]
- Miao, X.X.; Miao, Y.; Gong, H.R.; Tao, S.H.; Chen, Z.W.; Wang, J.M.; Chen, Y.Z.; Chen, Y.C. NIR spectroscopy coupled with chemometric algorithms for the prediction of cadmium content in rice samples. Spectrochim. Acta A 2021, 257, 119700. [Google Scholar] [CrossRef]
- Baqueta, M.R.; Coqueiro, A.; Março, P.H.; Valderrama, P. Multivariate classification for the direct determination of cup profile in coffee blends via handheld near-infrared spectroscopy. Talanta 2021, 222, 121526. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Y.; Sun, X.; Pi, F. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis. Spectrochim. Acta A 2018, 197, 153–158. [Google Scholar] [CrossRef]
- Ai, N.; Jiang, Y.; Omar, S.; Wang, J.; Xia, L.; Ren, J. Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods. Molecules 2022, 27, 335. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J. Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Spectrochim. Acta A 2020, 240, 118553. [Google Scholar] [CrossRef]
- Sithole, N.J.; Ncama, K.; Magwaza, L.S. Robust Vis-NIRS models for rapid assessment of soil organic carbon and nitrogen in Feralsols Haplic soils from different tillage management practices. Comput. Electron. Agric. 2018, 153, 295–301. [Google Scholar] [CrossRef]
- Jin, X.; Chen, X.; Shi, C.; Li, M.; Guan, Y.; Yu, C.Y.; Yamada, T.; Sacks, E.J.; Peng, J. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Bioresour. Technol. 2017, 241, 603–609. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Obregon-Cano, S.; Moreno-Rojas, R.; Jurado-Millan, A.M.; Cartea-Gonzalez, M.E.; De Haro-Bailon, A. Analysis of the Acid Detergent Fibre Content in Turnip Greens and Turnip Tops (Brassica rapa L. Subsp. rapa) by Means of Near-Infrared Reflectance. Foods 2019, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Wei, L.; Fang, G.; Xu, F.; Deng, Y.; Shen, K.; Tian, Q.; Wu, T.; Zhu, B. Prediction of holocellulose and lignin content of pulp wood feedstock using near infrared spectroscopy and variable selection. Spectrochim. Acta A 2019, 225, 117515. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Chen, Z.-G. Application of Genetic Simulated Annealing Algorithm in Detection of Corn Straw Cellulose. Chin. J. Anal. Chem. 2019, 47, 1987–1994. [Google Scholar] [CrossRef]
- Galvão, R.K.H.; Araujo, M.C.U.; José, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Bedin, F.C.B.; Faust, M.V.; Guarneri, G.A.; Assmann, T.S.; Lafay, C.B.B.; Soares, L.F.; de Oliveira, P.A.V.; Dos Santos-Tonial, L.M. NIR associated to PLS and SVM for fast and non-destructive determination of C, N, P, and K contents in poultry litter. Spectrochim. Acta A 2020, 245, 118834. [Google Scholar] [CrossRef]
Sample | Composition | Amount | Mean (%) | Max (%) | Min (%) | SD (%) |
---|---|---|---|---|---|---|
Cset | Cellulose | 88 | 44.247 | 51.527 | 36.067 | 3.758 |
Hemicellulose | 88 | 23.760 | 38.541 | 9.484 | 9.828 | |
Vset | Cellulose | 44 | 45.433 | 49.080 | 37.440 | 3.034 |
Hemicellulose | 44 | 25.832 | 38.388 | 10.245 | 10.999 | |
ITset | Cellulose | 46 | 43.813 | 49.757 | 36.031 | 3.163 |
Hemicellulose | 46 | 25.123 | 38.592 | 9.948 | 9.554 |
Intervals | Cellulose | Hemicellulose | ||||
---|---|---|---|---|---|---|
Selected Intervals | RMSECV (%) | Selected Wavelengths | Selected Intervals | RMSECV (%) | Selected Wavelengths | |
61 | 15 | 0.697 | 456 | 17 | 1.021 | 512 |
46 | 14 | 0.681 | 563 | 13 | 0.995 | 520 |
36 | 12 | 0.714 | 617 | 17 | 0.896 | 870 |
26 | 9 | 0.757 | 638 | 8 | 0.957 | 568 |
18 | 11 | 0.719 | 1128 | 8 | 1.130 | 819 |
12 | 9 | 0.747 | 1384 | 6 | 1.143 | 921 |
Component | Model | NW 1 | LVs | RMSEC (%) | RMSEP (%) | RPD | MT 2 (m) | TT 3 (s) | ||
---|---|---|---|---|---|---|---|---|---|---|
Cellulose | Full-PLS | 1845 | 15 | 0.980 | 0.917 | 0.527 | 0.870 | 3.448 | 14.043 | 1.598 |
BIPLS | 432 | 13 | 0.982 | 0.925 | 0.496 | 0.830 | 3.612 | 166.072 | 1.567 | |
CARS200 | 241 | 16 | 0.994 | 0.920 | 0.284 | 0.861 | 3.482 | 264.298 | 1.459 | |
BIPLS-CARS | 169 | 10 | 0.977 | 0.928 | 0.565 | 0.802 | 3.738 | 367.505 | 1.427 | |
BIPLS-GSA | 241 | 11 | 0.979 | 0.927 | 0.541 | 0.801 | 3.747 | 1858.209 | 1.450 | |
CARS-GSA | 200 | 8 | 0.971 | 0.930 | 0.628 | 0.786 | 3.815 | 1523.729 | 1.433 | |
Hemicellulose | Full-PLS | 1845 | 18 | 0.998 | 0.990 | 0.383 | 1.033 | 10.529 | 15.358 | 1.638 |
BIPLS | 306 | 13 | 0.995 | 0.993 | 0.643 | 0.927 | 11.982 | 99.427 | 1.543 | |
CARS200 | 106 | 17 | 0.998 | 0.993 | 0.323 | 0.922 | 12.041 | 176.317 | 1.432 | |
BIPLS-CARS | 115 | 12 | 0.996 | 0.993 | 0.629 | 0.912 | 12.182 | 228.093 | 1.376 | |
BIPLS-GSA | 138 | 15 | 0.996 | 0.993 | 0.597 | 0.904 | 12.283 | 1801.827 | 1.454 | |
CARS-GSA | 70 | 12 | 0.998 | 0.993 | 0.438 | 0.893 | 12.435 | 1124.644 | 1.416 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Feng, J.; Li, L.; Liu, J.; Sun, Y. Rapid Determination of Cellulose and Hemicellulose Contents in Corn Stover Using Near-Infrared Spectroscopy Combined with Wavelength Selection. Molecules 2022, 27, 3373. https://doi.org/10.3390/molecules27113373
Wang N, Feng J, Li L, Liu J, Sun Y. Rapid Determination of Cellulose and Hemicellulose Contents in Corn Stover Using Near-Infrared Spectroscopy Combined with Wavelength Selection. Molecules. 2022; 27(11):3373. https://doi.org/10.3390/molecules27113373
Chicago/Turabian StyleWang, Na, Jinrui Feng, Longwei Li, Jinming Liu, and Yong Sun. 2022. "Rapid Determination of Cellulose and Hemicellulose Contents in Corn Stover Using Near-Infrared Spectroscopy Combined with Wavelength Selection" Molecules 27, no. 11: 3373. https://doi.org/10.3390/molecules27113373
APA StyleWang, N., Feng, J., Li, L., Liu, J., & Sun, Y. (2022). Rapid Determination of Cellulose and Hemicellulose Contents in Corn Stover Using Near-Infrared Spectroscopy Combined with Wavelength Selection. Molecules, 27(11), 3373. https://doi.org/10.3390/molecules27113373