Screening a Panel of Topical Ophthalmic Medications against MMP-2 and MMP-9 to Investigate Their Potential in Keratoconus Management
Abstract
:1. Introduction
2. Results and Discussion
2.1. Docking Studies
2.1.1. Docking of the Target Compounds into MMP-2 Catalytic Domain
2.1.2. Docking of the Target Compounds into MMP-9 Catalytic Domain
2.2. Molecular Dynamics and Molecular Mechanics–Generalized Born Surface Area (MM-GBSA) Calculations
2.3. Pharmacophore Study
3. Conclusions
4. Experimental
4.1. Literature Search and Library Generation
4.2. Docking Studies
4.3. Molecular Dynamics and Molecular Mechanics–Generalized Born Surface Area (MM-GBSA) Calculations
4.4. Pharmacophore Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero-Jiménez, M.; Santodomingo-Rubido, J.; Wolffsohn, J.S. Keratoconus: A review. Contact Lens Anterior Eye 2010, 33, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.E.; Hayes, S.; Hardcastle, A.J.; Tuft, S.J. The pathogenesis of keratoconus. Eye 2014, 28, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, S.E.M.; Burdon, K.P. Genetic and Environmental Risk Factors for Keratoconus. Annu. Rev. Vis. Sci. 2020, 6, 25–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadpour, M.; Heidari, Z.; Hashemi, H. Updates on Managements for Keratoconus. J. Curr. Ophthalmol. 2018, 30, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Smiddy, W.E.; Hamburg, T.R.; Kracher, G.P.; Stark, W.J. Keratoconus. Ophthalmology 1988, 95, 487–492. [Google Scholar] [CrossRef]
- Parker, J.S.; van Dijk, K.; Melles, G.R.J. Treatment options for advanced keratoconus: A review. Surv. Ophthalmol. 2015, 60, 459–480. [Google Scholar] [CrossRef] [PubMed]
- Sykakis, E.; Karim, R.; Evans, J.R.; Bunce, C.; Amissah-Arthur, K.N.; Patwary, S.; McDonnell, P.J.; Hamada, S. Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst. Rev. 2015, 24, CD010621. [Google Scholar] [CrossRef]
- Balasubramanian, S.A.; Pye, D.C.; Willcox, M.D.P. Are Proteinases the Reason for Keratoconus? Curr. Eye Res. 2010, 35, 185–191. [Google Scholar] [CrossRef]
- Balasubramanian, S.A.; Mohan, S.; Pye, D.C.; Willcox, M.D.P. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol. 2012, 90, e303–e309. [Google Scholar] [CrossRef]
- Dormán, G.; Cseh, S.; Hajdú, I.; Barna, L.; Kónya, D.; Kupai, K.; Kovács, L.; Ferdinandy, P. Matrix Metalloproteinase Inhibitors. Drugs 2010, 70, 949–964. [Google Scholar] [CrossRef]
- Das, S.; Amin, S.A.; Jha, T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur. J. Med. Chem. 2021, 223, 113623. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.S.; McCann, P.P. Matrix Metalloproteinase Inhibition as a Novel Anticancer Strategy: A Review with Special Focus on Batimastat and Marimastat. Pharmacol. Ther. 1997, 75, 69–75. [Google Scholar] [CrossRef]
- Rao, B. Recent Developments in the Design of Specific Matrix Metalloproteinase Inhibitors aided by Structural and Computational Studies. Curr. Pharm. Des. 2005, 11, 295–322. [Google Scholar] [CrossRef] [PubMed]
- Breuer, E.; Frant, J.; Reich, R. Recent non-hydroxamate matrix metalloproteinase inhibitors. Expert Opin. Ther. Pat. 2005, 15, 253–269. [Google Scholar] [CrossRef]
- Nicolotti, O.; Catto, M.; Giangreco, I.; Barletta, M.; Leonetti, F.; Stefanachi, A.; Pisani, L.; Cellamare, S.; Tortorella, P.; Loiodice, F.; et al. Design, synthesis and biological evaluation of 5-hydroxy, 5-substituted-pyrimidine-2,4,6-triones as potent inhibitors of gelatinases MMP-2 and MMP-9. Eur. J. Med. Chem. 2012, 58, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Mehany, A.B.; Belal, A.; Mohamed, A.F.; Shaaban, S.; Abdelhamid, G. Apoptotic and anti-angiogenic effects of propolis against human bladder cancer: Molecular docking and in vitro screening. Biomarkers 2022, 27, 138–150. [Google Scholar] [CrossRef]
- Belal, A.; Elanany, M.A.; Raafat, M.; Hamza, H.T.; Mehany, A.B.M. Calendula officinalis Phytochemicals for the Treatment of Wounds Through Matrix Metalloproteinases-8 and 9 (MMP-8 and MMP-9): In Silico Approach. Nat. Prod. Commun. 2022, 17. [Google Scholar] [CrossRef]
- Ghattas, A.-E.-B.A.; Khodairy, A.; Moustafa, H.M.; Hussein, B.R.; Farghaly, M.M.; Aboelez, M.O. Synthesis, in vitro Antibacterial and in vivo Anti-Inflammatory Activity of Some New Pyridines. Pharm. Chem. J. 2017, 51, 652–660. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, W.; Wu, Y.; Jiang, C.; Huo, L.; Belal, A. COVID-19 Pandemic Between Severity Facts and Prophylaxis. Nat. Prod. Commun. 2021, 16. [Google Scholar] [CrossRef]
- AbdRabou, M.A.; Mehany, A.; Farrag, I.M.; Belal, A.; Abdelzaher, O.F.; El-Sharkawy, A.; El-Azez, A.; Asmaa, M.; EL-Sharkawy, S.M.; Al Badawi, M.H. Therapeutic Effect of Murine Bone Marrow-Derived Mesenchymal Stromal/Stem Cells and Human Placental Extract on Testicular Toxicity Resulting from Doxorubicin in Rats. BioMed Res. Int. 2021, 2021, 9979670. [Google Scholar] [CrossRef]
- Feng, Y.; Likos, J.J.; Zhu, L.; Woodward, H.; Munie, G.; McDonald, J.J.; Stevens, A.M.; Howard, C.P.; De Crescenzo, G.A.; Welsch, D.; et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta-Proteins Proteom. 2002, 1598, 10–23. [Google Scholar] [CrossRef]
- Rowsell, S.; Hawtin, P.; Minshull, C.A.; Jepson, H.; Brockbank, S.M.V.; Barratt, D.G.; Slater, A.M.; McPheat, W.L.; Waterson, D.; Henney, A.M.; et al. Crystal Structure of Human MMP9 in Complex with a Reverse Hydroxamate Inhibitor. J. Mol. Biol. 2002, 319, 173–181. [Google Scholar] [CrossRef]
- Schrödinger, L.L.C. Schrödinger Release 2021-3: Maestro; Schrödinger LLC: New York, NY, USA, 2021. [Google Scholar]
- Nada, H.; Lee, K.; Gotina, L.; Pae, A.N.; Elkamhawy, A. Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Comput. Biol. Med. 2022, 142, 105217. [Google Scholar] [CrossRef]
- Elsayed, A.; Belal, A. Formulation, characterization and in-vitro evaluation of solid lipid nanoparticles for the delivery of a new anticancer agent, 1H-pyrazolo [3, 4-d] pyrimidine derivative. Trop. J. Pharm. Res. 2021, 20, 885–891. [Google Scholar] [CrossRef]
- Shoman, M.E.; Aboelez, M.O.; Shaykhon, M.S.; Ahmed, S.A.; Abuo-Rahma, G.E.-D.A.; Elhady, O.M. New nicotinic acid-based 3, 5-diphenylpyrazoles: Design, synthesis and antihyperlipidemic activity with potential NPC1L1 inhibitory activity. Mol. Divers. 2021, 25, 673–686. [Google Scholar] [CrossRef]
- Belal, A. 3D-Pharmacophore Modeling, Molecular Docking, and Virtual Screening for Discovery of Novel CDK4/6 Selective Inhibitors. Russ. J. Bioorganic Chem. 2021, 47, 317–333. [Google Scholar] [CrossRef]
- Zhaorigetu, I.M.F.; Belal, A.; Al Badawi, M.H.; Abdelhady, A.A.; Abou Galala, F.M.; El-Sharkawy, A.; El-Dahshan, A.A.; Mehany, A.B. Antiproliferative, Apoptotic Effects and Suppression of Oxidative Stress of Quercetin against Induced Toxicity in Lung Cancer Cells of Rats: In vitro and In vivo Study. J. Cancer 2021, 12, 5249. [Google Scholar] [CrossRef]
- Khodairy, A.; Ali, A.M.; Aboelez, M.O.; El-Wassimy, M. One-Pot Multicomponent Synthesis of Novel 2-Tosyloxyphenylpyrans under Green and Conventional Condition with Anti-inflammatory Activity. J. Heterocycl. Chem. 2017, 54, 1442–1449. [Google Scholar] [CrossRef]
- Eldeeb, E.; Belal, A. Two promising herbs that may help in delaying corona virus progression. Int. J. Trend. Sci. Res. Dev. 2020, 4, 764–766. [Google Scholar]
- Belal, A. Pyrrolizines as Potential Anticancer Agents: Design, Synthesis, Caspase-3 activation and Micronucleus (MN) Induction. Anti-Cancer Agents Med. Chem. 2018, 18, 2124–2130. [Google Scholar] [CrossRef]
- Elsayed, M.; Aboelez, M.O.; Elsadek, B.E.; Sarhan, H.A.; Khaled, K.A.; Belal, A.; Khames, A.; Hassan, Y.A.; Abdel-Rheem, A.A.; Elkaeed, E.B. Tolmetin Sodium Fast Dissolving Tablets for Rheumatoid Arthritis Treatment: Preparation and Optimization Using Box-Behnken Design and Response Surface Methodology. Pharmaceutics 2022, 14, 880. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.K.; Eissa, I.H.; Abdallah, A.E.; Metwaly, A.M.; Radwan, M.M.; ElSohly, M.A. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of novel quinoxaline derivatives as potential PPARγ and SUR agonists. Bioorg. Med. Chem. 2017, 25, 1496–1513. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.K.; Eissa, I.H.; Alesawy, M.S.; Metwaly, A.M.; Radwan, M.M.; ElSohly, M.A. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists. Bioorg. Med. Chem. 2017, 25, 4723–4744. [Google Scholar] [CrossRef] [PubMed]
- El-Zahabi, M.A.; Elbendary, E.R.; Bamanie, F.H.; Radwan, M.F.; Ghareib, S.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of phthalimide-sulfonylurea hybrids as PPARγ and SUR agonists. Bioorg. Chem. 2019, 91, 103115. [Google Scholar] [CrossRef]
- Kamel, M.S.; Belal, A.; Aboelez, M.O.; Shokr, E.K.; Abdel-Ghany, H.; Mansour, H.S.; Shawky, A.M.; El-Remaily, M.A.E.A.A.A. Microwave-Assisted Synthesis, Biological Activity Evaluation, Molecular Docking, and ADMET Studies of Some Novel Pyrrolo [2, 3-b] Pyrrole Derivatives. Molecules 2022, 27, 2061. [Google Scholar] [CrossRef]
- Moustafa, A.H.; Ahmed, W.W.; Awad, M.F.; Aboelez, M.O.; Khodairy, A.; Amer, A.A. Eco-friendly and regiospecific intramolecular cyclization reactions of cyano and carbonyl groups in N, N-disubstituted cyanamide. Mol. Divers. 2022, 1–11. [Google Scholar] [CrossRef]
- Abdelkreem, E.; Mahmoud, S.M.; Aboelez, M.O.; Abd El Aal, M. Nebulized magnesium sulfate for treatment of persistent pulmonary hypertension of newborn: A pilot randomized controlled trial. Indian J. Pediatrics 2021, 88, 771–777. [Google Scholar] [CrossRef]
- Shokr, E.K.; Kamel, M.S.; Abdel-Ghany, H.; El-Remaily, M.A.E.A.A.A. Optical characterization and effects of iodine vapor & gaseous HCl adsorption investigation of novel synthesized organic dye based on thieno [2, 3-b] thiophene. Optik 2021, 243, 167385. [Google Scholar]
Compound | ∆G (kcal.mol−1) | Compound | ∆G (kcal.mol−1) | ||
---|---|---|---|---|---|
1 | Acetazolamide | −11.39 | 17 | Ganciclovir | −15.93 |
2 | Acyclovir | −15.51 | 18 | Indomethacin | −21.81 |
3 | Ampicillin | −19.31 | 19 | Ketorolac | −18.35 |
4 | Atenolol | −28.20 | 20 | Levocabastine | −22.00 |
5 | Atropine | −15.61 | 21 | Lincomycin | −29.06 |
6 | Aztreonam | −19.01 | 22 | Lornoxicam | −18.51 |
7 | Betaxolol | −26.50 | 23 | Methazolamide | −12.86 |
8 | Brinzolamide | −20.96 | 24 | Methotrexate | −26.00 |
9 | Bromfenac | −18.04 | 25 | Nadolole | −25.86 |
10 | Carteolol | −24.09 | 26 | Pilocarpine | −17.28 |
11 | Cephalexine | −21.07 | 27 | Pindolol | −21.05 |
12 | Ciprofloxacin | −27.87 | 28 | Prednisolone | −19.66 |
13 | Dexamethasone | −20.70 | 29 | Propranolol | −23.93 |
14 | Diclofenac | −17.33 | 30 | Quinidine | −20.97 |
15 | Dorzolamide | −19.06 | 31 | Tizanidine | −15.93 |
16 | Fluconazole | −17.47 | 32 | Voriconazolee | −18.24 |
Serial | Compound | ∆G (kcal.mol−1) | Serial | Compound | ∆G (kcal.mol−1) |
---|---|---|---|---|---|
1 | Acetazolamide | −15.34 | 17 | Ganciclovir | −28.89 |
2 | Acyclovir | −20.59 | 18 | Indomethacin | −26.12 |
3 | Ampicillin | −30.81 | 19 | Ketorolac | −23.59 |
4 | Atenolol | −27.60 | 20 | Levocabastine | −24.62 |
5 | Atropine | −26.99 | 21 | Lincomycin | −26.74 |
6 | Aztreonam | −29.97 | 22 | Lornoxicam | −21.02 |
7 | Betaxolol | −25.97 | 23 | Methazolamide | −15.99 |
8 | Brinzolamide | −26.07 | 24 | Methotrexate | −27.70 |
9 | Bromfenac | −22.24 | 25 | Nadolole | −25.62 |
10 | Carteolol | −25.96 | 26 | Pilocarpine | −23.69 |
11 | Cephalexine | −24.47 | 27 | Pindolol | −23.56 |
12 | Ciprofloxacin | −25.13 | 28 | Prednisolone | −29.51 |
13 | Dexamethasone | −23.65 | 29 | Propranolol | −24.36 |
14 | Diclofenac | −20.26 | 30 | Quinidine | −28.53 |
15 | Dorzolamide | −20.12 | 31 | Tizanidine | −18.29 |
16 | Fluconazole | −22.03 | 32 | Voriconazolee | −23.46 |
MMP-2/Atenolol | MMP-9/Ampicillin | |||
---|---|---|---|---|
Start | End | Start | End | |
dG Binding | −38.07 | −47.75 | −9.35 | −26.96 |
dG binding Coulomb | −22.89 | −51.36 | 39.63 | 11.89 |
dG Binding (NS) | −49.77 | −52.57 | −19.88 | −28.70 |
dG binding (NS) Coulomb | −22.14 | −52.42 | 39.35 | 13.00 |
Compound | Mapped Features | Fit Value |
---|---|---|
NFH | HBD1, HBD2, HBA1, HBA2, H1, H2 | 4.74 |
Ampicillin | HBD1, HBD2, HBA1, HBA2, H1, H2 | 3.76 |
Aztreonam | HBD1, HBD2, HBA1, HBA2, H1, H2 | 4.13 |
Cephalexine | HBD1, HBD2, HBA1, HBA2, H1, H2 | 4.06 |
Lincomycin | HBD1, HBD2, HBA1, HBA2, H1, H2 | 3.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belal, A.; Elanany, M.A.; Santali, E.Y.; Al-Karmalawy, A.A.; Aboelez, M.O.; Amin, A.H.; Abdellattif, M.H.; Mehany, A.B.M.; Elkady, H. Screening a Panel of Topical Ophthalmic Medications against MMP-2 and MMP-9 to Investigate Their Potential in Keratoconus Management. Molecules 2022, 27, 3584. https://doi.org/10.3390/molecules27113584
Belal A, Elanany MA, Santali EY, Al-Karmalawy AA, Aboelez MO, Amin AH, Abdellattif MH, Mehany ABM, Elkady H. Screening a Panel of Topical Ophthalmic Medications against MMP-2 and MMP-9 to Investigate Their Potential in Keratoconus Management. Molecules. 2022; 27(11):3584. https://doi.org/10.3390/molecules27113584
Chicago/Turabian StyleBelal, Amany, Mohamed A. Elanany, Eman Y. Santali, Ahmed A. Al-Karmalawy, Moustafa O. Aboelez, Ali H. Amin, Magda H. Abdellattif, Ahmed B. M. Mehany, and Hazem Elkady. 2022. "Screening a Panel of Topical Ophthalmic Medications against MMP-2 and MMP-9 to Investigate Their Potential in Keratoconus Management" Molecules 27, no. 11: 3584. https://doi.org/10.3390/molecules27113584
APA StyleBelal, A., Elanany, M. A., Santali, E. Y., Al-Karmalawy, A. A., Aboelez, M. O., Amin, A. H., Abdellattif, M. H., Mehany, A. B. M., & Elkady, H. (2022). Screening a Panel of Topical Ophthalmic Medications against MMP-2 and MMP-9 to Investigate Their Potential in Keratoconus Management. Molecules, 27(11), 3584. https://doi.org/10.3390/molecules27113584