Pigment of Ceiba speciosa (A. St.-Hil.) Flowers: Separation, Extraction, Purification and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extract Preparation
2.2. Response Surface Methodology (RSM)
2.3. Purification of FPCS
2.4. Color Value of FPCS
2.5. Antioxidant Capacity of FPCS
2.6. Mice
2.7. Acute Toxicity Test
2.8. FPCS and LPS Treatment
- Group 1—Vehicle control (saline i.p) for 7 days;
- Group 2—Vehicle for 7 days and LPS (0.83 mg/kg i.p.) on the 8th day;
- Group 3—FPCS (10 mg/kg i.p.) for 7 days and LPS (0.83 mg/kg i.p.) on the 8th day;
- Group 4—FPCS (30 mg/kg i.p.) for 7 days and LPS (0.83 mg/kg i.p.) on the 8th day;
- Group 5—FPCS (90 mg/kg i.p.) for 7 days and LPS (0.83 mg/kg i.p.) on the 8th day;
- Group 6—FPCS (10 mg/kg i.p.) for 7 days.
2.9. Western Blotting
2.10. Statistical Analysis
3. Results
3.1. Optimization of FPCS Extraction by Response Surface Methodology
3.2. Interpretation of Response Surface Models
3.3. Purification of FPCS by Macroporous Resin
3.3.1. Static Adsorption Experiment
3.3.2. Dynamic Adsorption Experiment
3.4. The Stability of Purified and Unpurified FPCS
3.5. Impact of Oxidizing and Reducing Compounds, Preservatives and Metal Ions on the Stability of FPCS
3.6. Antioxidant Activity of FPCS In Vitro
3.6.1. Ability to Scavenge DPPH
3.6.2. Ability to Scavenge ABTS+
3.7. Acute Toxicity Test in KM Mice
3.8. FPCS Prevents LPS-Induced Oxidative Stress in KM Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Bai, L.; He, J.; Zhong, L.; Duan, X.; Ouyang, L.; Zhu, Y.; Wang, T.; Zhang, Y.; Shi, J. Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Eur. J. Med. Chem. 2017, 141, 257–272. [Google Scholar] [CrossRef]
- Laraia, L.; Waldmann, H. Natural product inspired compound collections: Evolutionary principle, chemical synthesis, phenotypic screening, and target identification. Drug Discov. Today Technol. 2017, 23, 75–82. [Google Scholar] [CrossRef]
- Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res. 2021, 35, 4660–4702. [Google Scholar] [CrossRef]
- Jugran, A.K.; Rawat, S.; Devkota, H.P.; Bhatt, I.D.; Rawal, R.S. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother. Res. 2021, 35, 223–245. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, X.Y.; Gan, R.Y.; Zheng, J.; Li, Y.; Zhang, J.J.; Xu, D.P.; Li, H.B. Optimization of ultrasound-assisted extraction of antioxidant polyphenols from the seed coats of red sword bean (Canavalia gladiate (Jacq.) DC.). Antioxidants 2019, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, X.; He, D.; Zou, D.; Zhao, R.; Wang, H.; Li, S.; Xu, Y.; Abudureheman, B. Optimization of flavonoid extraction from Xanthoceras sorbifolia Bunge flowers, and the antioxidant and antibacterial capacity of the extract. Molecules 2021, 27, 113. [Google Scholar] [CrossRef]
- Garcia, M.L.; Carrion, M.H.; Escobar, S.; Rodriguez, A.; Cortina, J.R. Optimization of the antioxidant capacity of mangosteen peels (Garcinia mangostana L.) extracts: Management of the drying extraction processes. Food Sci. Technol. Int. 2021, 27, 404–412. [Google Scholar] [CrossRef]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant activity and healthy benefits of natural pigments in fruits: A Review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef]
- Hu, Y.L.; Luo, J.Y.; Hu, S.R.; Fu, H.; Yang, S.H.; Yang, M.H. Application of natural plant pigments in enlarged health industry. Zhongguo Zhong Yao Za Zhi 2017, 42, 2433–2438. [Google Scholar] [CrossRef]
- de Vasconcellos, T.J.; Da Cunha, M.; Callado, C.H. A comparative study of cambium histology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) under urban pollution. Environ. Sci. Pollut. Res. Int. 2017, 24, 12049–12062. [Google Scholar] [CrossRef]
- Beleski-Carneiro, E.; Sugui, J.; Reicher, F. Structural and biological features of a hydrogel from seed coats of Chorisia speciosa. Phytochemistry 2002, 61, 157–163. [Google Scholar] [CrossRef]
- Pasta, S.; La Mantia, T.; Badalamenti, E. A casual alien plant new to Mediterranean Europe: Ceiba speciosa (Malvaceae) in the suburban area of Palermo (NW Sicily, Italy). An. Jardin Bot. Madrid 2014, 71, 4. [Google Scholar] [CrossRef] [Green Version]
- Dorr, J.A.; Bitencourt, S.; Bortoluzzi, L.; Alves, C.; Silva, J.; Stoll, S.; Pinteus, S.; Boligon, A.A.; Santos, R.C.V.; Laufer, S.; et al. In vitro activities of Ceiba speciosa (A.St.-Hil) Ravenna aqueous stem bark extract. Nat. Prod. Res. 2019, 33, 3441–3444. [Google Scholar] [CrossRef]
- Nasr, E.M.; Assaf, M.H.; Darwish, F.M.; Ramadan, M.A. Phytochemical and biological study of Chorisia speciosa A. St. Hil. Cultivated in Egypt. J. Pharmacogn. Phytochem. 2018, 7, 649–656. [Google Scholar]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Rosselli, S.; Tundis, R.; Bruno, M.; Leporini, M.; Falco, T.; Gagliano Candela, R.; Badalamenti, N.; Loizzo, M.R. Ceiba speciosa (A. St.-Hil.) Seeds oil: Fatty acids profiling by GC-MS and NMR and bioactivity. Molecules 2020, 25, 1037. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, F.B.; Quines, C.B.; Pilissao, L.E.B.; Dal Forno, A.H.C.; Rodrigues, C.F.; Denardin, C.C.; Farias, F.M.; Avila, D.S. Aqueous bark extract of Ceiba speciosa (A. St.-Hill) ravenna protects against glucose toxicity in Caenorhabditis elegans. Oxid. Med. Cell Longev. 2020, 2020, 1321354. [Google Scholar] [CrossRef]
- Liu, T.; Ma, C.; Yang, L.; Wang, W.; Sui, X.; Zhao, C.; Zu, Y. Optimization of shikonin homogenate extraction from Arnebia euchroma using response surface methodology. Molecules 2013, 18, 466–481. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.J.; Chang, Y.N.; You, J.Q.; Li, S.Z.; Zhuang, W.; Cao, C.J. Cold-pressed canola oil reduces hepatic steatosis by modulating cxidative stress and lipid metabolism in KM mice compared with refined bleached deodorized canola oil. J. Food Sci. 2019, 84, 1900–1908. [Google Scholar] [CrossRef]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol. 2018, 11, 5–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.G.; Zhang, X.X.; Lin, R.Q.; Petersen, E.; He, S.; Yu, M.; He, X.H.; Zhou, D.H.; He, Y.; Li, H.X.; et al. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine 2011, 29, 6614–6619. [Google Scholar] [CrossRef]
- Qian, B.; Wang, C.; Zeng, Z.; Ren, Y.; Li, D.; Song, J.L. Ameliorative effect of sinapic acid on dextran sodium sulfate- (DSS-) induced ulcerative colitis in Kunming (KM) Mice. Oxid. Med. Cell Longev. 2020, 2020, 8393504. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, C.; Zheng, M.; Chen, J.L.; Meng, M.J.; Zhao, Z.Z.; Chen, Q.; Xie, Z.; Li, J.L.; Yang, Y.; et al. Enhancement of immunity to an Escherichia coli vaccine in mice orally inoculated with a fusion gene encoding porcine interleukin 4 and 6. Vaccine 2007, 25, 7094–7101. [Google Scholar] [CrossRef]
- Mei, X.; Zhang, Y.; Quan, C.; Liang, Y.; Huang, W.; Shi, W. Characterization of the pathology, biochemistry, and immune response in Kunming (KM) Mice following Fasciola gigantica infection. Front. Cell Infect. Microbiol. 2021, 11, 793571. [Google Scholar] [CrossRef] [PubMed]
- Masuelli, L.; Pantanella, F.; La Regina, G.; Benvenuto, M.; Fantini, M.; Mattera, R.; Di Stefano, E.; Mattei, M.; Silvestri, R.; Schippa, S.; et al. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour. Biol. 2016, 37, 3705–3717. [Google Scholar] [CrossRef]
- Jangra, A.; Lukhi, M.M.; Sulakhiya, K.; Baruah, C.C.; Lahkar, M. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice. Eur. J. Pharmacol. 2014, 740, 337–345. [Google Scholar] [CrossRef]
- Zumahi, S.M.A.; Arobi, N.; Taha, H.; Hossain, M.K.; Kabir, H.; Matin, R.; Bashar, M.S.; Ahmed, F.; Hossain, M.A.; Rahman, M.M. Extraction, optical properties, and aging studies of natural pigments of various flower plants. Heliyon 2020, 6, e05104. [Google Scholar] [CrossRef]
- Belwal, T.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef]
- Rajewski, J.; Dobrzynska-Inger, A. Application of response surface methodology (RSM) for the optimization of chromium(III) synergistic extraction by supported liquid membrane. Membranes 2021, 11, 854. [Google Scholar] [CrossRef]
- Onyebuchi, C.; Kavaz, D. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Sci. Rep. 2020, 10, 21760. [Google Scholar] [CrossRef]
- Yan, J.K.; Yu, Y.B.; Wang, C.; Cai, W.D.; Wu, L.X.; Yang, Y.; Zhang, H.N. Production, physicochemical characteristics, and in vitro biological activities of polysaccharides obtained from fresh bitter gourd (Momordica charantia L.) via room temperature extraction techniques. Food Chem. 2021, 337, 127798. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Spietelun, A.; Kloskowski, A.; Chrzanowski, W.; Namiesnik, J. Understanding solid-phase microextraction: Key factors influencing the extraction process and trends in improving the technique. Chem. Rev. 2013, 113, 1667–1685. [Google Scholar] [CrossRef]
- Liang, L.; Liu, G.; Yu, G.; Song, Y.; Li, Q. Simultaneous decoloration and purification of crude oligosaccharides from pumpkin (Cucurbita moschata Duch) by macroporous adsorbent resin. Food Chem. 2019, 277, 744–752. [Google Scholar] [CrossRef]
- Schimek, C.; Kubek, M.; Scheich, D.; Fink, M.; Brocard, C.; Striedner, G.; Cserjan-Puschmann, M.; Hahn, R. Three-dimensional chromatography for purification and characterization of antibody fragments and related impurities from Escherichia coli crude extracts. J. Chromatogr. A 2021, 1638, 461702. [Google Scholar] [CrossRef]
- Che Zain, M.S.; Lee, S.Y.; Teo, C.Y.; Shaari, K. Adsorption and desorption properties of total flavonoids from oil palm (Elaeis guineensis Jacq.) mature leaf on macroporous adsorption resins. Molecules 2020, 25, 778. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Su, J.; Chu, X.; Zhang, X.; Kan, Q.; Liu, R.; Fu, X. Adsorption and desorption characteristics of total flavonoids from Acanthopanax senticosus on macroporous adsorption resins. Molecules 2021, 26, 4162. [Google Scholar] [CrossRef]
- Liu, J.; Meng, J.; Du, J.; Liu, X.; Pu, Q.; Di, D.; Chen, C. Preparative separation of flavonoids from Goji Berries by mixed-mode macroporous adsorption resins and effect on Abeta-expressing and anti-aging genes. Molecules 2020, 25, 3511. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, M.; Lin, L. Adsorption and desorption characteristics of adlay bran free phenolics on macroporous resins. Food Chem. 2016, 194, 900–907. [Google Scholar] [CrossRef]
- Sieminska-Kuczer, A.; Szymanska-Chargot, M.; Zdunek, A. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chem. 2022, 373, 131487. [Google Scholar] [CrossRef]
- Marsup, P.; Yeerong, K.; Neimkhum, W.; Sirithunyalug, J.; Anuchapreeda, S.; To-Anun, C.; Chaiyana, W. Enhancement of chemical stability and dermal delivery of Cordyceps militaris extracts by nanoemulsion. Nanomaterials 2020, 10, 1565. [Google Scholar] [CrossRef]
- Lopes, G.C.; Longhini, R.; Dos Santos, P.V.; Araujo, A.A.; Bruschi, M.L.; de Mello, J.C. Preliminary assessment of the chemical stability of dried extracts from Guazuma ulmifolia Lam. (Sterculiaceae). Int. J. Anal. Chem. 2012, 2012, 508945. [Google Scholar] [CrossRef] [Green Version]
- Weerawatanakorn, M.; Wu, J.C.; Pan, M.H.; Ho, C.T. Reactivity and stability of selected flavor compounds. J. Food Drug Anal. 2015, 23, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Indrawati, R.; Zubaidah, E.; Sutrisno, A.; Limantara, L.; Yusuf, M.M.; Brotosudarmo, T.H.P. Visible light-induced antibacterial activity of pigments extracted from dregs of green and black teas. Scientifica 2021, 2021, 5524468. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L. Influence of different sweeteners on the stability of anthocyanins from cornelian cherry juice. Foods 2020, 9, 1266. [Google Scholar] [CrossRef]
- Ertan, K.; Turkyilmaz, M.; Ozkan, M. Effect of sweeteners on anthocyanin stability and colour properties of sour cherry and strawberry nectars during storage. J. Food Sci. Technol. 2018, 55, 4346–4355. [Google Scholar] [CrossRef]
- Shi, K.; Song, D.; Chen, G.; Pistolozzi, M.; Wu, Z.; Quan, L. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J. Biosci. Bioeng. 2015, 120, 145–154. [Google Scholar] [CrossRef]
- Quitmann, H.; Fan, R.; Czermak, P. Acidic organic compounds in beverage, food, and feed production. Adv. Biochem. Eng. Biotechnol. 2014, 143, 91–141. [Google Scholar] [CrossRef]
- Yusoff, A.; Kumara, N.T.; Lim, A.; Ekanayake, P.; Tennakoon, K.U. Impacts of temperature on the stability of tropical plant pigments as sensitizers for dye sensitized solar cells. J. Biophys. 2014, 2014, 739514. [Google Scholar] [CrossRef]
- Lin, S.M.; Lin, B.H.; Hsieh, W.M.; Ko, H.J.; Liu, C.D.; Chen, L.G.; Chiou, R.Y. Structural identification and bioactivities of red-violet pigments present in Basella alba fruits. J. Agric. Food Chem. 2010, 58, 10364–10372. [Google Scholar] [CrossRef]
- Mohammadzadeh-Aghdash, H.; Akbari, N.; Esazadeh, K.; Ezzati Nazhad Dolatabadi, J. Molecular and technical aspects on the interaction of serum albumin with multifunctional food preservatives. Food Chem. 2019, 293, 491–498. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lee, W.H.; Kwak, W.S. A novel combination of sodium metabisulfite and a chemical mixture based on sodium benzoate, potassium sorbate, and sodium nitrite for aerobic preservation of fruit and vegetable discards and lactic acid fermentation in a total mixed ration for ruminants. Anim. Biosci. 2021, 34, 1479–1490. [Google Scholar] [CrossRef]
- Amirpour, M.; Arman, A.; Yolmeh, A.; Akbari Azam, M.; Moradi-Khatoonabadi, Z. Sodium benzoate and potassium sorbate preservatives in food stuffs in Iran. Food Addit. Contam. Part B Surveill. 2015, 8, 142–148. [Google Scholar] [CrossRef]
- Nishiike, T.; Kondo, S.; Yamamoto, T.; Shigeeda, A.; Yamamoto, Y.; Takamura, H.; Matoba, T. Effects of metal ions and pH on the stability of linoleic acid hydroperoxide in the water phase. Biosci. Biotechnol. Biochem. 1997, 61, 1973–1976. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.Q.; Han, A.J.; Liu, Z.B.; Wang, C. Metal ions doped complex cobalt blue pigment research. Adv. Mater. Res. 2012, 415–417, 194–199. [Google Scholar] [CrossRef]
- Jeyaram, S.; Geethakrishnan, T. Solvent dependent linear and nonlinear optical characteristics of acid blue 3 dye. J. Fluoresc. 2020, 30, 1161–1169. [Google Scholar] [CrossRef]
- Xi, J.; He, L.; Yan, L.G. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chem. 2017, 230, 354–361. [Google Scholar] [CrossRef]
- Saha, R.N.; Pahan, K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal. 2006, 8, 929–947. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Sierra, A.; Navascues, J.; Cuadros, M.A.; Calvente, R.; Martin-Oliva, D.; Ferrer-Martin, R.M.; Martin-Estebane, M.; Carrasco, M.C.; Marin-Teva, J.L. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS ONE 2014, 9, e106048. [Google Scholar] [CrossRef] [Green Version]
- Bandookwala, M.; Sengupta, P. 3-Nitrotyrosine: A versatile oxidative stress biomarker for major neurodegenerative diseases. Int. J. Neurosci. 2020, 130, 1047–1062. [Google Scholar] [CrossRef]
- Darwish, R.S.; Amiridze, N.; Aarabi, B. Nitrotyrosine as an oxidative stress marker: Evidence for involvement in neurologic outcome in human traumatic brain injury. J. Trauma 2007, 63, 439–442. [Google Scholar] [CrossRef]
- Liyanagamage, D.; Martinus, R.D. Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation. Mediat. Inflamm. 2020, 2020, 8073516. [Google Scholar] [CrossRef]
- Anosike, C.A.; Ugwu, J.C.; Ojeli, P.C.; Abugu, S.C. Anti-ulcerogenic effects and anti-oxidative properties of Ceiba pentandra leaves on alloxan-induced diabetic rats. Eur. J. Med. Plants 2014, 4, 458–472. [Google Scholar] [CrossRef]
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012, 7, 376–385. [Google Scholar] [CrossRef]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative stress in cancer cell metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Ryan, L.; Martinez, J.A. Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 2012, 68, 701–711. [Google Scholar] [CrossRef]
- Wang, H.; Wang, G.; Banerjee, N.; Liang, Y.; Du, X.; Boor, P.J.; Hoffman, K.L.; Khan, M.F. Aberrant Gut Microbiome Contributes to Intestinal Oxidative Stress, Barrier Dysfunction, Inflammation and Systemic Autoimmune Responses in MRL/lpr Mice. Front. Immunol. 2021, 12, 651191. [Google Scholar] [CrossRef]
- Maqsoudlou, A.; Assadpour, E.; Mohebodini, H.; Jafari, S.M. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Crit. Rev. Food Sci. Nutr. 2022, 62, 3208–3231. [Google Scholar] [CrossRef]
- Martincic, R.; Kuzmanovski, I.; Wagner, A.; Novic, M. Development of models for prediction of the antioxidant activity of derivatives of natural compounds. Anal. Chim. Acta 2015, 868, 23–35. [Google Scholar] [CrossRef] [PubMed]
- White, P.A.; Oliveira, R.C.; Oliveira, A.P.; Serafini, M.R.; Araujo, A.A.; Gelain, D.P.; Moreira, J.C.; Almeida, J.R.; Quintans, J.S.; Quintans-Junior, L.J.; et al. Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. Molecules 2014, 19, 14496–14527. [Google Scholar] [CrossRef] [PubMed]
- Orsavova, J.; Sytarova, I.; Mlcek, J.; Misurcova, L. Phenolic compounds, vitamins C and E and antioxidant activity of edible honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) in relation to their origin. Antioxidants 2022, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Raudone, L.; Liaudanskas, M.; Vilkickyte, G.; Kviklys, D.; Zvikas, V.; Viskelis, J.; Viskelis, P. Phenolic Profiles, Antioxidant Activity and Phenotypic Characterization of Lonicera caerulea L. Berries, Cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
Number | Concentration (%) | Liquid (g/mL) | Temperature (°C) | Time (min) | Rate (%) |
---|---|---|---|---|---|
1 | 65 | 1:70 | 70 | 30 | 33.2 |
2 | 75 | 1:70 | 80 | 30 | 32.4 |
3 | 75 | 1:80 | 70 | 30 | 38.2 |
4 | 75 | 1:60 | 70 | 30 | 31.8 |
5 | 75 | 1:70 | 60 | 30 | 39.2 |
6 | 85 | 1:70 | 70 | 30 | 28.6 |
7 | 65 | 1:80 | 70 | 45 | 34.6 |
8 | 65 | 1:70 | 60 | 45 | 34.8 |
9 | 65 | 1:70 | 80 | 45 | 27.8 |
10 | 65 | 1:60 | 70 | 45 | 27.6 |
11 | 75 | 1:80 | 60 | 45 | 30.4 |
12 | 75 | 1:70 | 70 | 45 | 48.1 |
13 | 75 | 1:80 | 80 | 45 | 26.9 |
14 | 75 | 1:70 | 70 | 45 | 50.4 |
15 | 75 | 1:70 | 70 | 45 | 49.8 |
16 | 75 | 1:70 | 70 | 45 | 46.7 |
17 | 75 | 1:70 | 70 | 45 | 47.5 |
18 | 75 | 1:60 | 60 | 45 | 28.6 |
19 | 75 | 1:60 | 80 | 45 | 34.4 |
20 | 85 | 1:80 | 70 | 45 | 27.2 |
21 | 85 | 1:70 | 80 | 45 | 26.6 |
22 | 85 | 1:60 | 70 | 45 | 29.6 |
23 | 85 | 1:70 | 60 | 45 | 35.6 |
24 | 65 | 1:70 | 70 | 60 | 35.9 |
25 | 75 | 1:70 | 80 | 60 | 34.9 |
26 | 75 | 1:80 | 70 | 60 | 29.3 |
27 | 75 | 1:60 | 70 | 60 | 27.3 |
28 | 75 | 1:70 | 60 | 60 | 37.2 |
29 | 85 | 1:70 | 70 | 60 | 26.8 |
Variance | Sum of Squares | df | Mean Square | F Value | p Value |
---|---|---|---|---|---|
model | 1403.34 | 14 | 101.24 | 9.00 | 0.0001 ** |
A-Concentration | 31.69 | 1 | 31.69 | 2.84 | 0.1138 |
B-Liquid | 4.44 | 1 | 4.44 | 0.3986 | 0.5380 |
C-Temperature | 43.32 | 1 | 43.32 | 3.89 | 0.0687 |
D-Time | 12.00 | 1 | 12.00 | 1.08 | 0.3169 |
AB | 22.09 | 1 | 22.09 | 1.98 | 0.1809 |
AC | 1.00 | 1 | 1.00 | 0.0898 | 0.7689 |
AD | 5.06 | 1 | 5.06 | 0.4544 | 0.5112 |
BC | 21.62 | 1 | 21.62 | 1.94 | 0.1853 |
BD | 4.84 | 1 | 4.84 | 0.4344 | 0.5205 |
CD | 5.06 | 1 | 5.06 | 0.4544 | 0.5112 |
A2 | 624.66 | 1 | 624.66 | 56.07 | <0.0001 ** |
B2 | 663.43 | 1 | 663.43 | 59.55 | <0.0001 ** |
C2 | 341.02 | 1 | 341.02 | 30.61 | <0.0001 ** |
D2 | 274.12 | 1 | 274.12 | 24.60 | 0.0002 ** |
Residual | 155.97 | 14 | 11.14 | ||
Spurious term | 145.52 | 10 | 14.55 | 5.57 | 0.0562 |
Pure error | 10.45 | 4 | 2.61 | ||
Sum | 1559.31 | 28 |
Concentration (%) | Liquid (g/mL) | Temperature (°C) | Time (min) | Rate (%) | |||
---|---|---|---|---|---|---|---|
Theoretical Value | Measured Value | Prediction Accuracy % | |||||
Optimized extraction conditions | 76.32 | 1:74.75 | 66.48 | 39.44 | - | - | - |
Adjustment | 76 | 1:75 | 66 | 39 | 45.15 | 43.2 ± 2.1 | 95.68 |
Dose | Sex | Number of Animals | Weight | Number of Deaths | |
---|---|---|---|---|---|
Initial Weight | Final Weight | ||||
10 | ♂ | 3 | 19.8 ± 0.5 | 31.2 ± 0.6 | 0 |
♀ | 3 | 20.2 ± 0.5 | 31.3 ± 1.0 | 0 | |
4.64 | ♂ | 3 | 19.9 ± 0.6 | 30.3 ± 0.9 | 0 |
♀ | 3 | 20.1 ± 0.5 | 30.6 ± 1.8 | 0 | |
2.15 | ♂ | 3 | 20.5 ± 1.1 | 31.5 ± 1.3 | 0 |
♀ | 3 | 20.3 ± 0.8 | 30.7 ± 0.7 | 0 | |
1 | ♂ | 3 | 20.1 ± 1.0 | 31.8 ± 0.8 | 0 |
♀ | 3 | 19.8 ± 0.9 | 29.6 ± 1.1 | 0 | |
blank | ♂ | 3 | 20.8 ± 1.3 | 30.3 ± 1.4 | 0 |
♀ | 3 | 20.6 ± 0.6 | 31.5 ± 1.3 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Misrani, A.; Long, C.; He, Z.; Chen, K.; Yang, L. Pigment of Ceiba speciosa (A. St.-Hil.) Flowers: Separation, Extraction, Purification and Antioxidant Activity. Molecules 2022, 27, 3555. https://doi.org/10.3390/molecules27113555
Chen B, Misrani A, Long C, He Z, Chen K, Yang L. Pigment of Ceiba speciosa (A. St.-Hil.) Flowers: Separation, Extraction, Purification and Antioxidant Activity. Molecules. 2022; 27(11):3555. https://doi.org/10.3390/molecules27113555
Chicago/Turabian StyleChen, Boyu, Afzal Misrani, Cheng Long, Zhizhou He, Kun Chen, and Li Yang. 2022. "Pigment of Ceiba speciosa (A. St.-Hil.) Flowers: Separation, Extraction, Purification and Antioxidant Activity" Molecules 27, no. 11: 3555. https://doi.org/10.3390/molecules27113555
APA StyleChen, B., Misrani, A., Long, C., He, Z., Chen, K., & Yang, L. (2022). Pigment of Ceiba speciosa (A. St.-Hil.) Flowers: Separation, Extraction, Purification and Antioxidant Activity. Molecules, 27(11), 3555. https://doi.org/10.3390/molecules27113555