Comparative Analysis of the Floral Fragrance Compounds of Panax notoginseng Flowers under the Panax notoginseng-pinus Agroforestry System Using SPME-GC-MS
Abstract
:1. Introduction
2. Results
2.1. Comparative Analysis of Categories for Floral Fragrance Compounds in the Flowers of Different Varieties of P. notoginseng
2.2. Analysis of Floral Fragrance Compounds in the Flowers of Different Varieties of P. notoginseng
2.3. Analysis of Floral Fragrance Compounds (>1%) in the Flowers of Different Varieties of P. notoginseng
2.4. Hierarchical Cluster Analysis of Floral Fragrance Compounds in the Flowers of P. notoginseng
2.5. Principal Component Analysis of Floral Fragrance Components in the Flowers of P. notoginseng
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Sample Collection
4.3. HS-SPME Analysis
4.4. GC-MS Analysis
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
References
- Xu, Q.F.; Fang, X.L.; Chen, D.F. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol. 2003, 84, 187–192. [Google Scholar] [CrossRef]
- Dong, T.X.; Cui, X.M.; Song, Z.H.; Zhao, K.J.; Zhao, N.J.; Lo, C.K.; Karl, W.K. Chemical assessment of roots of Panax notoginseng in China: Regional and seasonal variations in its active constituents. J. Agric. Food Chem. 2003, 51, 4617–4623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Q.; Chen, C.L.; Wen, X.; Wei, L. Phytochemistry, pharmacology, and clinical use of Panax notoginseng flowers buds. Phytother. Res. 2018, 32, 2155–2163. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Morikawa, T.; Kashima, Y.; Ninomiya, K.; Matsuda, H. Structures of new dammarane-type triterpene Saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal Ginseng Saponins. J. Nat. Prod. 2003, 66, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Duan, Z.M.; Xiong, H.Y.; Xu, Y.; Xu, D.X.; Lin, J. Determination of ginsenosides in flower, stem, leaf and root of fresh Panax Notoginseng from Wenshan, Yunnan province. J. Food Saf. Qual. 2017, 8, 3864–3869. [Google Scholar] [CrossRef]
- Li, K.K.; Li, S.S.; Xu, F.; Gong, X.J. Six new dammarane-type triterpene saponins from Panax ginseng flower buds and their cytotoxicity. J. Ginseng Res. 2020, 44, 215–221. [Google Scholar] [CrossRef]
- Zhu, S.Y. Optimization of extraction process for polyphenolics from Panax notoginseng flowers by response surface methodology and its antioxidant activity. Food Sci. 2015, 36, 65–69. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.; Wong-Paz, J.E.; Belmares-Cerda, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Ultrasound assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason. Sonochem. 2013, 20, 1149–1154. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215–217. [Google Scholar] [CrossRef]
- Wang, P.P.; Zhang, L.; Yao, J.; Shi, Y.K.; Li, P.; Ding, K. An arabinogalactan from flowers of Panax notoginseng inhibits angiogenesis by BMP2/Smad/Id1 signaling. Carbohydr. Polym. 2015, 121, 328–335. [Google Scholar] [CrossRef]
- Hong, J.; Hu, J.Y.; Liu, J.H.; Zhou, Z.; Zhao, A.F. In vitro antioxidant and antimicrobial activities of flavonoids from Panax notoginseng flowers. Nat. Prod. Res. 2014, 28, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lv, C.N.; Li, Q.; Wang, J.; Song, D.; Liu, P.; Zhang, D.; Lu, J.C. Chemical and bioactive comparison of flowers of Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng Burk. J. Ginseng Res. 2017, 41, 487–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Xu, F.; Lu, L.; Ji, Y.L.; Chen, X.; Zhang, B.Q.; Li, H. GC-MS Analysis of volatile components in flowers of four kinds of fragrant dendrobium species. Chin. Agric. Sci. Bull. 2021, 37, 56–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Li, Z.J.; Tian, M. GC-MS analysis on aroma components in four Dendrobium cultivars. Guangxi Plant 2011, 31, 422–426. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zeng, Y.Y.; Li, Z.J.; Liu, Y.X.; Ma, X.H.; Sun, Z.Y. Aroma constituents in flower of Dendrobium hancockii and D. trigonopus based on SPME-GC-MS analysis. Forest Res. 2020, 33, 116–123. [Google Scholar] [CrossRef]
- Xu, S.S.; Zhao, X.E.; Liu, Y.Q.; Du, J.H.; Wang, X. Analysis of volatile components from the petals of five varieties of nelumbo nucifera by HS-SPME-GC-MS. Chin. J. Anal. Lab. 2011, 30, 54–56. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, Z.H.; Leng, P.S.; Zhang, H.X.; Cheng, F.Y. Fragrance composition in six tree peony cultivars. Hortic. Sci. Technol. 2012, 3, 617–625. [Google Scholar] [CrossRef]
- Meng, L.B.; Shi, R.; Wang, Q.; Wang, S. Analysis of floral fragrance compounds of Chimonanthus praecox with different floral colors in Yunnan, China. Separations 2021, 8, 122. [Google Scholar] [CrossRef]
- Zhang, T.; Bao, F.; Yang, Y.; Hu, L.; Ding, A.; Ding, A.; Wang, J.; Cheng, T.; Zhang, Q. A comparative analysis of floral scent compounds in intraspecific cultivars of Prunus mume with different corolla colours. Molecules 2019, 25, 145. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.J.; Cai, X.; Zeng, X.L.; Chen, H.G.; Wang, C.Y. Effects of light and temperature environmental factors on the content of osmanthus fragrans with characteristic flower colors and aroma substances. In Proceedings of the 2018 Annual Academic Conference of the Chinese Society of Horticulture, Qingdao, China, 17–19 October 2018. [Google Scholar]
- Zhang, Y.; Tian, M.; Wang, C.X.; Chen, S. Component analysis and sensory evaluation of the aroma of the perfume Oncidium orchid under different temperature conditions. J. Plant Res. Environ. 2015, 24, 112–114. [Google Scholar] [CrossRef]
- Zhang, H.X.; Leng, P.S.; Hu, Z.H.; Zhao, J.; Wang, W.H.; Xu, F. The floral scent emitted from Lilium ‘Siberia’at different flowering stages and diurnal variation. Acta Hortic. Sin. 2013, 40, 693–702. [Google Scholar] [CrossRef]
- Shi, T.T.; Yang, X.L.; Wang, L.G. Study on the aroma component emission pattern of Osmanthus fragrans ‘Boye Jingui’. Nanjing For. Univ. 2018, 42, 97–104. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, J.W.; Wu, L.S.; Liu, J.J.; Si, J.P.; Zhang, X.F. Determination of volatile components from Chimonanthus flowers by HS-SPME-GC-MS. Sci. Silvae Sin. 2016, 12, 58–65. [Google Scholar] [CrossRef]
- Xu, N.J.; Bai, H.B.; Yan, X.J.; Xu, J.L. Analysis of volatile components in essential oil of Chimonanthus nitens by capillary Gas Chromatography-Mass Spectrometry. Instrum. Anal. 2006, 1, 90–93. [Google Scholar] [CrossRef]
- Li, Z.G.; Liu, M.C.; Deng, W.; Wang, X.Y.; Wang, G.M.; Yang, Y.W. Comparative analysis of the essential oil from two Chimonanthus praecox cultivars. Fine Chem. 2008, 10, 54–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.Y.; Wang, S.; Yuan, M.; Li, B.J.; Niu, L.X.; Shi, Q.Q. Transcriptome and volatile compounds profiling analyses provide insights into the molecular mechanism underlying the floral fragrance of tree peony. Ind. Crops Prod. 2021, 162, 113286. [Google Scholar] [CrossRef]
- Hu, Z.H.; Tang, B.; Wu, Q.; Zheng, J.; Leng, P.S.; Zhang, K.Z. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and Unscented Lilium ‘Novano’. Front. Plant Sci. 2017, 8, 1351. [Google Scholar] [CrossRef] [Green Version]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Lv, Q.; Qin, J.; Zhang, P.; Chen, S.L. Simultaneous distillation and solvent extraction and GC/MS analysis of volatile oil from flowers Panax notoginseng. Chin. J. Pharm. Anal. 2005, 25, 284–287. [Google Scholar]
- Shuai, F.; Li, X.G. Comparative study on the components of volatile oil in Panax notoginseng flower. Chin. Pharm. Bull. 1986, 9, 513–515. [Google Scholar] [CrossRef]
- Xu, C.; Long, P.M.; Wei, J.X.; Liu, R.M.; Cao, S.M. A study on the chemical constituents of the essential oils from flower-buds of Panax notoginseng (Burk.) F.H. Chen. West Chin. J. Pharm. Sci. 1992, 2, 79–82. [Google Scholar]
- Lu, Q.; Li, X.G. Study on the constituents of Panax notoginseng volatile oil. Chin. J. Pharm. 1987, 9, 528–530. [Google Scholar]
- Shi, L.N.; Liu, R.M.; Cao, S.M.; Liang, N.J.; Wei, J.X. A study on the constituents of volatile oils from marketable Sanqi. J. Kunming Med. Coll. 1989, 4, 6–8. [Google Scholar]
- Fang, X.P.; Hu, G.P. Effect of different extract methods on volatile components of Michelia maudiae. Guizhou Agric. Sci. 2010, 38, 81–84. [Google Scholar] [CrossRef]
- Hao, R.J.; Zhang, Q.; Yang, W.R.; Wang, J.; Cheng, T.R.; Pan, H.T.; Zhang, Q.X. Emitted and endogenous floral scent compounds of Prunus mume and hybrids. Biochem. Syst. Ecol. 2014, 54, 23–30. [Google Scholar] [CrossRef]
- Tang, Z.L.; Chen, H.M.; Zhang, M.; Fan, Z.Y.; Zhong, Q.P.; Chen, W.J.; Yun, Y.H.; Chen, W.X. Antibacterial mechanism of 3-Carene against the meat spoilage bacterium Pseudomonas lundensis and its application in pork during refrigerated storage. Foods 2022, 11, 92. [Google Scholar] [CrossRef]
- Li, J.J.; Hu, H.; Chen, Y.; Xie, J.; Li, J.W.; Zeng, T.; Wang, M.Q.; Luo, J.; Zheng, R.R.; Jongsma, M.A.; et al. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers. Phytochemistry 2021, 187, 112768. [Google Scholar] [CrossRef]
- Yin, Q.H.; Zhu, Y.Q.; Yu, H.; Zeng, W.B.; Zhao, F.Y. Advances of chemical constituents from flower buds of Panax notoginseng (Burk) F. H. Chen and its pharmacological effects. Chin. J. Spectrosc. Lab. 2011, 28, 1194–1197. [Google Scholar] [CrossRef]
- Usman, L.; Ismaeel, R. Chemical composition and antioxidant potential of fruit essential oil of Laggera pterodonta (DC.) benth grown in north central, Nigeria. J. Biol. Act. Prod. Nat. 2020, 10, 405–410. [Google Scholar] [CrossRef]
- Xiao, Z.B.; Yu, D.; Niu, Y.W.; Chen, F.; Song, S.Q.; Zhu, J.C.; Zhu, G.Y. Characterization of aroma compounds of Chinese famous liquors by gas chromatography–mass spectrometry and flash GC electronic-nose. J. Chromatogr. B 2014, 945–946, 92–100. [Google Scholar] [CrossRef]
- Lo, M.M.; Benfodda, Z.; Bénimélis, D.; Fontaine, J.X.; Molinié, R.; Meffre, P. Extraction and identification of volatile organic compounds emitted by fragrant flowers of three Tillandsia species by HS-SPME/GC-MS. Metabolites 2021, 11, 594. [Google Scholar] [CrossRef] [PubMed]
Content and Type Number (%) ± SD and Type Number | ||||
---|---|---|---|---|
Category | S1 | S2 | S3 | S4 |
Terpenes | 80.05 ± 5.70b (25) 1 | 71.65 ± 0.47d (26) | 74.75 ± 2.14c (26) | 84.16 ± 7.13a (26) |
Alcohols | 0.31 ± 0.05b (1) | 1.15 ± 0.26a (4) | 0.50 ± 0.11b (2) | 0.49 ± 0.30b (2) |
Esters | - 2 | - | 0.34 ± 0.08 (2) | - |
Aromatic hydrocarbons | 10.61 ± 0.08a (3) | 10.53 ± 0.10a (2) | 9.50 ± 1.12ab (2) | 8.87 ± 0.31b (3) |
Alkynes | 4.04 ± 0.08b (1) | 15.85 ± 0.35a (2) | 2.82 ± 0.59c (2) | 3.73 ± 0.18b (1) |
Alkanes | 0.88 ± 0.33 (1) | - | 1.00 ± 0.38 (1) | - |
Aldehydes | 3.97 ± 1.61a (1) | - | 4.71 ± 0.86a (1) | 1.20 ± 0.16b (1) |
Others | 0.11 ± 0.04c (3) | 0.18 ± 0.05b (2) | 1.17 ± 0.02a (3) | 0.19 ± 0.01b (2) |
Total 3 | 99.97 ± 8.32a (35) | 99.36 ± 1.23a (36) | 94.79 ± 5.34b (39) | 98.54 ± 8.31a (35) |
Classification | Compound Name | RI 1 | Relative Contents (%) ± SD | |||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | |||
Terpenes | (−)-α-Pinene | 937 | 1.15 ± 0.91a | 2.16 ± 0.20a | 0.76 ± 0.35a | 0.83 ± 0.67a |
3-Carene | 1011 | 25.68 ± 0.30a | 15.87 ± 0.21b | 14.82 ± 1.47b | 16.23 ± 0.10b | |
1,3-Cyclohexadiene,1,3,5,5-tetraMethyl- | 1292 | 0.72 ± 0.59a | 0.48 ± 0.13a | 0.43 ± 0.19a | 0.50 ± 0.41a | |
2,6-Dimethyl-2,4,6-octatriene | 1144 | 0.36 ± 0.11c | 3.72 ± 0.15b | 0.44 ± 0.17c | 5.04 ± 0.58a | |
Terpinolene | 1088 | 0.64 ± 0.15c | 0.84 ± 0.42bc | 1.31 ± 0.02a | 1.19 ± 0.15ab | |
Menogene | 1086 | 4.11 ± 0.40ab | 2.54 ± 0.16b | 4.88 ± 1.82a | 4.72 ± 0.15a | |
Copaene | 1376 | 2.64 ± 0.08a | 2.57 ± 0.04a | 1.77 ± 0.02b | 1.15 ± 0.07c | |
Valencene | 1492 | 2.08 ± 0.34b | 2.73 ± 0.35b | 1.11 ± 0.21c | 14.23 ± 0.53a | |
Aromandendrene | 1440 | 0.19 ± 0.09c | 5.10 ± 0.22b | 0.08 ± 0.04c | 7.02 ± 0.01a | |
(−)-Aristolene | 1453 | 1.20 ± 0.20a | 1.22 ± 0.06a | 0.69 ± 0.07b | 0.98 ± 0.19a | |
β-Maaliene | 1405 | 0.30 ± 0.14a | 0.32 ± 0.18a | 0.24 ± 0.10a | 0.39 ± 0.07a | |
γ-Elemene | 1433 | 1.24 ± 0.12c | 1.50 ± 0.15b | 2.34 ± 0.10a | - 2 | |
Caryophyllene | 1419 | 1.91 ± 0.16a | 2.04 ± 0.08a | 1.88 ± 0.19a | 1.99 ± 0.31a | |
(−)-α-Gurjunene | 1409 | 12.65 ± 0.30a | 12.52 ± 0.15a | 12.01 ± 1.67a | 12.04 ± 0.69a | |
(+)-Calarene | 1432 | 2.04 ± 0.13a | 1.77 ± 0.75a | 1.73 ± 0.30a | 1.37 ± 0.79a | |
1,8,12-Bisabolatriene | - | 0.69 ± 0.14b | 1.27 ± 0.21a | 0.89 ± 0.07b | - | |
Isoledene | 1375 | 0.16 ± 0.04a | 0.19 ± 0.10a | 0.27 ± 0.03a | - | |
Germacrene D | 1481 | 18.67 ± 0.30b | 12.42 ± 0.07c | 25.83 ± 0.17a | 11.30 ± 0.91d | |
β-Cadinene | 1518 | 0.69 ± 0.44b | 0.82 ± 0.08b | 1.33 ± 0.08a | 0.92 ± 0.20ab | |
2-Pinene | 937 | 0.62 ± 0.09a | 0.25 ± 0.06b | 0.42 ± 0.10ab | 0.31 ± 0.23b | |
α-Terpinene | 1017 | 0.12 ± 0.06a | 0.04 ± 0.01a | 0.07 ± 0.05a | 0.06 ± 0.05a | |
(−)-Limonene | 1031 | 0.26 ± 0.14a | 0.17 ± 0.05a | 0.22 ± 0.08a | 0.16 ± 0.12a | |
γ-Terpinene | 1060 | 0.22 ± 0.20a | 0.06 ± 0.02a | 0.10 ± 0.04a | 0.07 ± 0.06a | |
2,6-Dimethyl-1,3,6-heptatriene | - | 1.68 ± 0.32a | 0.87 ± 0.28a | 1.06 ± 0.84a | 1.06 ± 0.77a | |
Cosmene | 1131 | 0.03 ± 0.02a | 0.04 ± 0.03a | 0.03 ± 0.02a | 0.06 ± 0.03a | |
Alpha-thujene | 929 | - | - | 0.04 ± 0.03 | - | |
Alloaromadendrene | 1461 | - | 0.14 ± 0.02 | - | 0.17 ± 0.06 | |
α-Guaiene | 1439 | - | - | - | 0.26 ± 0.07 | |
(+)-Longifolene | 1405 | - | - | - | 0.10 ± 0.06 | |
Cis-muurola-3,5-diene | 1454 | - | - | - | 2.01 ± 0.03 | |
Alcohols | (2R,4R,5S,6S,7R)-5-Isopropyl-2,8-dimethyltricyclo [4.4.0.02,7] decan-4-ol | - | 0.31 ± 0.05a | 0.38 ± 0.02a | 0.41 ± 0.05a | 0.27 ± 0.14a |
Spathulenol | 1576 | - | 0.52 ± 0.16a | 0.09 ± 0.06b | 0.22 ± 0.16b | |
Cubebol | 1515 | - | 0.15 ± 0.02 | - | - | |
10-Epi-g-eudesmol | 1619 | - | 0.10 ± 0.06 | - | - | |
Esters | Vinyl myristate | 1784 | - | - | 0.04 ± 0.03 | - |
Phthalic acid,2-pentyl propyl ester | - | - | - | 0.30 ± 0.05 | - | |
Aromatic hydrocarbons | (+)-γ-Gurjunene | 1473 | 10.28 ± 0.35a | 10.49 ± 0.07a | 9.47 ± 1.10a | 5.25 ± 0.18b |
(+)-δ-Cadinene | 1524 | 0.05 ± 0.03 | - | - | - | |
(+)-γ-Cadinene | 1513 | 0.28 ± 0.09 | - | - | - | |
α-Calacorene | 1542 | - | 0.04 ± 0.03 | - | 0.06 ± 0.04 | |
(−)-α-Muurolene | 1485 | - | - | - | 3.56 ± 0.09 | |
Eudesma-3,7(11)-diene | 1542 | 0.03 ± 0.02 | ||||
Alkynes | 2,4-Diethyl-2,3-octadiene-5-in | - | 4.04 ± 0.08a | 3.28 ± 0.17bc | 2.79 ± 0.58c | 3.77 ± 0.18ab |
2-Methylnon-1-en-3-yne | - | 0.03 ± 0.01 | ||||
5,6-Decadien-3-yne,5,7-diethyl- | - | - | 12.57 ± 0.18 | - | - | |
Alkanes | β-Copaene | 1432 | 0.88 ± 0.33 | - | 1.00 ± 0.38 | - |
Aldehydes | 2-(3-Methyl-but-ynyl)-cyclohexene-1-carboxaldehyde | - | 3.97 ± 1.61a | - | 4.71 ± 0.86a | 1.20 ± 0.16b |
Others | 4-Phenylsemicarbazide | - | 0.03 ± 0.03 | - | - | - |
3,5-Dimethylamphetamine | - | 0.04 ± 0.02a | - | 0.03 ± 0.02a | 0.04 ± 0.02a | |
2-Methoxy-3-Methylpy | 954 | 0.04 ± 0.03 | - | - | 0.05 ± 0.03 | |
1-Hydroxymethyl-5,8,9-endo-tetramethyltricyclo | - | - | - | 0.99 ± 0.01 | - | |
2,4,4-Trimelthyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene | - | - | 0.14 ± 0.03 | 0.15 ± 0.03 | - | |
2-Isobutyl-3-methoxypyrazine | 1183 | - | 0.04 ± 0.02 | - | - | |
Total 3 | 53 | 35 | 36 | 39 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Rui, R.; Wang, S.; He, X. Comparative Analysis of the Floral Fragrance Compounds of Panax notoginseng Flowers under the Panax notoginseng-pinus Agroforestry System Using SPME-GC-MS. Molecules 2022, 27, 3565. https://doi.org/10.3390/molecules27113565
Chen S, Rui R, Wang S, He X. Comparative Analysis of the Floral Fragrance Compounds of Panax notoginseng Flowers under the Panax notoginseng-pinus Agroforestry System Using SPME-GC-MS. Molecules. 2022; 27(11):3565. https://doi.org/10.3390/molecules27113565
Chicago/Turabian StyleChen, Siyu, Rui Rui, Shu Wang, and Xiahong He. 2022. "Comparative Analysis of the Floral Fragrance Compounds of Panax notoginseng Flowers under the Panax notoginseng-pinus Agroforestry System Using SPME-GC-MS" Molecules 27, no. 11: 3565. https://doi.org/10.3390/molecules27113565
APA StyleChen, S., Rui, R., Wang, S., & He, X. (2022). Comparative Analysis of the Floral Fragrance Compounds of Panax notoginseng Flowers under the Panax notoginseng-pinus Agroforestry System Using SPME-GC-MS. Molecules, 27(11), 3565. https://doi.org/10.3390/molecules27113565