Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ultrasound-Assisted Extraction (UAE) of Soluble Polyphenols from Psidium cattleianum Leaves
2.2. Response Surface Methodology Analysis
2.3. Evaluation of Model Reliability and Comparison of Ultrasound-Assisted Extraction with Conventional Extraction
2.4. Soluble Polyphenols Profile
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. First Phase
3.2.1. Experimental Design
3.2.2. Ultrasound-Assisted Extraction (UAE) Procedure of Polyphenolic Compounds
3.2.3. Total Soluble Phenols
3.2.4. Ultrasound-Assisted Extraction (UAE) Yield of Polyphenolic Compounds
3.2.5. Response Surface Methodology Analysis
3.3. Second Phase
3.3.1. Model Reliability and Comparison of Ultrasound-Assisted Extraction with Conventional Aqueous–Organic Extraction
3.3.2. Conventional Aqueous–Organic Extraction of Polyphenols
3.3.3. Total Soluble Phenols, Hydrolysable Polyphenols, and Condensed Tannins
3.3.4. Antioxidant Capacity
3.3.5. Identification of Phenolic Compounds from PC Leaf Extracts by HPLC
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mesomo-Bombardelli, M.C.; Machado, C.S.; Kotovicz, V.; Kruger, R.L.; Santa, O.R.D.; Torres, Y.R.; Corazza, M.L.; da Silva, E.A. Extracts from red Araçá (Psidium cattleianum) fruits: Extraction process, modelling and assessment of the bioactivity potentialities. J. Supercrit. Fluids 2021, 176, 105278. [Google Scholar] [CrossRef]
- Mahrous, E.A.; Al-Abd, A.M.; Salama, M.M.; Fathy, M.M.; Soliman, F.M.; Saber, F.R. Cattleianal and cattleianone: Two new meroterpenoids from Psidium cattleianum leaves and their selective antiproliferative action against human carcinoma cells. Molecules 2021, 26, 2891. [Google Scholar] [CrossRef] [PubMed]
- Chrystal, P.; Pereira, A.C.; Fernandes, C.C.; de Souza, J.M.; Martins, C.H.G.; Potenza, J.; Crotti, A.E.M.; Miranda, M.L.D. Essential oil from Psidium cattleianum Sabine (Myrtaceae) fresh leaves: Chemical characterization and in vitro antibacterial activity against endodontic pathogens. Braz. Arch. Biol. Technol. 2020, 63, e20190196. [Google Scholar] [CrossRef]
- Zandoná, G.P.; Bagatini, L.; Woloszyn, N.; de Souza Cardoso, J.; Hoffmann, J.F.; Moroni, L.S.; Stefanello, F.M.; Junges, A.; Rombaldi, C.V. Extraction and characterization of phytochemical compounds from araçazeiro (Psidium cattleianum) leaf: Putative antioxidant and antimicrobial properties. Food Res. Int. 2020, 137, 109573. [Google Scholar] [CrossRef] [PubMed]
- Valentim, D.; Bueno, C.R.E.; Marques, V.A.S.; Vasques, A.M.V.; Cury, M.T.S.; Cintra, L.T.A.; Junior, E.D. Calcium Hydroxide Associated with A New Vehicle: Psidium Cattleianum Leaf Extracts Tissue Response Evaluation. Braz. Oral Res. 2017, 31, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, L.; Morelli, T.M.; Yockey, K.; Talia, M.; Sinclair, T.; Marahatta, S.P. Utilizing Psidium cattleianum leaves as a pre-emergent bio-herbicide: A study on its allelopathic effects on the in vitro germination of Lactuca sativa seeds. Pac. Agric. Nat. Resour. 2020, 10, 1–4. [Google Scholar]
- dos Santos, A.F.A.; Da Silva, A.S.; Galli, G.M.; Paglia, E.B.; Dacoreggio, M.V.; Kempka, A.P.; Souza, C.F.; Baldissera, M.D.; da Rosa, G.; Boiago, M.M.; et al. Addition of yellow strawberry guava leaf extract in the diet of laying hens had antimicrobial and antioxidant effect capable of improving egg quality. Biocatal. Agric. Biotechnol. 2020, 29, 101788. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Meregalli, M.M.; Puton, B.M.S.; Camera, F.D.M.; Amaral, A.U.; Zeni, J.; Cansian, R.L.; Mignoni, M.L.; Backes, G.T. Conventional and ultrasound-assisted methods for extraction of bioactive compounds from red araçá peel (Psidium cattleianum Sabine). Arab. J. Chem. 2020, 13, 5800–5809. [Google Scholar] [CrossRef]
- Scur, M.C.; Pinto, F.G.S.; Pandini, J.A.; Costa, W.F.; Leite, C.W.; Temponi, L.G. Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine. Brazilian J. Biol. 2016, 76, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Faleiro, J.H.; Gonçalves, R.C.; dos Santos, M.N.G.; da Silva, D.P.; Naves, P.L.F.; Malafaia, G. The chemicalfFeaturing, toxicity, and antimicrobial activity of Psidium cattleianum (Myrtaceae) leaves. New J. Sci. 2016, 2016, 7538613. [Google Scholar] [CrossRef] [Green Version]
- Dacoreggio, M.V.; Moroni, L.S.; Kempka, A.P. Antioxidant, antimicrobial and allelopathic activities and surface disinfection of the extract of Psidium cattleianum sabine leaves. Biocatal. Agric. Biotechnol. 2019, 21, 101295. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Koçak, E.; Pazır, F. Effect of extraction methods on bioactive Compounds of plant origin. Turk. J. Agric.-Food Sci. Technol. 2018, 6, 663. [Google Scholar]
- Brighenti, F.L.; Luppens, S.B.I.; Delbem, A.C.B.; Deng, D.M.; Hoogenkamp, M.A.; Gaetti-Jardim, E.; Dekker, H.L.; Crielaard, W.; Ten Cate, J.M. Effect of Psidium cattleianum leaf extract on Streptococcus mutans viability, protein expression and acid production. Caries Res. 2008, 42, 148–154. [Google Scholar] [CrossRef]
- Brighenti, F.L.; Gaetti-Jardim, E.; Danelon, M.; Evangelista, G.V.; Delbem, A.C.B. Effect of Psidium cattleianum leaf extract on enamel demineralisation and dental biofilm composition in situ. Arch. Oral Biol. 2012, 57, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.M.; Hosida, T.Y.; Sell, A.M.; Junior, E.D.; Hidalgo, M.M. Aqueous extract of Psidium cattleianum as intracanal medication: An in vitro study of cell viability. J. Orthod. Endod. 2017, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Coelho, J.M.P.; Johann, G.; da Silva, E.A.; Palú, F.; Vieira, M.G.A. Extraction of natural antioxidants from strawberry guava leaf by conventional and non-conventional techniques. Chem. Eng. Commun. 2021, 208, 1131–1142. [Google Scholar] [CrossRef]
- Savoldi, T.L.; Glamoclija, J.; Sokovis, M.; Goncalves, J.E.; Pereira-Ruiz, S.; Linde, G.A.; Gazmin, Z.C.; Barros-Colauto, N. Antimicrobial activity of essential oil from Psidium cattleianum Afzel. ex Sabine Leaves. Bol. Lationoameticano Caribe Plantas Med. Arómaticas 2010, 24, 512–515. [Google Scholar] [CrossRef]
- Chalannavar, R.K.; Narayanaswamy, V.K.; Baijnath, H.; Odhav, B. Chemical constituents of the essential oil from leaves of Psidium cattleianum var. cattleianum. J. Med. Plants Res. 2013, 7, 783–789. [Google Scholar]
- Moon, J.Y.; Mosaddik, A.; Kim, H.; Cho, M.; Choi, H.K.; Kim, Y.S.; Cho, S.K. The chloroform fraction of guava (Psidium cattleianum Sabine) leaf extract inhibits human gastric cancer cell proliferation via induction of apoptosis. Food Chem. 2011, 125, 369–375. [Google Scholar] [CrossRef]
- Moon, J.Y.; Lee, S.; Jeong, S.; Kim, J.C.; Ahn, K.S.; Mosaddik, A.; Cho, S.K. Free radical-scavenging activities and cytoprotective effect of polyphenol-rich ethyl acetate fraction of guava (Psidium cattleianum) leaves on H2O2-treated HepG2 Cell. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 687–694. [Google Scholar] [CrossRef]
- Massunari, L.; Novais, R.Z.; Oliveira, M.T.; Dezan-junior, E.; Duque, C. Antimicrobial activity and biocompatibility of the Psidium cattleianum extracts for endodontic purposes. Braz. Dent. J. 2017, 28, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, N.J.; Mosaddik, A.; Moon, J.Y.; Jang, K.C.; Lee, D.S.; Ahn, K.S.; Cho, S.K. Cytotoxic activity of β-caryophyllene oxide isolated from Jeju Guava (Psidium cattleianum Sabine) leaf. Rec. Nat. Prod. 2011, 5, 242–246. [Google Scholar]
- Rohilla, S.; Mahanta, C.L. Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. J. Food Meas. Charact. 2021, 15, 1763–1773. [Google Scholar] [CrossRef]
- Zamora-Gasga, V.M.; Serafín-García, M.S.; Sánchez-Burgos, J.A.; Estrada, R.M.V.; Sáyago-Ayerdi, S.G. Optimization of Ultrasonic-assisted extraction of antioxidant compounds from starfruit (Averroha carambola L.) leaves. J. Food Process. Preserv. 2017, 41, e13093. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Ramos-Aguirre, D.; Zamora-Gasga, V.M.; Yahia, E.; Montalvo-González, E. Optimization of ultrasonic-assisted extraction of phenolic compounds from Justicia spicigera leaves. Food Sci. Biotechnol. 2018, 27, 1093–1102. [Google Scholar] [CrossRef]
- Vázquez-González, Y.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M. Characterization and antifungal activity of jackfruit (Artocarpus heterophyllus Lam.) leaf extract obtained using conventional and emerging technologies. Food Chem. 2020, 330, 127211. [Google Scholar] [CrossRef]
- Vural, N.; Algan Cavuldak, Ö.; Kenar, A.; Akay, M.A. Green alcoholic solvent and UAE extraction of oleuropein from the Olea europaea L.leaves: Experimental design, optimization, and comparison with pharmacopoeia method. Sep. Sci. Technol. 2020, 55, 1813–1828. [Google Scholar] [CrossRef]
- Rahmatullah, M.S.; Suryono, S.; Suseno, J.E. Instrumentation system of flavonoid compounds of moringa leaf using ultrasound assisted extraction (UAE). Int. J. Progress. Sci. Technol. 2021, 25, 447–452. [Google Scholar]
- Aguilar-Hernández, G.; Zepeda-Vallejo, L.G.; García-Magaña, M.D.L.; Vivar-Vera, M.D.L.Á.; Pérez-Larios, A.; Girón-Pérez, M.I.; Coria-Tellez, A.V.; Rodríguez-Aguayo, C.; Montalvo-González, E. Extraction of alkaloids using ultrasound from pulp and by-products of soursop fruit (Annona muricata L.). Appl. Sci. 2020, 10, 4869. [Google Scholar] [CrossRef]
- Baite, T.N.; Mandal, B.; Purkait, M.K. Ultrasound assisted extraction of gallic acid from Ficus auriculata leaves using green solvent. Food Bioprod. Process. 2021, 128, 1–11. [Google Scholar] [CrossRef]
- Aydar, A.Y.; Bağdatlıoğlu, N.; Köseoğlu, O. Effect of ultrasound on olive oil extraction and optimization of ultrasound-assisted extraction of extra virgin olive oil by response surface methodology (RSM). Grasas Aceites 2017, 68, e189. [Google Scholar] [CrossRef]
- Aguilar-Hernández, G.; García-Magaña, M.L.; Vivar-Vera, M.A.; Sáyago-Ayerdi, S.G.; Sánchez-Burgos, J.A.; Morales-Castro, J.; Anaya-Esparza, L.M.; González, E.M. Optimization of ultrasound-assisted extraction of phenolic compounds from Annona muricata by-products and pulp. Molecules 2019, 24, 904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2011, 18, 1249–1257. [Google Scholar] [CrossRef]
- Cifá, D.; Skrt, M.; Pittia, P.; Di Mattia, C.; Poklar Ulrih, N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 2018, 6, 1128–1137. [Google Scholar] [CrossRef]
- de Lima, A.S.; Maia, D.V.; Haubert, L.; Oliveira, T.L.; Fiorentini, Â.M.; Rombaldi, C.V.; da Silva, W.P. Action mechanism of araçá (Psidium cattleianum Sabine) hydroalcoholic extract against Staphylococcus aureus. Lwt-Food Sci. Technol. 2020, 119, 108884. [Google Scholar] [CrossRef]
- Ho, R.; Violette, A.; Cressend, D.; Raharivelomanana, P.; Carrupt, P.A.; Hostettmann, K. Antioxidant potential and radical-scavenging effects of flavonoids from the leaves of Psidium cattleianum grown in French Polynesia. Nat. Prod. Res. 2012, 26, 274–277. [Google Scholar] [CrossRef]
- Castro, M.R.; Victoria, F.N.; Oliveira, D.H.; Jacob, R.G.; Savegnago, L.; Alves, D. Essential oil of Psidium cattleianum leaves: Antioxidant and antifungal activity. Pharm. Biol. 2015, 53, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Montreau, F. Sur le dosage des composés phénoliques totaux dans les vins par la methode Folin-Ciocalteau. Connaiss Vigne Vin. 1972, 24, 397–404. [Google Scholar]
- Brook, R.J.; Arnold, G.C. Applied Regression Analysis and Experimental Design; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9788490225370. [Google Scholar]
- Pérez-Jiménez, J.; Arranz, S.; Tabernero, M.; Díaz- Rubio, M.E.; Serrano, J.; Goñi, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790. [Google Scholar] [CrossRef]
- Reed, J.D.; McDowell, R.T.E.; Van Soest, P.J.; Horvath, P.R.J. Condensed tannins: A factor limiting the use of cassava forage. J. Sci. Food Agric. 1982, 33, 213–220. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice- Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
Run | Predictors 1 | Response Variables | Error Rate (%) | Yield (%) | Final Temperature (°C) | |||
---|---|---|---|---|---|---|---|---|
XPC (s) | XSA (%) | XET (min) | Experimental TSP 2 | Predicted TSP 3 | ||||
1 | 0.7 | 60 | 2 | 136.88 ± 2.11 de | 137.05 | −0.12 | 13.68 | 20 ± 1.0 |
2 | 0.7 | 60 | 6 | 159.55 ± 0.84 a | 169.38 | −0.10 | 15.95 | 21 ± 0.5 |
3 | 0.7 | 100 | 2 | 137.96 ± 0.48 d | 138.13 | −0.12 | 13.79 | 20 ± 0.5 |
4 | 0.7 | 100 | 6 | 144.14 ± 1.24 c | 143.97 | 0.11 | 14.41 | 20 ± 0.5 |
5 | 0.4 | 80 | 2 | 116.24 ± 0.53 h | 116.07 | 0.14 | 11.62 | 19 ± 0.5 |
6 | 0.4 | 80 | 6 | 133.11 ± 1.31 ef | 133.28 | −0.12 | 13.31 | 20 ± 0.5 |
7 | 1 | 80 | 2 | 117.26 ± 1.51 h | 117.05 | 0.17 | 11.72 | 20 ± 1.0 |
8 | 1 | 80 | 6 | 137.86 ± 1.48 d | 138.02 | 0.11 | 13.78 | 21 ± 0.5 |
9 | 0.4 | 60 | 4 | 128.44 ± 1.60 g | 128.44 | 0 | 12.84 | 20 ± 0.5 |
10 | 0.4 | 100 | 4 | 151.39 ± 0.68 b | 151.39 | 0 | 15.13 | 20 ± 0.5 |
11 | 1 | 60 | 4 | 131.77 ± 1.66 fg | 131.77 | 0 | 13.17 | 20 ± 0.5 |
12 | 1 | 100 | 4 | 132.21 ± 1.51 fg | 132.21 | 0 | 13.21 | 20 ± 0.5 |
13 | 0.7 | 80 | 4 | 137.73 ± 0.58 d | 137.67 | 0.07 | 13.77 | 21 ± 0.5 |
14 | 0.7 | 80 | 4 | 137.98 ± 0.90 d | 137.67 | 0.22 | 13.79 | 21 ± 0.5 |
15 | 0.7 | 80 | 4 | 137.70 ± 0.87 d | 137.67 | 0.02 | 13.77 | 21 ± 0.5 |
Source 1 | Analysis of Variance | Regression Coefficients | |||
---|---|---|---|---|---|
SS 2 | DF 3 | MS 4 | F Value | Total Soluble Phenolics β-Coefficient | |
Mean/intercept | - | - | - | - | 235.671 * |
XET | 2185.80 | 1 | 2185.80 | 1382.63 * | −52.962 * |
XET 2 | 0.406 | 1 | 0.406 | 0.257 ** | 8.735 * |
XSA | 95.66 | 1 | 95.66 | 60.51 * | −4.637 * |
XSA 2 | 1032.46 | 1 | 1032.46 | 653.08 * | 0.024 * |
XPC | 2.913 | 1 | 2.913 | 1.843 ** | 304.336 * |
XPC 2 | 1432.13 | 1 | 1432.13 | 905.89 * | −126.340 * |
XET * XSA | 526.02 | 1 | 526.02 | 332.73 * | 1.027 * |
XET2 * XSA | 853.83 | 1 | 853.83 | 540.092 * | −0.149 * |
XET * XPC | 10.62 | 1 | 10.62 | 6.719 * | −34.393 * |
XET2 * XPC | 174.58 | 1 | 174.58 | 110.43 * | 4.495 * |
XSA * XPC | 379.91 | 1 | 379.91 | 240.13 * | −0.938 * |
Lack of fit | 0.673 | 1 | 0.673 | 0.426 ** | |
Pure error | 50.58 | 32 | 1.58 | ||
R-square | 0.9925 | ||||
R-Adjust | 0.9900 | ||||
Total SS | 6888.34 |
Parameter | Total Soluble Phenols (mg/g DM) |
---|---|
Extraction time (min) | 4 |
Pulse cycle (s) | 0.6 |
Sonication amplitude (%) | 100 |
Optimal response | 155.31 |
−95% Confidence Limit | 152.54 |
+95% Confidence Limit | 158.07 |
Parameter | UAE | AOE |
---|---|---|
Total Soluble Phenols (mg/g DM) | 158.18 ± 2.00 a | 65.27 ± 3.85 b |
Hydrolysable polyphenols (mg/g DM) | 50.47 ± 2.98 a | 40.45 ± 2.08 b |
Condensed tannins (mg/g DM) | 67.11 ± 2.18 a | 55.14 ± 3.23 b |
Total polyphenols (mg/g DM) | 275.75 ± 2.39 a | 160.87 ± 3.06 b |
Polyphenolic yield (%) | 27.75 | 16.08 |
Effectiveness UAE (n-times) | 1.71 |
Extraction Method | Solvent | Extraction Time (min) | Temperature (°C) | 2 TSP (mg/g DM) | 3 Yield (%) | Ref. |
---|---|---|---|---|---|---|
Ultrasound (sonicator tip) | Acetone-water | 4 | 20 | 158.18 | 15.81 | This work |
shaking | Methanol-acetone-water | 120 | 25 | 65.27 | 6.52 | This work |
Ultrasound (sonicator tip) | Hexane | 5 | 60 | 25.5 | 2.55 | [18] |
Ultrasound bath | Water | 180 | NI | 101 | 10.1 | [12] |
Enzymatic | Water | 360 | 45 | 121 | 12.1 | [12] |
Supercritical fluid | CO2 | 180 | 50 °C | 0.363 | 0.03 | [1] |
Soxhlet | Petroleum ether | 360 | Boiling | NI | 0.49 | [1] |
Hydro-distillation | Water | 180 | 100 | NI | 0.40 | [1] |
Pressurized liquid | Water | 20 | 50 | 4.43 | 0.44 | [4] |
Aqueous infusion | Water | 10 | 80 | 0.067 | <0.01 | [4] |
Maceration | Ethanol-water | 120 | RT | 3.197 | 0.31 | [37] |
1 Stirring | Methanol | 4320 | RT | 157.2 | 15.72 | [22] |
Antioxidant Activity | UAE | AOE |
---|---|---|
ABTS (mmol/g DM) | 237.38 ± 4.49 a | 211.05 ± 5.11 b |
DPPH (mmol/g DM) | 418.19 ± 4.32 a | 282.83 ± 3.67 b |
FRAP (mmol/g DM) | 405.19 ± 3.61 a | 262.75 ± 5.39 b |
No. | Compound | Retention Time (min) | UAE 1 (mg/100 g DM) | AOE 2 (mg/100 g DM) |
---|---|---|---|---|
1 | Gallic acid | 15.957 | 42.20 ± 0.79 a | nd |
2 | Protocateic acid | 21.376 | 285.02 ± 0.85 a | 68.15 ± 6.60 b |
3 | Chlorogenic acid | 35.305 | 106.82 ± 1.16 a | 99.12 ± 0.83 b |
4 | Caffeic acid | 38.030 | 27.83 ± 1.30 a | 17.33 ± 0.36 b |
5 | p-Coumaric acid | 49.948 | 63.911 ± 1.5 a | nd |
6 | Trans-Cinnamic acid | 69.641 | 17.00 ± 0.01 a | 13.60 ± 0.06 b |
7 | 4-Hydroxybenzoic acid | 31.409 | 713.76 ± 30.37 a | 124.62 ± 6.71 b |
8 | Syringic acid | 42.549 | 185.77 ± 3.61 a | 55.05 ± 0.85 b |
9 | Kaempferol | 46.208 | 727.22 ± 21.89 a | 549.62 ± 17.56 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Silva, N.; Nolasco-González, Y.; Aguilar-Hernández, G.; Sáyago-Ayerdi, S.G.; Villagrán, Z.; Acosta, J.L.; Montalvo-González, E.; Anaya-Esparza, L.M. Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules 2022, 27, 3557. https://doi.org/10.3390/molecules27113557
González-Silva N, Nolasco-González Y, Aguilar-Hernández G, Sáyago-Ayerdi SG, Villagrán Z, Acosta JL, Montalvo-González E, Anaya-Esparza LM. Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules. 2022; 27(11):3557. https://doi.org/10.3390/molecules27113557
Chicago/Turabian StyleGonzález-Silva, Napoleón, Yolanda Nolasco-González, Gabriela Aguilar-Hernández, Sonia Guadalupe Sáyago-Ayerdi, Zuamí Villagrán, José Luis Acosta, Efigenia Montalvo-González, and Luis Miguel Anaya-Esparza. 2022. "Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology" Molecules 27, no. 11: 3557. https://doi.org/10.3390/molecules27113557
APA StyleGonzález-Silva, N., Nolasco-González, Y., Aguilar-Hernández, G., Sáyago-Ayerdi, S. G., Villagrán, Z., Acosta, J. L., Montalvo-González, E., & Anaya-Esparza, L. M. (2022). Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules, 27(11), 3557. https://doi.org/10.3390/molecules27113557