Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pyrite Tailings
2.2. Microorganisms and Culture Medium
2.3. Specimen Preparation
2.3.1. Test Device
2.3.2. Curing Test
2.4. Tests
2.4.1. UCS
2.4.2. Permeability Test
2.4.3. Pollution Components
2.4.4. Micromorphology Testing
3. Results and Discussion
3.1. Effect of Curing Rounds on Engineering Properties of Tailings
3.1.1. Unconfined Compressive Strength
3.1.2. Permeability Test
3.2. Influence of Curing Rounds on the Environmental Effects of Tailings Sand
3.2.1. pH
3.2.2. Sulfur Element
3.2.3. Heavy Metals
3.3. Microscopic Test Results
3.3.1. XRD Results
3.3.2. FTIR Results
3.3.3. TGA Results
3.3.4. SEM Results
3.4. The Mechanism for the Biocementation of Pyrite Tailings Sand by MICP
3.4.1. Abiotic Mechanisms
3.4.2. Biological Mechanism
4. Conclusions
- (1)
- It is feasible to use MICP technology to biocement pyrite tailings sand. The UCS increased significantly and the permeability coefficient decreased to that of clay. In the TCLP test of the cured samples, the ion concentrations of Mn2+, Zn2+, and Cu2+ and the ratio of the control group all fell below the standard. The content of SO42− was significantly reduced.
- (2)
- The microscopic analysis showed that MICP biocemented pyrite tailings mainly produce various carbonate minerals (e.g., aragonite, iron calcite, magnesium calcite, calcite, manganese-rich calcite, iron-rich magnesite, brucite, and carbortite) and gypsum. The FTIR results showed that CO32− is generated. The TGA results corroborated the XRD results.
- (3)
- The action mechanism of the microorganism-induced calcium carbonate precipitation and biocementation of pyrite tailings sand mainly includes the following: urea hydrolysis, microbial utilization after sulfur oxidation, and heavy metal ion fixation. In these processes, complex biochemical and physicochemical reactions occur, which finally induce calcium carbonate precipitation to achieve the biocementation of heavy metals and sulfur elements.
- (4)
- MICP biocementation technology can effectively reduce the permeability of tailings and form a layer on the surface of tailings by carbonate precipitation to inhibit their oxidation. This results in a reduction in the concentration of heavy metals and controls their mobility through microbial adsorption, intracellular accumulation, and coprecipitation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ted, N.; Anna, B.; John, B.; Rodrigo, S.G. Environmental remediation of sulfidic tailings with froth flotation: Reducing the consumption of additional resources by optimization of conditioning parameters and water recycling. J. Environ. Manage. 2019, 236, 125–133. [Google Scholar]
- Chen, X.; Zhang, D.; Larson, S.L.; Ballard, J.H.; Smith, H.M.K.; Nie, J.; Hu, N.; Ding, D.; Han, F.X. Microbially induced carbonate precipitation techniques for the remediation of heavy metal and trace element-polluted soils and water. Water Air Soil Poll. 2021, 232, 268. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G.; Paktunc, D.; Gould, W.D.; Johnson, D.B. The geochemistry of acid mine drainage. Treatise Geochem. 2014, 11, 131–190. [Google Scholar]
- Zeinab, P.; Ahmad, K.D.; Mohammad, S.M.; Mahmoud, A.; Asadollahfardi, G.; Funari, V.; Dinelli, E.; Webster, R.D.; Sillanpää, M. Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings. Chemosphere 2020, 258, 127288. [Google Scholar]
- Lu, J.; Alakangas, L.; Jia, Y.; Gotthardsson, J. Evaluation of the application of dry covers over carbonate-rich sulphide tailings. J. Hazard. Mater. 2013, 244–245, 180–194. [Google Scholar] [CrossRef]
- Nason, P.; Johnson, R.H.; Neuschütz, C.; Alakangas, L.; Öhlander, B. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation. J. Hazard. Mater. 2014, 267, 245–254. [Google Scholar] [CrossRef]
- Demers, I.; Mbonimpa, M.; Benzaazoua, M.; Bouda, M.; Awoh, S.; Lortie, S.; Gagnon, M. Use of acid mine drainage treatment sludge by combination with a natural soil as an oxygen barrier cover for mine waste reclamation: Laboratory column tests and intermediate scale field tests. Miner. Eng. 2017, 107, 43–52. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, N.; Cai, G.J.; Jin, Y.; Ding, N.; Shen, D.J. Review of ground improvement using microbial induced carbonate precipitation (MICP). Mar. Georesour. Geotec. 2017, 35, 1135–1146. [Google Scholar] [CrossRef]
- Jongvivatsakul, P.; Janprasit, K.; Nuaklong, P.; Pungrasmi, W.; Likitlersuang, S. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Constr. Build. Mater. 2019, 212, 737–744. [Google Scholar] [CrossRef]
- Zha, F.S.; Wang, H.; Kang, B.; Liu, C.M.; Xu, L.; Tan, X.H. Improving the strength and leaching characteristics of Pb-contaminated silt through MICP. Crystals 2021, 11, 1303. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.H.; Guo, H.X. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeter. Biodegr. 2013, 76, 81–85. [Google Scholar] [CrossRef]
- Mujah, D.; Shahin, M.A.; Cheng, L. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol. J. 2016, 34, 524–537. [Google Scholar] [CrossRef]
- Choi, S.G.; Hoang, T.; Alleman, E.J.; Chu, J. Splitting tensile strength of fiber-reinforced and biocemented sand. J. Mater. Civil. Eng. 2019, 31, 06019007. [Google Scholar] [CrossRef]
- Fang, X.W.; Yang, Y.; Chen, Z.; Liu, H.L.; Xiao, Y.; Shen, C.N. Influence of fiber content and length on engineering properties of MICP-treated coral sand. Geomicrobiol. J. 2020, 37, 582–594. [Google Scholar] [CrossRef]
- Chen, Q.S.; Tao, Y.B.; Feng, Y.; Zhang, Q.L.; Liu, Y.K. Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill. J. Environ. Manage. 2021, 290, 112608. [Google Scholar] [CrossRef] [PubMed]
- Kasinathan, M.; Subramanyam, S.B. Durability of microbially induced calcite precipitation (MICP) treated cohesionless soils. Jpn. Geotech. Soc. Spec. Publ. 2016, 2, 1946–1949. [Google Scholar] [CrossRef]
- Sharma, A.R.R. Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspect. Sci. 2016, 8, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Cheshomi, A.; Mansouri, S.; Amoozegar, M.A. Improving the shear strength of quartz sand using the microbial method. Geomicrobiol. J. 2018, 35, 749–756. [Google Scholar] [CrossRef]
- Fang, C.L.; Deepika, K.; Zhu, X.J.; Varenyam, A. Role of fungal-mediated mineralization in biocementation of sand and its improved compressive strength. Int. Biodeter. Biodegr. 2018, 133, 216–220. [Google Scholar] [CrossRef]
- Karnati, V.R.; Munaga, T.; Gonavaram, K.K.; Amitava, B. Study on strength and leaching behavior of biogeochemical cemented sand. Geomicrobiol. J. 2020, 37, 670–681. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Wei, Y.Q.; Cai, H.; Wang, Z.W.; Yang, T.; Wang, Q.H.; Wu, S.F. Microbial-induced carbonate precipitation for strengthening soft clay. Adv. Mater. Sci. Eng. 2020, 2020, 8140724. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.H.; Yujin, S.; Periasamy, A.; In-Hyun, N.; Jae-Seong, S. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation. J. Gen. Appl. Microbiol. 2016, 62, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamayo-Figueroa, D.P.; Castillo, E.; Brandão, P.F.B. Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World J. Microb. Biot. 2019, 35, 58. [Google Scholar] [CrossRef] [PubMed]
- Stabnikov, V.; Naeimi, M.; Ivanov, V.; Chu, J. Formation of water-impermeable crust on sand surface using biocement. Cem. Concr. Res. 2011, 41, 1143–1149. [Google Scholar] [CrossRef]
- Gustavo, C.F.; José, L.A.; Giovanni, H.F.; Esperanza, M.R.; Yanet, R.R.; Oscar, T.M. Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: An in vitro study and application to sulfide-bearing tailings. Sci. Total Environ. 2020, 724, 135124. [Google Scholar] [CrossRef]
- Zeinab, P.; Darban, A.K.; Mousavi, S.M.; Abdollahy, M. Immobilization of heavy metals during the tailings sample bioleaching by the indigenous bacteria. J. Org. Inorg. Chem. 2020, 6, 3. [Google Scholar]
- Yang, J.; Pan, X.; Zhao, C.; Mou, S.; Achal, V.; Al-Misned, F.A.; Mortuza, M.G.; Gadd, G.M. Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiol. J. 2016, 33, 261–266. [Google Scholar] [CrossRef]
- Whiffin, V.S.; Paassen, L.; Harkes, M.P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Burbank, M.B.; Weaver, T.J.; Green, T.L.; Williams, B.C.; Crawford, R.L. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol. J. 2011, 28, 301–312. [Google Scholar] [CrossRef]
- Bang, S.C.; Min, S.H.; Bang, S.S. KGS awards lectures: Application of microbiologically induced soil stabilization technique for dust suppression. Int. J. Geo Eng. 2011, 3, 27–37. [Google Scholar]
- Lauchnor, E.G.; Schultz, L.N.; Bugni, S.; Mitchell, A.C.; Cunningham, A.B.; Gerlach, R. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system. Environ. Sci. Technol. 2013, 47, 1557–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Hanène, S.; Yoan, P.; Jean-Marie, F. Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement—A review. Eur. J. Environ. Civ. En. 2020, 26, 2218–2233. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE 2019, 14, e0218396. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Miao, L.; Tong, T.; Wang, C. Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotech. 2019, 14, 627–638. [Google Scholar] [CrossRef]
- Bilge, A.; Mehmet, A.Y. Remediation of lead contaminated soils by stabilization/solidification. Water Air Soil Pollut. 2002, 133, 253–263. [Google Scholar]
- Hu, J.G.; Fan, P.Z. The application of cementing-filling of flyash and fine-sand in Xinqiao Pyrite. J. Yueyang Norm. Univ. 2001, 14, 44–47. (In Chinese) [Google Scholar]
- Jiang, N.J.; Liu, R.; Du, Y.J.; Bi, Y.Z. Microbial induced carbonate precipitation for immobilizing Pb contaminants: Toxic effects on bacterial activity and immobilization efficiency. Sci. Total Environ. 2019, 672, 722–731. [Google Scholar] [CrossRef]
- Malik, A. Metal bioremediation through growing cells. Environ. Int. 2004, 30, 261–278. [Google Scholar] [CrossRef]
- Ayansina, S.A.; Olubukola, O.B. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar]
Component | Quality Score (%) | Contains Elements | Elemental Content per Kilogram (mg) |
---|---|---|---|
SiO2 | 30.61 | Si | 14,284,666.67 |
Fe2O3 | 21.52 | Fe | 230,554.52 |
SO3 | 19.52 | S | 168,028.16 |
CaO | 10.87 | Ca | 151,558.86 |
Al2O3 | 7.62 | Al | 21,925.43 |
K2O | 2.10 | K | 6639.13 |
MgO | 1.42 | Mg | 1789.20 |
MnO | 1.08 | Mn | 1188.00 |
ZnO | 0.07 | Zn | 60.67 |
CuO | 0.06 | Cu | 3.35 |
PbO | 0.03 | Pb | 1.67 |
Leached Iron | Cu2+ | Zn2+ | Mn2+ | Pb2+ | SO42− |
---|---|---|---|---|---|
Content (mg/kg) | 0.50 | 0.45 | 27.18 | 0.03 | 358.21 |
Sample | pH | |||||
---|---|---|---|---|---|---|
A | 5.91 | - | - | - | - | - |
B | 6.09 | 6.22 | - | - | - | - |
C | 5.96 | 6.23 | 6.37 | - | - | - |
D | 6.03 | 6.16 | 6.21 | 6.30 | - | - |
E | 5.94 | 6.15 | 6.32 | 6.47 | 6.60 | - |
F | 5.98 | 6.18 | 6.36 | 6.37 | 6.44 | 6.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, B.; Zha, F.; Deng, W.; Wang, R.; Sun, X.; Lu, Z. Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation. Molecules 2022, 27, 3608. https://doi.org/10.3390/molecules27113608
Kang B, Zha F, Deng W, Wang R, Sun X, Lu Z. Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation. Molecules. 2022; 27(11):3608. https://doi.org/10.3390/molecules27113608
Chicago/Turabian StyleKang, Bo, Fusheng Zha, Weihao Deng, Runkai Wang, Xianguo Sun, and Zhitang Lu. 2022. "Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation" Molecules 27, no. 11: 3608. https://doi.org/10.3390/molecules27113608
APA StyleKang, B., Zha, F., Deng, W., Wang, R., Sun, X., & Lu, Z. (2022). Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation. Molecules, 27(11), 3608. https://doi.org/10.3390/molecules27113608