Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae)
Abstract
:1. Introduction
2. Results
2.1. Chemical Profile of E. largiflorens Essential Oil
2.2. Fumigant Toxicity
2.3. Encapsulation and Fumigant Persistence
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Materials
4.3. Essential Oil Extraction
4.4. Essential Oil Analysis
4.5. Insect Rearing
4.6. Fumigant Toxicity of Essential Oil
4.7. Synthesis of Mesoporous Materials
4.8. Encapsulation of Essential Oil and Persistence Assays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kalpna, H.Y.A.; Kumar, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon 2022, 8, e08703. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, S.H.; Abidi, S.; Sfayhi, D.; Dhraief, M.Z.; Amri, M.; Boushih, E.; Hedjal-Chebheb, M.; Larbi, K.M.; Ben Jemâa, J.M. Nutritional alterations and damages to stored chickpea in relation with the pest status of Callosobruchus maculatus (Chrysomelidae). J. Asia Pac. Entomol. 2017, 20, 1067–1076. [Google Scholar] [CrossRef]
- Nwosu, L.C.; Ikodie, G. Comparative study on the bionomics of Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae) in cowpea varieties (host) and common bean varieties (non-host): Findings revealed important food security information. Int. J. Trop. Insect Sci. 2021, 41, 2679–2694. [Google Scholar] [CrossRef]
- Oke, O.A.; Akintunde, E.M. Reduction of the nutritional values of cowpea infested with Callosobruchus maculatus (Coleoptera: Bruchidae). Int. J. Agri. Sci. 2013, 3, 30–36. [Google Scholar]
- Obembe, O.M.; Ojo, D.O.; David Ileke, K. Efficacy of Kigelia africana Lam. (Benth.) leaf and stem bark ethanolic extracts on adult cowpea seed beetle, [Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae)] affecting stored cowpea seeds (Vigna unguiculata). Heliyon 2020, 3, e05215. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Gbaye, O.A.; Oyeniyi, E.A.; Ojo, O.B. Resistance of Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae) Populations in Nigeria to Dichlorvos. Jordan J. Biol. Sci. 2016, 9, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Gbaye, O.A.; Holloway, G.J. Varietal effects of cowpea, Vigna unguiculata, on tolerance to Malathion in Callosobruchus maculatus (Coleoptera: Bruchidae). J. Stored Prod. Res. 2011, 47, 365–371. [Google Scholar] [CrossRef]
- Zongo, S.; Coulibaly, A.Y.; Drabo, S.F.; Gnankiné, O.; Kiendrebeogo, M.; Doumma, A.; Sembène, M.; Sanon, A. Metabolic resistance to pyrethroids (Py) and organophosphates (Op) in Callosobruchus maculatus (fab.) (Coleoptera: Chrysomelidae: Bruchinae) a major pest of stored cowpeas in West Africa. Int. J. Pest Manag. 2021, 67, 338–345. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnasson, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–425. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J.; Ziaee, M.; Krutmuang, P. Acaricidal, insecticidal, and nematicidal efficiency of essential oils isolated from the Satureja genus. Int. J. Environ. Res. Public Health 2021, 18, 6050. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticidal, deterrents, and repellents in modern agriculture and increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Patiño-Bayona, W.R.; Nagles Galeano, L.J.; Bustos Cortes, J.J.; Delgado Ávila, W.A.; Herrera Daza, E.; Suárez, L.E.C.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Effects of essential oils from 24 plant species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae). Insects 2021, 12, 532. [Google Scholar] [CrossRef]
- Demeter, S.; Lebbe, O.; Hecq, F.; Nicolis, S.C.; Kenne Kemene, T.; Martin, H.; Fauconnier, M.-L.; Hance, T. Insecticidal activity of 25 essential oils on the stored product pest, Sitophilus granarius. Foods 2021, 10, 200. [Google Scholar] [CrossRef]
- Ben Jemaa, M.J.; Haouel, S.; Bouaziz, M.; Khouja, M.L. Seasonal variations in chemical composition and fumigant activity of five Eucalyptus essential oils against three moth pests of stored dates in Tunisia. J. Stored Prod. Res. 2012, 48, 61–67. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, S.H.; Hedjal-Chebheb, M.; Kellouche, A.; Khouja, M.L.; Boudabous, A.; Ben Jemaa, J.M. Management of three pests’ population strains from Tunisia and Algeria using Eucalyptus essential oils. Ind. Crops Prod. 2015, 74, 551–556. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proenc, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Chen, F.; Shen, Y.; Qian, K.; Wang, Y.; Sun, C.; Zhao, X.; Cui, B.; Gao, F.; Zeng, Z.; et al. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 2018, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emamjomeh, L.; Imani, S.; Talebi Jahromi, K.; Moharramipour, S. Nanoencapsulation enhances the contact toxicity of Eucalyptus globulus Labill and Zataria multiflora Boiss essential oils against the third instar larvae of Ephestia kuehniella (Lepidoptera: Pyralidae). Int. J. Pest Manag. 2022. [Google Scholar] [CrossRef]
- Lehmana, S.E.; Larsen, S.C. Zeolite and mesoporous silica nanomaterials: Greener syntheses, environmental applications and biological toxicity. Environ. Sci. Nano 2014, 1, 200–213. [Google Scholar] [CrossRef]
- Gabrus, E.; Nastaj, J.; Tabero, P.; Aleksandrzak, T. Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: Aliphatic alcohols dewatering–water desorption. Chem. Eng. J. 2015, 259, 232–242. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Vallet-Regi, M.; Ramila, A.; del Real, R.P.; Perez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater. 2001, 13, 308–311. [Google Scholar] [CrossRef]
- Santos, H.A.; Salonen, J.; Bimbo, L.M.; Lehto, V.P.; Peltonen, L.; Hirvonen, J. Mesoporous materials as controlled drug delivery formulations. J. Drug. Deliv. Sci. Technol. 2015, 21, 139–155. [Google Scholar] [CrossRef]
- Niculescu, V.C. Mesoporous silica nanoparticles for bio-applications. Front. Mater. 2020, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, J.; Ye, L.; Lv, Y.; Zhou, Z.; Shen, Y.; He, Y.; Jiang, L. Encapsulation of highly volatile fragrances in Y zeolites for sustained release: Experimental and theoretical studies. ACS Omega 2020, 5, 31925–31935. [Google Scholar] [CrossRef] [PubMed]
- Poyatos-Racionero, E.; Guarí-Borràs, G.; Ruiz-Rico, M.; Morellá-Aucejo, Á.; Aznar, E.; Barat, J.M.; Martínez-Máñez, R.; Marcos, M.D.; Bernardos, A. Towards the enhancement of essential oil components’ antimicrobial activity using new zein protein-gated mesoporous silica microdevices. Int. J. Mol. Sci. 2021, 22, 3795. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jia, J.; Duan, S.; Zhou, X.; Xiang, A.; Lian, Z.; Ge, F. Zein/MCM-41 nanocomposite film incorporated with cinnamon essential oil loaded by modified supercritical CO2 impregnation for long-term antibacterial packaging. Pharmaceutics 2020, 12, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebadollahi, A.; Jalali Sendi, J.; Aliakbar, A. Efficacy of nanoencapsulated Thymus eriocalyx and Thymus kotschyanus essential oils by a mesoporous material MCM-41 against Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 2017, 110, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- NIST. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Assareh, M.H.; Jaimand, K.; Rezaee, M.B. Chemical Composition of the essential oils of six Eucalyptus species (Myrtaceae) from South West of Iran. J. Essent. Oil Res. 2007, 19, 8–10. [Google Scholar] [CrossRef]
- Sefidkon, F.; Assareh, M.H.; Abravesh, Z.; Barazandeh, M.M. Chemical composition of the essential oils of four cultivated Eucalyptus species in Iran as medicinal plants (E. microtheca, E. spathulata, E. largiflorens and E. torquata). Iran J. Pharm. Res. 2007, 6, 135–140. [Google Scholar]
- Rahimi-Nasrabadi, M.; Nazarian, S.; Farahani, H.; Fallah Koohbijari, G.R.; Ahmadi, F.; Batooli, H. Chemical composition, antioxidant, and antibacterial activities of the essential oil and methanol extracts of Eucalyptus largiflorens F. Muell. Int. J. Food Proper 2013, 16, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in Essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different Geographical Origins—A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Ben Marzoug, H.N.; Romdhane, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Khouja, M.L.; Bouajila, J. Eucalyptus oleosa essential oils: Chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 2011, 16, 1695–1709. [Google Scholar] [CrossRef]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Yeom, H.-J.; Kang, J.S.; Kim, G.-H.; Park, I.-K. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J. Agric. Food Chem. 2012, 60, 7194–7203. [Google Scholar] [CrossRef] [PubMed]
- Abeywickrama, K.; Adhikari, A.A.C.K.; Paranagama, P.; Gamage, C.S.P. The efficacy of essential oil of Alpinia calcarata (Rosc.) and its major constituent, 1, 8-cineole, as protectants of cowpea against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Canadian J. Plant Sci. 2006, 86, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Park, I.-K.; Kim, J.N.; Lee, Y.-S.; Lee, S.-G.; Ahn, Y.-J.; Shin, S.-C. Toxicity of plant essential oils and their components against Lycoriella ingenua (Diptera: Sciaridae). J. Econ. Entomol. 2008, 101, 139–144. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Wang, Y.; Lin, Z.; Wang, L.; Li, G. Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae). Environ. Sci. Poll. Res. 2017, 24, 24708–24713. [Google Scholar] [CrossRef]
- Liang, J.; Shao, Y.; Wu, H.; An, Y.; Wang, J.; Zhang, J.; Kong, W. Chemical constituents of the essential oil extracted from Elsholtzia densa and their insecticidal activity against Tribolium castaneum and Lasioderma serricorne. Foods 2021, 10, 2304. [Google Scholar] [CrossRef]
- Saad, M.M.G.; El-Deeb, D.A.; Abdelgaleil, S.A.M. Insecticidal potential and repellent and biochemical effects of phenylpropenes and monoterpenes on the red flour beetle, Tribolium castaneum Herbst. Environ. Sci. Pollut. Res. Int. 2019, 26, 6801–6810. [Google Scholar] [CrossRef]
- Seo, S.M.; Kim, J.; Kang, J.; Koh, S.H.; Ahn, Y.J.; Kang, K.S.; Park, I.K. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol. 2014, 113, 55–61. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Desneux, N.; Maggi, F. Phytol,(E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 2020, 155, 112844. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.T.; Feng, Y.X.; Guo, S.S.; Pang, X.; Zhang, D.; Geng, Z.F.; Du, S.S. Insecticidal and repellent efficacy against stored-product insects of oxygenated monoterpenes and 2-dodecanone of the essential oil from Zanthoxylum planispinum var. dintanensis. Environ. Sci. Poll. Res. 2019, 26, 24988–24997. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, X.; Guo, S.; Cao, J.; Wang, Y.; Chen, Z.; Feng, Y.; Lei, N.; Du, S. Insecticidal activity of Artemisia frigida Willd. essential oil and its constituents against three stored product insects. Rec. Nat. Prod. 2019, 13, 176–181. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melanie, M.; Miranti, M.; Kasmara, H.; Malini, D.M.; Husodo, T.; Panatarani, C.; Joni, I.M.; Hermawan, W. Nanotechnology-based bioactive antifeedant for plant protection. Nanomaterials 2022, 12, 630. [Google Scholar] [CrossRef] [PubMed]
- Abdollahdokht, D.; Gao, Y.; Faramarz, S.; Poustforoosh, A.; Abbasi, M.; Asadikaram, G.; Nematollahi, M.H. Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chem. Biol. Technol. Agric. 2022, 9, 13. [Google Scholar] [CrossRef]
- López, M.D.; Cantó-Tejero, M.; Pascual-Villalobos, M.J. New Insights into biopesticides: Solid and liquid formulations of essential oils and derivatives. Front. Agron. 2021, 3, 763530. [Google Scholar] [CrossRef]
- Sanna Passino, G.; Bazzoni, E.; Moretti, M.D.L. Microencapsulated essential oils active against Indian meal moth. Bol. Sanid. Veg. Plagas 2004, 30, 125–132. [Google Scholar]
- Ziaee, M.; Moharramipour, S.; Mohsenifar, A. MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J. Pest Sci. 2014, 87, 691–699. [Google Scholar] [CrossRef]
- Usha Rani, P.; Madhusudhanamurthy, J.; Sreedhar, B. Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J. Pest Sci. 2014, 87, 191–200. [Google Scholar] [CrossRef]
- Bernardos, A.T.; Marina, P.; Žáček, É.; Pérez-Esteve, R.; Martínez-Mañez, M.; Lhotka, L.; Kouřimská, J.; Pulkrábek Klouček, P. Antifungal effect of essential oil components against Aspergillus niger when loaded in silica mesoporous supports. J. Sci. Food Agric. 2015, 95, 2824–2831. [Google Scholar] [CrossRef]
- Oftadeh, M.; Sendi, J.J.; Ebadollahi, A.; Setzer, W.N.; Krutmuang, P. Mulberry protection through flowering-stage essential oil of Artemisia annua against the lesser mulberry pyralid, Glyphodes pyloalis Walker. Foods 2021, 10, 210. [Google Scholar] [CrossRef]
- Liang, J.Y.; Yang, Y.Y.; An, Y.; Shao, Y.Z.; He, C.Y.; Zhang, J.; Jia, L.Y. Insecticidal and acetylcholine esterase inhibition activity of Rhododendron thymifolium essential oil and its main constituent against two stored product insects. J. Environ. Sci. Health B 2021, 56, 423–430. [Google Scholar] [CrossRef]
- Blenau, W.; Rademacher, E.; Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets? Apidologie 2012, 43, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Bioinsecticides based on plant essential oils: A short overview. Z. Für Nat. C 2020, 75, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Teng, J.; Hu, L.; Lan, X.; Xu, Y.; Sheng, J.; Song, Y.; Wang, M. Pepper fragrant essential oil (PFEO) and functionalized MCM-41 nanoparticles: Formation, characterization, and bactericidal activity. J. Sci. Food Agric. 2019, 99, 5168–5175. [Google Scholar] [CrossRef] [PubMed]
- Milićević, Z.; Krnjajić, S.; Stević, M.; Ćirković, J.; Jelušić, A.; Pucarević, M.; Popović, T. Encapsulated clove bud essential oil: A new perspective as an eco-friendly biopesticide. Agriculture 2022, 12, 338. [Google Scholar] [CrossRef]
- Hettmann, K.; Monnard, F.W.; Melo Rodriguez, G.; Hilty, F.M.; Yildirim, S.; Schoelkopf, J. Porous coatings to control release rates of essential oils to generate an atmosphere with botanical actives. Materials 2022, 15, 2155. [Google Scholar] [CrossRef]
- Khani, A.; Asghari, J. Insecticide activity of essential oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against two stored product pests, the flour beetle, Tribolium castaneum, and the cowpea weevil, Callosobruchus maculatus. J. Insect Sci. 2012, 12, 73. [Google Scholar] [CrossRef] [Green Version]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Sansukcharearnpon, A.; Wanichwecharungruang, S.; Leepipatpaiboon, N.; Kerdcharoend, T.; Arayachukeata, S. High loading fragrance encapsulation based on a polymer-blend: Preparation and release behavior. Int. J. Pharm. 2010, 391, 267–273. [Google Scholar] [CrossRef]
RIdb | RIcalc | Compound | % | RIdb | RIcalc | Compound | % |
---|---|---|---|---|---|---|---|
932 | 932 | α-Pinene | 3.2 | 1239 | 1234 | Carvone | 0.4 |
969 | 970 | Sabinene | 0.3 | 1249 | 1244 | Piperitone | 1.4 |
974 | 974 | β-Pinene | 0.2 | 1273 | 1267 | Phellandranal | 2.6 |
988 | 988 | Myrcene | 0.1 | 1282 | 1277 | (E)-Anethole | 2.4 |
988 | 990 | 2,3-Dehydro-1,8-cineole | 0.1 | 1289 | 1294 | p-Cymen-7-ol | 5.1 |
1002 | 1003 | α-Phellandrene | 0.1 | 1298 | 1303 | Carvacrol | 3.9 |
1022 | 1011 | m-Cymene | 0.4 | 1314 | 1325 | 4-Hydroxycryptone | 0.9 |
1024 | 1023 | p-Cymene | 4.8 | 1346 | 1347 | α-Terpinyl acetate | 2.4 |
1024 | 1028 | Limonene | 1.1 | 1389 | 1386 | β-Elemene | 0.2 |
1026 | 1032 | 1,8-Cineole | 5.8 | 1392 | 1396 | (Z)-Jasmone | 0.1 |
1054 | 1056 | γ-Terpinene | 0.8 | 1439 | 1441 | Aromadendrene | 0.9 |
1065 | 1062 | cis-Sabinene hydrate | 0.1 | 1458 | 1462 | allo-Aromadendrene | 1.3 |
1067 | 1065 | cis-Linalool oxide (furanoid) | 0.3 | 1489 | 1486 | β-Selinene | 0.1 |
1083 | 1083 | Diallyl disulfide | 0.1 | 1491 | 1493 | 10,11-Epoxycalamenene | 0.4 |
1089 | 1090 | p-Cymenene | 0.6 | 1564 | 1561 | epi-Globulol | 0.3 |
1098 | 1097 | Linalool | 0.6 | 1567 | 1569 | Palustrol | 0.6 |
1101 | 1102 | cis-Thujone (α-Thujone) | 0.4 | 1577 | 1581 | Spathulenol | 15.6 |
1112 | 1112 | trans-Thujone (β-Thujone) | 0.3 | 1590 | 1614 | Globulol | 1.7 |
1118 | 1119 | cis-p-Menth-2-en-1-ol | 0.9 | 1592 | 1616 | Viridiflorol | 0.5 |
1122 | 1120 | α-Campholenal | 0.4 | 1629 | 1628 | iso-Spathulenol | 0.9 |
1137 | 1137 | trans-Sabinol | 0.8 | 1640 | 1648 | Caryophylla-4(12),8(13)-dien-5α-ol | 0.3 |
1141 | 1141 | Camphor | 1.6 | 1652 | 1653 | α-Cadinol | 0.2 |
1148 | 1149 | Menthone | 0.9 | 1668 | 1670 | 14-Hydroxy-9-epi-(E)-caryophyllene | 0.3 |
1160 | 1160 | Pinocarvone | 1.3 | 1741 | 1744 | iso-Bicyclogermacrenal | 1.0 |
1174 | 1175 | Terpinen-4-ol | 5.7 | Monoterpene hydrocarbons | 11.6 | ||
1183 | 1189 | Cryptone | 7.0 | Oxygenated monoterpenoids | 53.4 | ||
1186 | 1193 | α-Terpineol | 0.9 | Sesquiterpene hydrocarbons | 2.5 | ||
1204 | 1202 | Verbenone | 1.1 | Oxygenated sesquiterpenoids | 21.9 | ||
1215 | 1212 | trans-Carveol | 1.0 | Others | 2.7 | ||
1224 | 1224 | m-Cumenol | 3.1 | Total identified | 92.0 | ||
1238 | 1233 | Cuminaldehyde | 4.4 |
Time (h) | N | LC50 with 95% Confidence Limit (µL/L Air) | LC90 with 95% Confidence Limit (µL/L Air) | χ2 (df = 3) | Slope | Intercept | Significance | r2 |
---|---|---|---|---|---|---|---|---|
24 | 480 | 2.85 (2.65–3.07) | 6.25 (5.43–7.64) | 3.07 | 3.76 | −1.71 | 0.38 * | 0.97 |
48 | 480 | 2.35 (1.15–3.19) | 4.82 (3.46–36.18) | 18.57 | 4.15 | −1.55 | 0.0003 ** | 0.95 |
Compound | Insecticidal Activity |
---|---|
Anethole | Toxicity and acetylcholine esterase inhibitory against German cockroach (Blattella germanica (L.)) [44]. |
1,8-Cineole | Toxicity, along with oviposition and F1 adult emergence, inhibitory against C. maculatus [45]. |
Camphor | Toxicity against larvae of cotton leaf worm (Spodoptera littoralis Boisduval) [43]. |
Carvacrol | Toxicity against mushroom fly (Lycoriella ingenua (Dufour)) [46]. |
Carveol | Toxicity and acetylcholine esterase inhibitory against B. germanica [44]. |
Cuminaldehyde | Toxicity against the larvae of L. ingenua [46]. |
Limonene | Toxicity against adults of the housefly (Musca domestica) [47]. |
p-Cymen-7-ol | Toxicity against T. castaneum and L. serricorne [48]. |
p-Cymene | Toxicity, repellency, and inhibition of acetylcholinesterase and adenosine triphosphatases on T. castaneum [49]. |
Phellandranal | Toxicity, along with acetylcholine esterase, inhibitory against B. germanica [44]. |
Pinocarvone | Toxicity against Japanese termite (Reticulitermes speratus Kolbe) [50]. |
Spathulenol | Toxicity against the aphid Metopolophium dirhodum (walker) and relatively non-toxic to non-target ladybird and earthworm [51] |
Terpinen-4-ol | Toxicity and repellency against booklouse (Liposcelis bostrychophila Badonnel), cigarette beetle (Lasioderma serricorne F.), and T. castaneum [52]. |
Verbenone | Toxicity against L. bostrychophila, L. serricorne and T. castaneum [53]. |
α-Pinene | Toxicity, repellency, and inhibition of acetylcholinesterase and adenosine triphosphatases on T. castaneum [49]. |
α-Terpinyl acetate | Toxicity against M. domestica adults [47]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebadollahi, A.; Jalali Sendi, J.; Setzer, W.N.; Changbunjong, T. Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Molecules 2022, 27, 3531. https://doi.org/10.3390/molecules27113531
Ebadollahi A, Jalali Sendi J, Setzer WN, Changbunjong T. Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Molecules. 2022; 27(11):3531. https://doi.org/10.3390/molecules27113531
Chicago/Turabian StyleEbadollahi, Asgar, Jalal Jalali Sendi, William N. Setzer, and Tanasak Changbunjong. 2022. "Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae)" Molecules 27, no. 11: 3531. https://doi.org/10.3390/molecules27113531
APA StyleEbadollahi, A., Jalali Sendi, J., Setzer, W. N., & Changbunjong, T. (2022). Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Molecules, 27(11), 3531. https://doi.org/10.3390/molecules27113531