Analytical Techniques Applied to the Study of Industrial Archaeology Heritage: The Case of Plaiko Zubixe Footbridge
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Paint Layers
2.2. Colorimetric Studies
2.3. Evaluation of the State of Conservation for the Iron Structure of the Bridge
3. Materials and Methods
Microsampling and Laboratory Instrumental Set Up
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Douet, J. Industrial Heritage Re-Tooled: The TICCIH Guide to Industrial Heritage Conservation; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Ćopić, S.; Đorđevića, J.; Lukić, T.; Stojanović, V.; Đukičin, S.; Besermenji, S.; Stamenković, I.; Tumarić, A. Transformation of Industrial Heritage: An Example of Tourism Industry Development in the Ruhr Area (Germany). Geogr. Pannonica 2014, 18, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.; Munday, M. Blaenavon and United Nations World Heritage Site Status: Is Conservation of Industrial Heritage a Road to Local Economic Development? Reg. Stud. 2001, 35, 585–590. [Google Scholar] [CrossRef]
- Coccato, A.; Moens, L.; Vandenabeele, P. On the Stability of Mediaeval Inorganic Pigments: A Literature Review of the Effect of Climate, Material Selection, Biological Activity, Analysis and Conservation Treatments. Herit. Sci. 2017, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Ziemann, M.A.; Madariaga, J.M. Applications of Raman Spectroscopy in Art and Archaeology. J. Raman Spectrosc. 2021, 52, 8–14. [Google Scholar] [CrossRef]
- van den Berg, K.J.; Bonaduce, I.; Burnstock, A.; Ormsby, B.; Scharff, M.; Carlyle, L.; Heydenreich, G.; Keune, K. Conservation of Modern Oil Paintings; Springer Nature: Berlin, Germany, 2020. [Google Scholar]
- Tissot, I.; Fonseca, J.F.; Tissot, M.; Lemos, M.; Carvalho, M.L.; Manso, M. Discovering the Colours of Industrial Heritage Characterisation of Paint Coatings from the Powerplant at the Levada de Tomar. J. Raman Spectrosc. 2021, 52, 208–216. [Google Scholar] [CrossRef]
- Morillas, H.; Maguregui, M.; García-Florentino, C.; Marcaida, I.; Madariaga, J.M. Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci. Total Environ. 2016, 550, 285–296. [Google Scholar] [CrossRef]
- De la Fuente, D.; Díaz, I.; Simancas, J.; Chico, B.; Morcillo, M. Long-term atmospheric corrosion of mild steel | Elsevier Enhanced Reader, (n.d.). Corros. Sci. 2011, 53, 604–617. [Google Scholar] [CrossRef] [Green Version]
- Aramendia, J.; Gomez-Nubla, L.; Arrizabalaga, I.; Prieto-Taboada, N.; Castro, K.; Madariaga, J.M. Multianalytical Approach to Study the Dissolution Process of Weathering Steel: The Role of Urban Pollution. Corros. Sci. 2013, 76, 154–162. [Google Scholar] [CrossRef]
- Martínez-Arkarazo, I.; Angulo, M.; Bartolomé, L.; Etxebarria, N.; Olazabal, M.A.; Madariaga, J.M. An integrated analytical approach to diagnose the conservation state of building materials of a palace house in the metropolitan Bilbao (Basque Country, North of Spain). Anal. Chim. Acta 2007, 584, 350–359. [Google Scholar] [CrossRef]
- Sarmiento, A.; Maguregui, M.; Martinez-Arkarazo, I.; Angulo, M.; Castro, K.; Olazábal, M.A.; Fernández, L.A.; Rodríguez-Laso, M.D.; Mujika, A.M.; Gómez, J.; et al. Raman spectroscopy as a tool to diagnose the impacts of combustion and greenhouse acid gases on properties of Built Heritage. J. Raman Spectrosc. 2008, 39, 1042–1049. [Google Scholar] [CrossRef]
- Arruti, A.; Fernández-Olmo, I.; Irabien, A. Regional Evaluation of Particulate Matter Composition in an Atlantic Coastal Area (Cantabria Region, Northern Spain): Spatial Variations in Different Urban and Rural Environments. Atmos. Res. 2011, 101, 280–293. [Google Scholar] [CrossRef]
- Kamimura, T.; Hara, S.; Miyuki, H.; Yamashita, M.; Uchida, H. Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments. Corros. Sci. 2006, 48, 2799–2812. [Google Scholar] [CrossRef]
- Aramendia, J.; Gomez-Nubla, L.; Bellot-Gurlet, L.; Castro, K.; Paris, C.; Colomban, P.; Madariaga, J.M. Protective Ability Index Measurement through Raman Quantification Imaging to Diagnose the Conservation State of Weathering Steel Structures. J. Raman Spectrosc. 2014, 45, 1076–1084. [Google Scholar] [CrossRef]
- Aramendia, J.; Gomez-Nubla, L.; Castro, K.; Martinez-Arkarazo, I.; Vega, D.; Sanz López de Heredia, A.; García Ibáñez de Opakua, A.; Madariaga, J.M. Portable Raman Study on the Conservation State of Four CorTen Steel-Based Sculptures by Eduardo Chillida Impacted by Urban Atmospheres. J. Raman Spectrosc. 2012, 43, 1111–1117. [Google Scholar] [CrossRef]
- Ståhl, K.; Nielsen, K.; Jiang, J.; Lebech, B.; Hanson, J.C.; Norby, P.; van Lanschot, J. On the Akaganéite Crystal Structure, Phase Transformations and Possible Role in Post-Excavational Corrosion of Iron Artifacts. Corros. Sci. 2003, 45, 2563–2575. [Google Scholar] [CrossRef]
- Pozzi, F.; Basso, E.; Rizzo, A.; Cesaratto, A.; Tagu, T.J., Jr. Evaluation and optimization of the potential of a handheld Raman spectrometer: In situ, noninvasive materials characterization in artworks. J. Raman Spectrosc. 2019, 50, 861–872. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Pan, A.; He, L.; Simon, S. Degradation of red lead pigment in the oil painting during UV aging. Color Res. Appl. 2019, 44, 790–797. [Google Scholar] [CrossRef]
- Singer, B.W.; Gardiner, D.J.; Derow, J.P. Analysis of White and Blue Pigments from Watercolours by Raman Microscopy. Pap. Conserv. 1993, 17, 13–19. [Google Scholar] [CrossRef]
- Ropret, P.; Centeno, S.A.; Bukovec, P. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: Reference spectra and case studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 69, 486–497. [Google Scholar] [CrossRef]
- Lindqvist, S.-Å.; Vannerberg, N.-G. Corrosion-inhibiting properties of red lead—I. Pigment suspensions in aqueous solutions. Mater. Corros. 1974, 25, 740–748. [Google Scholar] [CrossRef]
- De Gelder, J.; Vandenabeele, P.; Govaert, F.; Moens, L. Forensic analysis of automotive paints by Raman spectroscopy. J. Raman Spectrosc. 2005, 36, 1059–1067. [Google Scholar] [CrossRef]
- Coupry, C.; Lautié, A.; Revault, M.; Dufilho, J. Contribution of Raman spectroscopy to art and history. J. Raman Spectrosc. 1994, 25, 89–94. [Google Scholar] [CrossRef]
- Hernanz, A.; Gavira-Vallejo, J.M.; Ruiz-López, J.F. Introduction to Raman microscopy of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. J. Raman Spectrosc. 2006, 37, 1054–1062. [Google Scholar] [CrossRef]
- Bechelany, M.; Brioude, A.; Cornu, D.; Ferro, G.; Miele, P. A Raman Spectroscopy Study of Individual SiC Nanowires. Adv. Funct. Mater. 2007, 17, 939–943. [Google Scholar] [CrossRef]
- Gómez-Laserna, O.; Arrizabalaga, I.; Prieto-Taboada, N.; Olazabal, M.Á.; Arana, G.; Madariaga, J.M. In Situ DRIFT, Raman, and XRF Implementation in a Multianalytical Methodology to Diagnose the Impact Suffered by Built Heritage in Urban Atmospheres. Anal. Bioanal. Chem. 2015, 407, 5635–5647. [Google Scholar] [CrossRef]
- Jehlička, J.; Vítek, P.; Edwards, H.g.m.; Hargreaves, M.D.; Čapoun, T. Fast detection of sulphate minerals (gypsum, anglesite, baryte) by a portable Raman spectrometer. J. Raman Spectrosc. 2009, 40, 1082–1086. [Google Scholar] [CrossRef]
- Zhang, W.F.; He, Y.L.; Zhang, M.S.; Yin, Z.; Chen, Q. Raman scattering study on anatase TiO2 nanocrystals. J. Phys. Appl. Phys. 2000, 33, 912–916. [Google Scholar] [CrossRef]
- Osticioli, I.; Mendes, N.F.C.; Nevin, A.; Gil, F.P.S.C.; Becucci, M.; Castellucci, E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Titanium Dioxide Pigments. In Surface Coatings: Vol I-Raw Materials and Their Usage; Springer: Dordrecht, The Netherlands, 1983; pp. 305–312. [CrossRef]
- de la Fuente, D.; Alcántara, J.; Chico, B.; Díaz, I.; Jiménez, J.A.; Morcillo, M. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques. Corros. Sci. 2016, 110, 253–264. [Google Scholar] [CrossRef]
- Morcillo, M.; Chico, B.; Alcántara, J.; Díaz, I.; Wolthuis, R.; de la Fuente, D. SEM/Micro-Raman Characterization of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel. J. Electrochem. Soc. 2016, 163, C426. [Google Scholar] [CrossRef]
- Monnier, J.; Neff, D.; Réguer, S.; Dillmann, P.; Bellot-Gurlet, L.; Leroy, E.; Foy, E.; Legrand, L.; Guillot, I. A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques. Corros. Sci. 2010, 52, 695–710. [Google Scholar] [CrossRef]
- Misawa, T.; Hashimoto, K.; Shimodaira, S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 1974, 14, 131–149. [Google Scholar] [CrossRef]
- Cook, D.C.; Oh, S.J.; Balasubramanian, R.; Yamashita, M. The Role of Goethite in the Formation of the Protective Corrosion Layer on Steels. Hyperfine Interact. 1999, 122, 59–70. [Google Scholar] [CrossRef]
- Diaz, I.; Cano, H.; de la Fuente, D.; Chico, B.; Vega, J.M.; Morcillo, M. Atmospheric Corrosion of Ni-Advanced Weathering Steels in Marine Atmospheres of Moderate Salinity. Corros. Sci. 2013, 76, 348–360. [Google Scholar] [CrossRef]
- Misawa, T.; Asami, K.; Hashimoto, K.; Shimodaira, S. The Mechanism of Atmospheric Rusting and the Protective Amorphous Rust on Low Alloy Steel. Corros. Sci. 1974, 14, 279–289. [Google Scholar] [CrossRef]
- Alcántara, J.; Chico, B.; Díaz, I.; de la Fuente, D.; Morcillo, M. Airborne Chloride Deposit and Its Effect on Marine Atmospheric Corrosion of Mild Steel. Corros. Sci. 2015, 97, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Ibarrondo, I.; Prieto-Taboada, N.; Martínez-Arkarazo, I.; Madariaga, J.M. Resonance Raman imaging as a tool to assess the atmospheric pollution level: Carotenoids in Lecanoraceae lichens as bioindicators. Environ. Sci. Pollut. Res. Int. 2016, 23, 6390–6399. [Google Scholar] [CrossRef]
- Morcillo, M.; Chico, B.; de la Fuente, D.; Alcántara, J.; Wallinder, I.O.; Leygraf, C. On the Mechanism of Rust Exfoliation in Marine Environments. J. Electrochem. Soc. 2016, 164, C8. [Google Scholar] [CrossRef]
- Post, J.E.; Buchwald, V.F. Crystal Structure Refinement of Akaganéite. Am. Mineral. 1991, 76, 272–277. [Google Scholar]
- Li, S.; Hihara, L.H. A Micro-Raman Spectroscopic Study of Marine Atmospheric Corrosion of Carbon Steel: The Effect of Akaganeite. J. Electrochem. Soc. 2015, 162, C495. [Google Scholar] [CrossRef]
Sample ID | Mg | Al | Si | S | Cl | K | Ca | Fe | Zn | Sr | Ba | Pb | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SUBS-3b | 1.63 | 0.78 | 3.4 | 7.2 | 16.4 | 0.3 | 10.8 | 12.8 | 3.44 | 0.98 | 28.2 | 13.9 | 0.2 |
Colour | L * | a * | b * |
---|---|---|---|
Green (Figure S1a) | 34.96 | −11.22 | 1.68 |
Greyish blue (Figure S1b) | 44.47 | −0.14 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, I.; Castro, K.; Madariaga, J.M.; Arana, G. Analytical Techniques Applied to the Study of Industrial Archaeology Heritage: The Case of Plaiko Zubixe Footbridge. Molecules 2022, 27, 3609. https://doi.org/10.3390/molecules27113609
Costantini I, Castro K, Madariaga JM, Arana G. Analytical Techniques Applied to the Study of Industrial Archaeology Heritage: The Case of Plaiko Zubixe Footbridge. Molecules. 2022; 27(11):3609. https://doi.org/10.3390/molecules27113609
Chicago/Turabian StyleCostantini, Ilaria, Kepa Castro, Juan Manuel Madariaga, and Gorka Arana. 2022. "Analytical Techniques Applied to the Study of Industrial Archaeology Heritage: The Case of Plaiko Zubixe Footbridge" Molecules 27, no. 11: 3609. https://doi.org/10.3390/molecules27113609
APA StyleCostantini, I., Castro, K., Madariaga, J. M., & Arana, G. (2022). Analytical Techniques Applied to the Study of Industrial Archaeology Heritage: The Case of Plaiko Zubixe Footbridge. Molecules, 27(11), 3609. https://doi.org/10.3390/molecules27113609