α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry
Abstract
:1. Introduction
2. Results
2.1. Isolation of Bioactive Compounds
2.2. Structure Confirmations of the Isolated Bioactives
2.3. In Vitro Activities on Crude Extracts of Fragaria indica
2.3.1. α-Glucosidase and α-Amylase
2.3.2. DPPH Results
2.4. In Vitro Activities on Semi-Purified Ethyl Acetate Fractions of Fragaria indica
2.4.1. In Vitro α-Glucosidase and Amylase Results
2.4.2. DPPH Results
2.5. In Vitro Activities on Isolated Compounds of Fragaria indica
3. Discussion
4. Materials and Methods
4.1. Collection of Medicinal Plant and Extraction
4.2. Phytochemistry and Bioactives Isolation
4.3. In Vitro α-Glucosidase Inhibition
4.4. In Vitro α-Amylase Inhibition
4.5. DPPH Free Radicals Scavenging Assay
4.6. Estimation of IC50 Values
4.7. Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2019, 19, 1199–1209. [Google Scholar] [CrossRef]
- Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res. 2018, 32, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, R. Exploration of nature’s chemodiversity: The role of secondary metabolites as leads in drug development. Drug Discov. Today 1998, 3, 232–238. [Google Scholar] [CrossRef]
- Zafar, R.; Ullah, H.; Zahoor, M.; Sadiq, A. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complement. Altern. Med. 2019, 19, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ksean, M. Natural products research. Nat. Prod. Chem. Res. 2012, 1, e101. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alqarni, A.O.; Alyami, B.A.; Jan, M.S.; Ayaz, M.; Ullah, F.; Rashid, U.; Sadiq, A. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: In-vitro and molecular docking approaches. BMC Complement. Med. Ther. 2021, 21, 270. [Google Scholar] [CrossRef]
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; Alajmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I.; et al. Treating Hyperglycemia From Eryngium caeruleum M. Bieb: In-vitro α-Glucosidase, Antioxidant, in-vivo Antidiabetic and Molecular Docking-Based Approaches. Front. Chem. 2020, 8, 558641. [Google Scholar] [CrossRef]
- Care, D. Economic Costs of Diabetes in the US in 2017. Diabetes Care 2018, 41, 917. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.M.M.; Sadiq, A.; Ullah, F.; Shah, S.M.H. Antioxidant, total phenolic contents and antinociceptive potential of Teucrium stocksianum methanolic extract in different animal models. BMC Complement. Altern. Med. 2014, 14, 181. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, A.; Mahmood, F.; Ullah, F.; Ayaz, M.; Ahmad, S.; Haq, F.U.; Khan, G.; Jan, M.S. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: A possible role in the management of Alzheimer’s. Chem. Central J. 2015, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Zafar, R.; Zubair, M.; Ali, S.; Shahid, K.; Waseem, W.; Naureen, H.; Haider, A.; Jan, M.S.; Ullah, F.; Sirajuddin, M.; et al. Zinc metal carboxylates as potential anti-Alzheimer’s candidate: In vitro anticholinesterase, antioxidant and molecular docking studies. J. Biomol. Struct. Dyn. 2021, 39, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Khan, Z.; Jan, M.S.; Ahmad, S.; Ahmad, A.; Rashid, U.; Ullah, F.; Ayaz, M.; Sadiq, A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg. Chem. 2019, 91, 103128. [Google Scholar] [CrossRef] [PubMed]
- Puertollano, M.A.; Puertollano, E.; De Cienfuegos, G.A.; De Pablo, M.A. Dietary Antioxidants: Immunity and Host Defense. Curr. Top. Med. Chem. 2011, 11, 1752–1766. [Google Scholar] [CrossRef]
- Zeb, A.; Sadiq, A.; Ullah, F.; Ahmad, S.; Ayaz, M. Investigations of anticholinestrase and antioxidant potentials of methanolic extract, subsequent fractions, crude saponins and flavonoids isolated from Isodon rugosus. Biol. Res. 2014, 47, 76. [Google Scholar] [CrossRef] [Green Version]
- Bibi, A.; Shah, T.; Sadiq, A.; Khalid, N.; Ullah, F.; Iqbal, A. l-Isoleucine-catalyzed Michael Synthesis of N-Alkylsuccinimide Derivatives and Their Antioxidant Activity Assessment. Russ. J. Org. Chem. 2019, 55, 1749–1754. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Dembinska-Kiec, A.; Mykkänen, O.; Kiec-Wilk, B.; Mykkänen, H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 2008, 99, ES109–ES117. [Google Scholar] [CrossRef] [Green Version]
- Leiherer, A.; Mündlein, A.; Drexel, H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc. Pharmacol. 2013, 58, 3–20. [Google Scholar] [CrossRef]
- Qureshi, H.; Arshad, M.; Bibi, Y. Invasive flora of Pakistan: A critical analysis. Int. J. Biosci. 2014, 4, 407–424. [Google Scholar]
- Kayani, S.; Ahmad, M.; Zafar, M.; Sultana, S.; Khan, M.P.Z.; Ashraf, M.A.; Hussain, J.; Yaseen, G. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies—Abbottabad, Northern Pakistan. J. Ethnopharmacol. 2014, 156, 47–60. [Google Scholar] [CrossRef]
- Hamayun, M.; Khan, M.A.; Begum, S. Marketing of medicinal plants of Utror-Gabral valleys, Swat, Pakistan. Ethnobot Leafl. 2003, 2005, 44. [Google Scholar]
- Saqib, A.A.; Gul, S. Traditional knowledge of medicinal herbs among indigenous communities in Maidan Valley, Lower Dir, Pakistan. Bull. Environ. Pharmacol. Life Sci. 2018, 7, 1–23. [Google Scholar]
- Sereno-Villaseñor, L.; Hernández-García, A.; Torres-Martínez, R.; Meléndez-Herrera, E.; Manzo-Avalos, S.; Martínez-Flores, H.E.; Saavedra-Molina, A.; Salgado-Garciglia, R. Antioxidant and Anti-inflammatory Effects of the Methanolic Extract of Potentilla indica Fruits. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Ang, H.Y.; Subramani, T.; Yeap, S.K.; Omar, A.R.; Ho, W.Y.; Abdullah, M.P.; Alitheen, N.B. Immunomodulatory effects of Potentilla indica and Dendrophthoe pentandra on mice splenocytes and thymocytes. Exp. Ther. Med. 2014, 7, 1733–1737. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Yu, X.; Li, B.; Xiong, Y.; Xiang, B.; He, Q. Characterisation of antioxidant, anti-inflammatory, and immunomodulatory activities of polysaccharides derived from Duchesnea indica (Andrews) Focke. Int. Food Res. J. 2020, 27, 76–384. [Google Scholar]
- Pinto, M.D.S.; de Carvalho, J.E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of Antiproliferative, Anti-Type 2 Diabetes, and Antihypertension Potentials of Ellagitannins from Strawberries (Fragaria × ananassa Duch.) Using In Vitro Models. J. Med. Food 2010, 13, 1027–1035. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Lin, Z.; Song, N.; Liu, X.; Chi, X.; Shao, T. Antidiabetic and Neuroprotective Effect of the N-Butanol Extract of Fragaria nilgerrensis Schlecht. in STZ-Induced Diabetic Mice. Evid.-Based Complement. Altern. Med. 2018, 2018, 6938370. [Google Scholar] [CrossRef]
- Nugent, T.C.; Bibi, A.; Sadiq, A.; Shoaib, M.; Umar, M.N.; Tehrani, F.N. Chiral picolylamines for Michael and aldol reactions: Probing substrate boundaries. Org. Biomol. Chem. 2012, 10, 9287–9294. [Google Scholar] [CrossRef]
- Nugent, T.C.; Negru, D.E.; El-Shazly, M.; Hu, D.; Sadiq, A.; Bibi, A.; Umar, M.N. Sequential Reductive Amination-Hydrogenolysis: A One-Pot Synthesis of Challenging Chiral Primary Amines. Adv. Synth. Catal. 2011, 353, 2085–2092. [Google Scholar] [CrossRef]
- Sadiq, A.; Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Rashid, U. Tailoring the substitution pattern of pyrrolidine-2,5-dione for discovery of new structural template for dual COX/LOX inhibition. Bioorg. Chem. 2021, 112, 104969. [Google Scholar] [CrossRef]
- Nugent, T.C.; Sadiq, A.; Bibi, A.; Heine, T.; Zeonjuk, L.L.; Vankova, N.; Bassil, B.S. Noncovalent Bifunctional Organocatalysts: Powerful Tools for Contiguous Quaternary-Tertiary Stereogenic Carbon Formation, Scope, and Origin of Enantioselectivity. Chem. Eur. J. 2012, 18, 4088–4098. [Google Scholar] [CrossRef]
- Jabeen, M.; Choudhry, M.I.; Miana, G.A.; Rahman, K.M.; Rashid, U.; Khan, H.-U.; Arshia; Sadiq, A. Synthesis, pharmacological evaluation and docking studies of progesterone and testosterone derivatives as anticancer agents. Steroids 2018, 136, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.S.; Ahmad, S.; Hussain, F.; Ahmad, A.; Mahmood, F.; Rashid, U.; Abid, O.-U.; Ullah, F.; Ayaz, M.; Sadiq, A. Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. Eur. J. Med. Chem. 2019, 186, 111863. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Iftikhar, F.; Ullah, F.; Sadiq, A.; Rashid, U. Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorg. Chem. 2016, 69, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Rasool, N.; Rizwan, K.; Imran, I.; Zahoor, A.F.; Zubair, M.; Sadiq, A.; Rashid, U. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg. Chem. 2019, 92, 103216. [Google Scholar] [CrossRef]
- Sadiq, A.; Zeb, A.; Ullah, F.; Ahmad, S.; Ayaz, M.; Rashid, U.; Muhammad, N. Chemical Characterization, Analgesic, Antioxidant, and Anticholinesterase Potentials of Essential Oils from Isodon rugosus Wall. ex. Benth. Front. Pharmacol. 2018, 9, 623. [Google Scholar] [CrossRef]
- Munir, A.; Khushal, A.; Saeed, K.; Sadiq, A.; Ullah, R.; Ali, G.; Ashraf, Z.; Mughal, E.U.; Jan, M.S.; Rashid, U.; et al. Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorg. Chem. 2020, 104, 104168. [Google Scholar] [CrossRef]
- Farooq, U.; Naz, S.; Shams, A.; Raza, Y.; Ahmed, A.; Rashid, U.; Sadiq, A. Isolation of dihydrobenzofuran derivatives from ethnomedicinal species Polygonum barbatum as anticancer compounds. Biol. Res. 2019, 52, 1. [Google Scholar] [CrossRef]
- Sultana, N.; Sarfraz, M.; Tanoli, S.T.; Akram, M.S.; Sadiq, A.; Rashid, U.; Tariq, M.I. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2,3-dihydroquinazolin-4(1H)-one as inhibitors of cholinesterases. Bioorg. Chem. 2017, 72, 256–267. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Introduction: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S1–S2. [Google Scholar] [CrossRef]
- Takács, I.; Szekeres, A.; Takács, Á.; Rakk, D.; Mézes, M.; Polyák, Á.; Lakatos, L.; Gyémánt, G.; Csupor, D.; Kovács, K.J.; et al. Wild Strawberry, Blackberry, and Blueberry Leaf Extracts Alleviate Starch-Induced Hyperglycemia in Prediabetic and Diabetic Mice. Planta Med. 2020, 86, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Scalliet, G.; Journot, N.; Jullien, F.; Baudino, S.; Magnard, J.-L.; Channelière, S.; Vergne, P.; Dumas, C.; Bendahmane, M.; Cock, J.; et al. Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Lett. 2002, 523, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.A.; Henriques, O.B.; Andreoni, A.A.; Vital, G.R.; Campos, M.M.; Habermehl, G.G.; de Moraes, V.L. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae). Toxicon 1992, 30, 1211–1218. [Google Scholar] [CrossRef]
- Golding, B.T.; Pombo, E.; Samuel, C.J. Turmerones: Isolation from turmeric and their structure determination. J. Chem. Soc. Chem. Commun. 1982, 363–364. [Google Scholar] [CrossRef]
- Jankasem, M.; Wuthi-Udomlert, M.; Gritsanapan, W. Antidermatophytic Properties of Ar-Turmerone, Turmeric Oil, and Curcuma longa Preparations. ISRN Dermatol. 2013, 2013, 250597. [Google Scholar] [CrossRef] [Green Version]
- Saga, Y.; Hatakenaka, Y.; Matsumoto, M.; Yoshioka, Y.; Matsumura, S.; Zaima, N.; Konishi, Y. Neuroprotective effects of aromatic turmerone on activity deprivation-induced apoptosis in cerebellar granule neurons. NeuroReport 2020, 31, 1302–1307. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.-S. Antioxidant Activity in Fruits and Leaves of Blackberry, Raspberry, and Strawberry Varies with Cultivar and Developmental Stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Scalzo, J.; Mezzetti, B.; Battino, M. Total antioxidant capacity evaluation: Critical steps for assaying berry antioxidant features. BioFactors 2005, 23, 221–227. [Google Scholar] [CrossRef]
- Tulipani, S.; Romandini, S.; Busco, F.; Bompadre, S.; Mezzetti, B.; Battino, M. Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry intake. Food Chem. 2009, 117, 181–188. [Google Scholar] [CrossRef]
- Kiselova, Y.; Ivanova, D.; Chervenkov, T.; Gerova, D.; Galunska, B.; Yankova, T. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from bulgarian herbs. Phytother. Res. 2006, 20, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Cheplick, S.; Kwon, Y.-I.; Bhowmik, P.; Shetty, K. Phenolic-linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Bioresour. Technol. 2010, 101, 404–413. [Google Scholar] [CrossRef] [PubMed]
- El-Hawary, S.S.; Mohammed, R.; El-Din, M.E.; Hassan, H.M.; Ali, Z.Y.; Rateb, M.E.; El Naggar, E.M.B.; Othman, E.M.; Abdelmohsen, U.R. Comparative phytochemical analysis of five Egyptian strawberry cultivars (Fragaria × ananassa Duch.) and antidiabetic potential of Festival and Red Merlin cultivars. RSC Adv. 2021, 11, 16755–16767. [Google Scholar] [CrossRef] [PubMed]
- Mandave, P.; Khadke, S.; Karandikar, M.; Pandit, V.; Ranjekar, P.; Kuvalekar, A.; Mantri, N. Antidiabetic, Lipid Normalizing, and Nephroprotective Actions of the Strawberry: A Potent Supplementary Fruit. Int. J. Mol. Sci. 2017, 18, 124. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, D.S.; El-Maksoud, M.A.E.A. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Int. J. Exp. Pathol. 2015, 96, 87–93. [Google Scholar] [CrossRef]
- Moazen, S.; Amani, R.; Rad, A.H.; Shahbazian, H.; Ahmadi, K.; Jalali, M.-T. Effects of Freeze-Dried Strawberry Supplementation on Metabolic Biomarkers of Atherosclerosis in Subjects with Type 2 Diabetes: A Randomized Double-Blind Controlled Trial. Ann. Nutr. Metab. 2013, 63, 256–264. [Google Scholar] [CrossRef]
- Shah, S.M.M.; Ahmad, Z.; Yaseen, M.; Shah, R.; Khan, S.; Khan, B. Phytochemicals, in vitro antioxidant, total phenolic contents and phytotoxic activity of Cornus macrophylla Wall bark collected from the North-West of Pakistan. Pak. J. Pharm. Sci. 2015, 28, 23–28. [Google Scholar]
- Shah, S.M.M.; Ullah, F.; Shah, S.M.H.; Zahoor, M.; Sadiq, A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium Stocksianum bioss collected from the North West of Pakistan. BMC Complement. Altern. Med. 2012, 12, 244. [Google Scholar] [CrossRef] [Green Version]
- Aslam, H.; Khan, A.-U.; Naureen, H.; Ali, F.; Ullah, F.; Sadiq, A. Potential application of Conyza canadensis (L) Cronquist in the management of diabetes: In vitro and in vivo evaluation. Trop. J. Pharm. Res. 2018, 17, 1287. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, A.; Mahnashi, M.H.; Rashid, U.; Jan, M.S.; Alshahrani, M.A.; Huneif, M.A. 3-(((1S,3S)-3-((R)-Hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione: Design and Synthesis of New Stereopure Multi-Target Antidiabetic Agent. Molecules 2022, 27, 3265. [Google Scholar] [CrossRef]
- Huneif, M.A.; Alshehri, D.B.; Alshaibari, K.S.; Dammaj, M.Z.; Mahnashi, M.H.; Majid, S.U.; Javed, M.A.; Ahmad, S.; Rashid, U.; Sadiq, A. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed. Pharmacother. 2022, 150, 113038. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Jan, M.S.; Rashid, U.; Sadiq, A.; Alqarni, A.O. Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria digitata Lindl.: Molecular docking based synergistic effect of the identified compounds. J. Ethnopharmacol. 2021, 273, 113976. [Google Scholar] [CrossRef] [PubMed]
Sample | Concentration (μg/mL) | α-Glucosidase | α-Amylase | ||
---|---|---|---|---|---|
Percent Inhibition | IC50 (μg/mL) | Percent Inhibition | IC50 (μg/mL) | ||
Fi.Cr | 1000 | 64.44 ± 0.09 *** | 232.10 | 66.90 ± 0.72 *** | 218.19 |
500 | 56.87 ± 0.39 *** | 57.12 ± 0.89 *** | |||
250 | 51.83 ± 1.07 *** | 52.64 ± 1.38 *** | |||
125 | 44.23 ± 0.44 *** | 45.40 ± 0.93 *** | |||
62.5 | 36.29 ± 0.43 *** | 35.22 ± 0.94 *** | |||
Fi.Hex | 1000 | 61.50 ± 2.26 *** | 340.56 | 65.50 ± 2.26 *** | 249.85 |
500 | 54.01 ± 0.42 *** | 56.01 ± 0.42 *** | |||
250 | 45.07 ± 0.62 *** | 49.07 ± 0.62 *** | |||
125 | 39.70 ± 0.35 *** | 43.70 ± 0.35 *** | |||
62.5 | 34.73 ± 0.66 *** | 35.73 ± 0.66 *** | |||
Fi.EtAc | 1000 | 71.69 ± 0.77 *** | 117.54 | 73.60 ± 1.63 *** | 96.82 |
500 | 63.67 ± 0.61 *** | 66.82 ± 0.85 *** | |||
250 | 56.44 ± 0.51 *** | 61.25 ± 1.40 *** | |||
125 | 51.76 ± 0.58 *** | 53.10 ± 0.60 *** | |||
62.5 | 43.54 ± 0.50 *** | 44.61 ± 0.43 *** | |||
Fi.Chf | 1000 | 61.23 ± 0.22 *** | 296.86 | 63.48 ± 0.25 *** | 259.11 |
500 | 55.45 ± 0.90 *** | 56.47 ± 0.04 *** | |||
250 | 46.90 ± 0.60 *** | 48.47 ± 0.44 *** | |||
125 | 41.00 ± 0.30 *** | 42.44 ± 0.09 *** | |||
62.5 | 37.90 ± 0.45 *** | 37.43 ± 1.39 *** | |||
Fi.Aq | 1000 | 57.85 ± 0.56 *** | 429.39 | 57.79 ± 0.62 *** | 398.46 |
500 | 51.64 ± 0.75 *** | 52.45 ± 0.49 *** | |||
250 | 44.58 ± 0.77 *** | 46.75 ± 0.58 *** | |||
125 | 38.75 ± 0.63 *** | 38.73 ± 0.64 *** | |||
62.5 | 32.58 ± 0.70 *** | 33.47 ± 0.56 *** | |||
Acarbose | 1000 | 96.00 ± 0.30 | 17.28 | 82.43 ± 0.52 | 12.84 |
500 | 90.61 ± 0.43 | 74.03 ± 0.64 | |||
250 | 84.03 ± 0.86 | 71.56 ± 0.49 | |||
125 | 77.58 ± 0.77 | 67.05 ± 0.49 | |||
62.5 | 71.48 ± 0.74 | 63.26 ± 0.93 |
Sample | Concentration (μg/mL) | Percent Inhibition | IC50 (μg/mL) |
---|---|---|---|
Fi.Cr | 1000 | 65.66 ± 0.78 *** | 200.89 |
500 | 60.62 ± 0.74 *** | ||
250 | 52.62 ± 0.74 *** | ||
125 | 44.86 ± 0.60 *** | ||
62.5 | 37.48 ± 0.64 *** | ||
Fi.Hex | 1000 | 63.44 ± 0.09 *** | 236.91 |
500 | 57.87 ± 0.39 *** | ||
250 | 51.83 ± 1.07 *** | ||
125 | 43.23 ± 0.44 *** | ||
62.5 | 36.29 ± 0.43 *** | ||
Fi.EtAc | 1000 | 76.81 ± 0.60 *** | 59.55 |
500 | 70.74 ± 0.61 *** | ||
250 | 64.68 ± 0.60 *** | ||
125 | 58.63 ± 0.76 *** | ||
62.5 | 49.79 ± 0.63 *** | ||
Fi.Chf | 1000 | 67.85 ± 0.56 *** | 142.39 |
500 | 62.64 ± 0.75 *** | ||
250 | 55.58 ± 0.77 *** | ||
125 | 47.75 ± 0.63 *** | ||
62.5 | 42.58 ± 0.70 *** | ||
Fi.Aq | 1000 | 60.54 ± 0.48 *** | 349.35 |
500 | 52.30 ± 0.66 *** | ||
250 | 45.58 ± 0.59 *** | ||
125 | 41.52 ± 0.62 *** | ||
62.5 | 35.45 ± 0.57 *** | ||
Ascorbic acid | 1000 | 91.90 ± 0.96 | 4.98 |
500 | 87.08 ± 0.47 | ||
250 | 82.40 ± 0.20 | ||
125 | 77.61 ± 0.43 | ||
62.5 | 75.45 ± 0.90 |
Sample | Concentration (μg/mL) | α-Glucosidase | α-Amylase | ||
---|---|---|---|---|---|
Percent Inhibition | IC50 (μg/mL) | Percent Inhibition | IC50 (μg/mL) | ||
Fi.EtAc 1 | 1000 | 81.81 ± 0.60 *** | 63.85 | 82.45 ± 0.55 ns | 38.60 |
500 | 76.74 ± 0.61 *** | 76.53 ± 0.41 ns | |||
250 | 67.68 ± 0.60 *** | 71.42 ± 0.46 ns | |||
125 | 61.63 ± 0.76 *** | 65.68 ± 0.64 * | |||
62.5 | 47.79 ± 0.63 *** | 53.63 ± 0.64 *** | |||
Fi.EtAc 2 | 1000 | 87.63 ± 0.64 *** | 14.81 | 89.37 ± 0.54 ns | 14.54 |
500 | 82.45 ± 0.55 *** | 84.44 ± 0.50 ns | |||
250 | 76.53 ± 0.41 *** | 77.51 ± 0.72 ns | |||
125 | 71.42 ± 0.46 *** | 72.28 ± 0.61 ns | |||
62.5 | 65.68 ± 0.64 *** | 67.46 ± 0.62 ns | |||
Fi.EtAc 3 | 1000 | 83.08 ± 1.04 *** | 20.56 | 85.43 ± 1.26 ns | 19.62 |
500 | 76.45 ± 0.90 *** | 78.83 ± 0.66 ns | |||
250 | 70.58 ± 0.63 *** | 72.93 ± 0.90 ns | |||
125 | 65.40 ± 0.20 *** | 67.26 ± 0.77 ns | |||
62.5 | 61.80 ± 0.90 *** | 63.10 ± 0.95 ns | |||
Acarbose | 1000 | 96.00 ± 0.30 | 17.28 | 82.43 ± 0.52 | 12.84 |
500 | 90.61 ± 0.43 | 74.03 ± 0.64 | |||
250 | 84.03 ± 0.86 | 71.56 ± 0.49 | |||
125 | 77.58 ± 0.77 | 67.05 ± 0.49 | |||
62.5 | 71.48 ± 0.74 | 63.26 ± 0.93 |
Sample | Concentration (μg/mL) | Percent Inhibition | IC50 (μg/mL) |
---|---|---|---|
Fi.EtAc 1 | 1000 | 95.00 ± 0.32 ns | 14.95 |
500 | 90.63 ± 0.45 ns | ||
250 | 84.05 ± 0.88 ns | ||
125 | 78.56 ± 0.79 ns | ||
62.5 | 71.46 ± 0.76 ** | ||
Fi.EtAc 2 | 1000 | 85.72 ± 0.79 *** | 20.59 |
500 | 81.68 ± 0.63 *** | ||
250 | 76.46 ± 0.53 *** | ||
125 | 69.78 ± 0.60 *** | ||
62.5 | 61.56 ± 0.52 *** | ||
Fi.EtAc 3 | 1000 | 84.83 ± 0.62 *** | 26.25 |
500 | 80.76 ± 0.63 *** | ||
250 | 75.70 ± 0.62 *** | ||
125 | 66.65 ± 0.78 *** | ||
62.5 | 59.81 ± 0.65 *** | ||
Ascorbic acid | 1000 | 91.90 ± 0.96 | 4.98 |
500 | 87.08 ± 0.47 | ||
250 | 82.40 ± 0.20 | ||
125 | 77.61 ± 0.43 | ||
62.5 | 75.45 ± 0.90 |
Sample | α-Glucosidase IC50 (μg/mL) | α-Amylase IC50 (μg/mL) | DPPH IC50 (μg/mL) |
---|---|---|---|
Compound 1 | 21.45 | 17.65 | 7.62 |
Compound 2 | 15.03 | 16.56 | 14.30 |
Acarbose | 17.28 | 12.84 | - |
Ascorbic acid | - | - | 4.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huneif, M.A.; Alqahtani, S.M.; Abdulwahab, A.; Almedhesh, S.A.; Mahnashi, M.H.; Riaz, M.; Ur-Rahman, N.; Jan, M.S.; Ullah, F.; Aasim, M.; et al. α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. Molecules 2022, 27, 3444. https://doi.org/10.3390/molecules27113444
Huneif MA, Alqahtani SM, Abdulwahab A, Almedhesh SA, Mahnashi MH, Riaz M, Ur-Rahman N, Jan MS, Ullah F, Aasim M, et al. α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. Molecules. 2022; 27(11):3444. https://doi.org/10.3390/molecules27113444
Chicago/Turabian StyleHuneif, Mohammed A., Seham M. Alqahtani, Alqahtani Abdulwahab, Sultan A. Almedhesh, Mater H. Mahnashi, Muhammad Riaz, Najm Ur-Rahman, Muhammad Saeed Jan, Farhat Ullah, Muhammad Aasim, and et al. 2022. "α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry" Molecules 27, no. 11: 3444. https://doi.org/10.3390/molecules27113444
APA StyleHuneif, M. A., Alqahtani, S. M., Abdulwahab, A., Almedhesh, S. A., Mahnashi, M. H., Riaz, M., Ur-Rahman, N., Jan, M. S., Ullah, F., Aasim, M., & Sadiq, A. (2022). α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. Molecules, 27(11), 3444. https://doi.org/10.3390/molecules27113444