Interactive Effects of Molybdenum, Zinc and Iron on the Grain Yield, Quality, and Nodulation of Cowpea (Vignaunguiculata (L.) Walp.) in North-Western India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Specification and Characteristics
2.2. Treatment Details
2.3. Harvesting and Analysis
2.4. Micronutrient Use Efficiency Indices
2.5. Statistical Analysis
3. Results
3.1. Grain and Stover Yield
3.2. Micronutrient Concentration in Grain and Stover
3.3. Micronutrient Uptake by Grain and Stover
3.4. Root Length, Nodules and N Uptake
3.5. Efficiency Indices
4. Discussion
4.1. Grain and Stover Yield
4.2. Micronutrient Concentrations in the Grain and Stover
4.3. Micronutrient Uptake by the Grain and Stover
4.4. Root Length, Nodules and N Concentration of Cowpea
4.5. Efficiency Indices of Cowpea
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, V.M.; Boleta, E.H.M.; Martins, J.T.; Dos Santos, F.L.M.; Silva, A.C.R.; Alcock, T.D.; Wilson, L.; De S’a, M.E.; Young, S.D.; Broadley, M.R.; et al. Agronomic biofortification of cowpea with selenium: Effects of selenate and selenite applications on selenium and phytate concentrations in seeds. J. Sci. Food Agric. 2019, 99, 5969–5983. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Aung, M.S.; Kobayashi, T.; Nishizawa, N.K. Iron biofortification: The gateway to overcoming hidden hunger. In The Future of Rice Demand: Quality beyond Productivity; Costa De Oliveira, A., Pegoraro, C., Ebeling Viana, V., Eds.; Springer: Cham, Switzerland, 2020; pp. 149–177. [Google Scholar]
- Baker, A.V.; Philbeam, D.J. Handbook of Plant Nutrition; Taylor and Francis Group: New York, NY, USA, 2007; pp. 375–394. [Google Scholar]
- Liu, P.; Yang, Y. Research on development of molybdenum in soil and its effects on vegetation. Agri-Environ. Prot. 2001, 20, 280–282. [Google Scholar]
- Gödecke, T.; Stein, A.J.; Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Sec. 2019, 17, 21–29. [Google Scholar] [CrossRef]
- Briat, J.F. Iron Nutrition and Implications for Biomass Production and the Nutritional Quality of Plant Products. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 311–334. [Google Scholar]
- Gómez-Galera, S.; Rojas, E.; Sudhakar, D.; Zhu, C.; Pelacho, A.; Capell, T.; Christou, P. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 2010, 19, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Micronutrients in crop production. Adv. Agron. 2002, 77, 185–268. [Google Scholar]
- Black, R.E.; Lindsay, H.A.; Bhutta, Z.A.; Caulfield, L.E.; Onnis, M.D. Maternal and child under-nutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plants Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sadana, U.S.; Manchanda, J.S.; Dhadli, H.S. Biofortification of wheat grains with zinc and iron in Typic Ustochrept soils of Punjab. Ind. J. Fert. 2009, 5, 13–20. [Google Scholar]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Sandhu, P.S.; Behera, S.K.; Singh, P.; Kaur, J.; Singh, H.; Abdel-Hafez, S.H.; et al. Interactive effect of foliar application of nitrogen, zinc and iron on productivity and oil nutritional quality of Indian mustard (Brassica juncea L.). Agronomy 2021, 11, 2333. [Google Scholar] [CrossRef]
- Ramos, D.P.; Tavares, T.C.O.; Sousa, S.A.; Nascimento, V.L.; Martinez, R.A.S.; Junior, A.F.C.; Fidelis, R.R. Agronomic biofortification of cowpea with selenium by foliar fertilization: Effect of doses in three cultivars. J. Plant Nutr. 2020, 43, 538–547. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Biofortification of edible plants with selenium and iodine–A systematic literature review. Sci. Total Environ. 2021, 754, 141983. [Google Scholar] [CrossRef] [PubMed]
- Manzeke, M.G.; Mtambenengwe, F.; Nezomba, H.; Watts, M.J.; Broadley, M.R.; Mapfumo, P. Zinc fertilization increases productivity and grain nutritional quality of cowpea (Vigna unguiculata [L.] Walp.) under integrated soil fertility management. Field Crops Res. 2017, 213, 231–244. [Google Scholar] [CrossRef]
- Teka, T.A.; Retta, N.; Bultosa, G.; Admassu, H.; Astatkie, T. Protein fractions, in vitro protein digestibility and amino acid composition of select cowpea varieties grown in Ethiopia. Food Biosci. 2020. [Google Scholar] [CrossRef]
- Dhanasekar, P.; Souframanien, J.; Suprasanna, P. Breeding Cowpea for Quality Traits: A Genetic Biofortification Perspective. In Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes; Gupta, D.S., Gupta, S., Kumar, J., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Moura, J.O.; Rocha, M.M.; Gomes, R.L.F.; Freire Filho, F.R.; Damasceno, K.J.; Ribeiro, V.Q. Path analysis of iron and zinc contents and others traits in cowpea. Crop Breed. Appl. Biotechnol. 2012, 12, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Marquez-Quiroz, C.; De-la-Cruz-Lazaro, E.; Osorio-Osorio, R.; Sanchez-Chavez, E. Biofortification of cowpea beans with iron: Iron’s influence on mineral content and yield. J. Soil Sci. Plant Nutr. 2015, 15, 839–847. [Google Scholar] [CrossRef]
- Chatterjee, R.; Bandyopadhyay, S. Effect of boron, molybdenum and biofertilizers on growth and yield of cowpea (Vigna unguiculata L. Walp.) in acid soil of the eastern Himalayan region. J. Saudi Soc. Agric. Sci. 2017, 16, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bawa, S.S.; Singh, S.; Sharma, S.C.; Kumar, V. Effect of seed priming with molybdenum on the performance of rainfed chickpea (Cicer arietinum L.). Agric. Res. J. 2014, 51, 124–127. [Google Scholar]
- López-Morales, D.; de la Cruz-Lázaro, E.; Sánchez-Chávez, E.; Preciado-Rangel, P.; Márquez-Quiroz, C.; Osorio-Osorio, R. Impact of Agronomic Biofortification with Zinc on the Nutrient Content, Bioactive Compounds, and Antioxidant Capacity of Cowpea Bean (Vigna unguiculata L. Walpers). Agronomy 2020, 10, 1460. [Google Scholar] [CrossRef]
- Silva, V.M.; Nardeli, A.J.; Mendes, N.; Rocha, M.M.; Wilson, L.; Young, S.D.; Broadley, M.R.; White, P.J.; Reis, A. Agronomic biofortification of cowpea with zinc: Variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Plant Physiol. Biochem. 2021, 162, 378–387. [Google Scholar] [CrossRef]
- Kumar, B.; Dhaliwal, S.S. Zinc biofortification of dual-purpose cowpea [ Vigna unguiculata (L.) Walp.] for enhancing the productivity and nutritional quality in a semi-arid region of India. Arch. Agron. Soil Sci. 2021. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. America J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Jackson, M.L. A manual of methods useful for instruction and research in soil chemistry, physical chemistry, soil fertility and soil genesis. In Soil Chemical Analysis-Advanced Course, 2nd ed.; Department of Science, University of Wisconsin Madison: Madison, WI, USA, 1973. [Google Scholar]
- Purushottam, A.; Naidu, P.P.; Lal, S.S. Determination of molybdenum by atomic-absorption spectrophotometry. Talanta 1972, 19, 1193–1198. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Kaur, J.; Verma, V.; Singh, P.; Singh, H.; Abdel-Hafez, S.H.; Sayed, S.; Gaber, A.; et al. Enrichment of zinc and iron micronutrients in lentil (Lens culinaris Medic.) through biofortification. Molecules 2021, 26, 7671. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.S.; Bhantana, P.; Imran, M.; Saleem, M.H.; Moussa, M.G.; Khan, Z.; Khan, I.; Alam, M.; Abbas, M.; Binyamin, R.; et al. Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Ann. Environ. Sci. Toxicol. 2020, 4, 32–44. [Google Scholar]
- Kaiser, B.N.; Gridley, K.L.; Brady, J.N.; Phillips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Pal, V.; Singh, G.; Dhaliwal, S. Yield enhancement and biofortification of chickpea Cicer arietinum L. grain with iron and zinc through foliar application of ferrous sulfate and urea. J. Plant Nutr. 2019, 42, 1789–1802. [Google Scholar] [CrossRef]
- Schmidt, W.; Thomine, S.; Buckhout, T.J. Iron nutrition and interactions in plants. Front. Plant Sci. 2020, 10, 1670. [Google Scholar] [CrossRef] [Green Version]
- Subasinghe, S.; Dayatilake, G.A.; Senaratne, R. Effect of B, Co and Mo on nodulation, growth and yield of cowpea (Vigna unguiculata). Trop. Agric. Res. Ext. 2003, 6, 108–112. [Google Scholar] [CrossRef]
- Kothari, M.L. Effect of modes and levels of molybdenum application on grain yield protein content and nodulation of chickpea grown on loamy sand soil. Commun. Soil Sci. Plant Anal. 2002, 33, 18–23. [Google Scholar]
- Sable, S.; Sontakey, P.Y.; Nair, B.; Manapure, P.; Deotale, R.D. Influence of seed inoculation with rhizobium and molybdenum on soybean roots. J. Soils Crop. 2000, 10, 126–130. [Google Scholar]
- Abd-El-Latif, F.M.; Bakry, K.A.; El-Gioushy, S.F.; Hussein, A.M.; Mohamed, M.S. Effect of foliar spray with molybdenum and iron on vegetive growth and nutritional status of pear trees. J Plant Prod. 2020, 11, 655–659. [Google Scholar]
- Longbottom, M.L.; Dry, P.R.; Sedgley, M. Effects of sodium molybdate foliar sprays on molybdenum concentration in the vegetative and reproductive structures and on yield components of Vitis vinifera cv. Merlot. Aust. J. Grape Wine Res. 2010, 16, 477–490. [Google Scholar] [CrossRef]
- Soares Filho, S.I.B.; Lazarini, E.; Orioli Júnior, V.; Bernardes, J.V.S. Sowing dates and molybdenum foliar application for two peanut cultivars. Rev. Ciênc. Agríc. 2020, 18, 27. [Google Scholar] [CrossRef]
- Steiner, F.; Zoz, T.; Zuffo, A.M.; Machado, P.P.; Zoz, J.; Zoz, A. Foliar application of molybdenum enhanced quality and yield of crispleaf lettuce (Lactuca sativa L., cv. Grand Rapids). Acta Agron. 2018, 67, 73–78. [Google Scholar] [CrossRef]
- Togay, N.; Togay, Y.; Erman, M.; Çig, F. Effect of Fe (iron) and Mo (molybdenum) application on the yield and yield parameters of lentil (Lens culinaris Medic.). Legume Res. 2015, 38, 389–393. [Google Scholar]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Behera, S.K.; Singh, P.; Alotaibi, S.S.; Gaber, A.; Hossain, A. Comparative efficiency of mineral, chelated and nano forms of zinc and iron for improvement of zinc and iron in chickpea (Cicer arietinum L.) through biofortification. Agronomy 2021, 11, 2436. [Google Scholar] [CrossRef]
- Hristozkova, M.; Geneva, M.; Stancheva, I. Response of pea plants (Pisum sativum L.) to reduced supply with molybdenum and copper. Int. J. Agric. Biol. 2006, 8, 218–220. [Google Scholar]
- Gad, N.; Kandil, H. Evaluate the effect of molybdenum and different nitrogen levels on cowpea (Vigna unguiculata). J. Appl. Sci. Res. 2013, 9, 1490–1497. [Google Scholar]
- Zakikhani, H.; Khanif, Y.M.; Anuar, A.R.; Radziah, O.; Soltangheisi, A. Effects of different levels of molybdenum on uptake of nutrients in rice cultivars. Asian J. Crop Sci. 2014, 6, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Ndakidemi, P.A.; Bambara, S.; Makoi, J.H.J.R. Micronutrient uptake in common bean (Phaseolus vulgaris L.) as affected by rhizobium inoculation, and the supply of molybdenum and lime. Plant Omics 2011, 4, 40–52. [Google Scholar]
- Gupta, U.C.; Lipsett, J. Molybdenum in soils, plants, and animals. Adv. Agron. 1981, 34, 73–115. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Liu, P.; Yang, Y.S.; Xu, G.D.; Fang, Y.H.; Yang, Y.A.; Kalin, R.M. The effect of molybdenum and boron in soil on the growth and photosynthesis of three soybean varieties. Plant Soil Environ. 2005, 51, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Rosales, E.P.; Iannone, M.F.; Groppa, M.D.; Benavides, M.P. Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol. Biochem. 2011, 49, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, L.; Missaoui, A.M. Nodulation response to molybdenum supplementation in alfalfa and its correlation with root and shoot growth in low pH soil. J. Plant Nutr. 2017, 40, 2290–2302. [Google Scholar] [CrossRef]
Treatments | Details |
---|---|
M0F0 | Control |
M0F1 | 0.5% FeSO4·7H2O |
M0F2 | 0.5% ZnSO4·7H2O |
M0F3 | 0.5% FeSO4·7H2O + 0.5% ZnSO4·7H2O |
M1F0 | Mo seed priming |
M1F1 | Mo seed priming + 0.5% FeSO4·7H2O |
M1F2 | Mo seed priming + 0.5% ZnSO4·7H2O |
M1F3 | Mo seed priming + 0.5% FeSO4·7H2O + 0.5% ZnSO4·7H2O |
M2F0 | Mo soil application |
M2F1 | Mo soil application + 0.5% FeSO4·7H2O |
M2F2 | Mo soil application + 0.5% ZnSO4·7H2O |
M2F3 | Mo soil application + 0.5% FeSO4·7H2O + 0.5% ZnSO4·7H2O |
Treatments | Grain Yield (kg ha−1) | Stover Yield (kg ha−1) | ||||
---|---|---|---|---|---|---|
Interaction | I Year | II Year | Mean | I Year | II Year | Mean |
M0F0 | 884.7 f ± 153.3 | 848.2 f ± 49.9 | 866.5 f ± 25.8 | 2662.4 h ± 112.2 | 2973.9 e ± 20.0 | 2818.2 g ± 65.2 |
M0F1 | 1138.8 de ± 84.1 | 1175.9 cd ± 23.6 | 1157.4 d ± 26.3 | 3490.0 cde ± 123.4 | 3502.8 d ± 50.6 | 3496.4 e ± 51.5 |
M0F2 | 1089.9 e ± 46.5 | 1022.2 e ± 90.8 | 1056.1 e ± 47.8 | 3150.25 g ± 168.6 | 3280.8 d ± 154.2 | 3215.5 f ± 10.2 |
M0F3 | 1206.7 bcd ± 31.6 | 1204.2 cd ± 76.5 | 1205.4 cd ± 53.3 | 3676.5 bc ± 89.8 | 3969.6 bc ± 186.7 | 3823.0 bc ± 68.5 |
M1F0 | 943.8 f ± 40.3 | 951.7 ef ± 72.3 | 947.7 f ± 55.8 | 3231.2 fg ± 258.9 | 3279.1 d ± 169.1 | 3255.1 f ± 63.5 |
M1F1 | 1201.9 bcd ± 49.4 | 1251.3 bc ± 120.8 | 1226.6 bcd ± 34.8 | 3574.5 bcde ± 244.3 | 4001.9 c ± 114.9 | 3788.2 bcd ± 91.4 |
M1F2 | 1160.1 de ± 40.1 | 1138.7 d ± 137.7 | 1149.4 e ± 15.1 | 3393.8 ef ± 506.6 | 3969.4 bc ± 94.1 | 3681.6 cde ± 291.7 |
M1F3 | 1299.9 ab ± 181.9 | 1323.1 b ± 50.4 | 1311.6 ab ± 16.4 | 3756.9 ab ± 203.8 | 4067.7 bc ± 198.8 | 3912.3 b ± 30.6 |
M2F0 | 1180.2 cde ± 70.6 | 1334.7 b ± 90.7 | 1257.5 bc ± 109.2 | 3346.2 cf ± 115.8 | 3856.4 c ± 114.2 | 3601.3 de ± 42.3 |
M2F1 | 1286.4 abc ± 97.5 | 1358.2 ab ± 87.3 | 1322.3 ab ± 50.8 | 3709.3 ab ± 86.1 | 4186.6 b ± 339.5 | 3947.9 ab ± 179.2 |
M2F2 | 1222.4 bcd ± 125.8 | 1271.5 bc ± 70.8 | 1246.9 bcd ± 34.7 | 3634.8 bcd ± 186.7 | 4032.7 bc ± 129.9 | 3833.7 bc ± 40.2 |
M2F3 | 1350.2 a ± 102.2 | 1455.6 a ± 93.8 | 1402.9 a ± 74.4 | 3880.7 a ± 188.4 | 4447.9 a ± 411.4 | 4164.3 a ± 157.7 |
LSD (0.05) | 112.2 | 107.4 | 97.2 | 187.5 | 245.2 | 209.4 |
Treatments | Grain Concentration (mg kg−1) | Stover Concentration (mg kg−1) | ||||
---|---|---|---|---|---|---|
Interaction | Zn | Fe | Mo | Zn | Fe | Mo |
M0F0 | 9.94 g ± 6.1 | 62.55 e ± 21.7 | 18.44 d ± 2.0 | 12.72 f ± 0.7 | 103.9 g ± 5.3 | 21.50 d ± 3.8 |
M0F1 | 13.65 de ± 5.3 | 78.46 cde ± 37.6 | 21.98 bcd ± 6.9 | 15.74 bcd ± 2.4 | 122.8 cd ± 0.6 | 24.58 bd ± 0.7 |
M0F2 | 12.82 ef ± 4.7 | 71.56 de ± 30.8 | 22.31 bcd ± 8.9 | 13.47 ef ± 3.9 | 116.2 e ± 3.7 | 22.12 cd ± 4.7 |
M0F3 | 14.11 cd ± 5.5 | 89.10 bc ± 54.8 | 22.64 bcd ± 1.1 | 16.57 abc ± 2.7 | 124.1 bc ± 1.1 | 25.9 abcd ± 1.9 |
M1F0 | 10.74 g ± 7.8 | 78.87 cd ± 37.3 | 20.71 c ± 2.9 | 14.79 de ± 0.2 | 108.37 f ± 2.6 | 22.46 cd ± 2.3 |
M1F1 | 14.08 cd ± 7.4 | 90.95 bc ± 46.4 | 24.07 bc ± 6.2 | 16.47 bc ± 2.6 | 124.0 bc ± 8.5 | 26.20 abcd ± 0.4 |
M1F2 | 13.55 de ± 7.1 | 88.02 bc ± 44.2 | 23.40 bc ± 12.0 | 15.98 bcd ± 2.9 | 120.9 d ± 3.3 | 23.20 bcd ± 2.1 |
M1F3 | 15.31 b ± 6.6 | 96.22 ab ± 54.1 | 25.24 b ± 5.5 | 17.20 ab ± 1.9 | 126.4 b ± 3.7 | 27.09 abc ± 5.2 |
M2F0 | 11.84 f ± 7.2 | 83.66 bcd ± 43.6 | 22.23 bcd ± 6.8 | 16.05 cd ± 0.8 | 114.2 e ± 6.8 | 23.24 bcd ± 0.2 |
M2F1 | 15.22 b ± 7.7 | 105.6 a ± 45.7 | 26.06 ab ± 10.7 | 17.19 ab ± 3.3 | 130.5 a ± 2.1 | 28.40 ab ± 8.0 |
M2F2 | 14.77 bc ± 7.4 | 93.86 abc ± 42.1 | 24.10 b ± 9.2 | 16.81 abc ± 3.5 | 123.4 cd ± 0.9 | 25.50 bcd ± 1.4 |
M2F3 | 17.07 a ± 6.8 | 109.3 a ± 64.4 | 30.26 a ± 3.7 | 17.99 a ± 3.7 | 132.7 a ± 1.4 | 31.22 a ± 3.4 |
LSD (0.05) | 1.0 | 16.2 | 4.2 | 1.5 | 2.9 | 5.5 |
Treatments | Uptake in Grain (g ha−1) | Uptake in Stover (g ha−1) | ||||
---|---|---|---|---|---|---|
Zn | Fe | Mo | Zn | Fe | Mo | |
M0F0 | 11.02 f ± 5.6 | 54.20 g ± 17.2 | 15.98 g ± 0.4 | 35.85 g ± 18.4 | 292.81 g ± 158.7 | 60.59 d ± 20.1 |
M0F1 | 18.22 d ± 5.7 | 90.81 def ± 45.6 | 25.44 ef ± 4.5 | 55.03 cde ± 41.8 | 429.35 cd ± 304.1 | 85.94 bc ± 56.7 |
M0F2 | 14.22 e ± 5.6 | 75.57 efg ± 29.1 | 23.56 f ± 3.8 | 43.31 ef ± 39.5 | 373.64 ef ± 236.4 | 71.12 d ± 69.5 |
M0F3 | 19.98 cd ± 6.7 | 107.4 cd ± 65.9 | 27.29 def ± 0.7 | 63.34 bc ± 43.8 | 474.43 bc ± 296.4 | 99.01 b ± 73.1 |
M1F0 | 13.99 e ± 7.3 | 74.75 fg ± 35.8 | 19.63 g ± 1.5 | 48.14 fg ± 24.7 | 352.75 f ± 243.9 | 73.10 cd ± 61.7 |
M1F1 | 20.19 c ± 8.5 | 111.6 bc ± 60.1 | 29.53 ce ± 4.6 | 62.39 bcd ± 40.7 | 469.73 bc ± 306.4 | 99.25 b ± 56.0 |
M1F2 | 18.37 d ± 8.4 | 101.1 cdef ± 49.5 | 26.89 def ± 6.6 | 58.83 bcde ± 36.9 | 445.10 cd ± 229.6 | 85.41 c ± 35.2 |
M1F3 | 22.56 b ± 8.4 | 126.2 abc ± 72.4 | 33.09 bc ± 4.0 | 67.39 ab ± 44.7 | 494.51 b ± 321.9 | 105.98 ab ± 96.1 |
M2F0 | 20.19 c ± 7.2 | 105.2 cde ± 63.9 | 27.95 de ± 6.4 | 57.80 def ± 21.0 | 411.26 de ± 206.2 | 83.69 cd ± 47.8 |
M2F1 | 22.74 b ± 9.3 | 139.7 ab ± 65.9 | 34.46 b ± 8.2 | 67.88 ab ± 46.9 | 515.20 ab ± 298.3 | 112.12 ab ± 111.4 |
M2F2 | 20.97 bc ± 8.6 | 117.0 bcd ± 55.8 | 30.05 cd ± 6.5 | 64.44 bc ± 46.5 | 473.07 bc ± 282.4 | 97.75 bc ± 66.4 |
M2F3 | 25.23 a ± 8.1 | 153.3 a ± 98.6 | 42.46 a ± 0.3 | 74.54 a ± 54.6 | 552.60 a ± 310.8 | 130.00 a ± 93.7 |
LSD (0.05) | 1.8 | 30.0 | 4.3 | 11.1 | 47.0 | 24.7 |
Treatments | Root Length (cm) | Nodules Plant−1 (no) | N Uptake (kg ha−1) | |
---|---|---|---|---|
Molybdenum | Grain | Stover | ||
Interaction | ||||
M0F0 | 20.3 ± 2.5 | 31.0 f ± 1.5 | 29.36 f ± 2.2 | 22.07 f ± 5.4 |
M0F1 | 23.5 ± 3.2 | 34.5 ef ± 2.2 | 40.83 d ± 2.1 | 39.62 de ± 2.6 |
M0F2 | 24.9 ± 0.5 | 44.0 de ± 4.6 | 41.69 d ± 0.5 | 36.22 e ± 4.8 |
M0F3 | 27.7 ± 2.1 | 47.0 d ± 3.2 | 47.93 cd ± 0.8 | 44.38 bcd ± 2.5 |
M1F0 | 28.3 ± 2.5 | 62.0 bc ± 3.7 | 36.62 e ± 1.0 | 34.10 ± 1.9 |
M1F1 | 28.5 ± 4.1 | 56.0 cd ± 1.2 | 50.83 bc ± 2.1 | 56.20 a ± 1.0 |
M1F2 | 29.8 ± 2.0 | 57.0 cd ± 1.0 | 46.02 d ± 3.,2 | 43.67 bcd ± 2.0 |
M1F3 | 31.3 ± 0.4 | 57.0 cd ± 1.5 | 53.25 ab ± 2.5 | 42.16 cd ± 2.2 |
M2F0 | 29.3 ± 0.9 | 53.0 cde ± 0.8 | 47.19 cd ± 4.7 | 47.26 b ± 3.4 |
M2F1 | 30.5 ± 1.0 | 62.0 bc ± 3.1 | 55.91 a ± 3.1 | 47.12 b ± 3.6 |
M2F2 | 27.5 ± 2.5 | 69.0 ab ± 2.3 | 49.93 bc ± 2.0 | 44.30 bcd ± 0.6 |
M2F3 | 30.5 ± 2.3 | 73.0 a ± 1.0 | 55.39 a ± 1.0 | 46.15 bc ± 2.7 |
LSD (0.05) | NA | 10.5 | 3.54 | 4.87 |
Treatments | Mobilization Efficiency | Physiological Efficiency (q g−1) | ||||
---|---|---|---|---|---|---|
Zn | Fe | Mo | Zn | Fe | Mo | |
M0F0 | 0.781 b ± 0.02 | 0.602 c ± 0.06 | 0.858 c ± 0.01 | - | - | - |
M0F1 | 0.867 a ± 0.03 | 0.639 bc ± 0.04 | 0.894 abc ± 0.04 | 0.368 bc ± 0.02 | 0.056 b ± 0.001 | 0.281 abc ± 0.02 |
M0F2 | 0.952 a ± 0.05 | 0.616 bc ± 0.01 | 0.709 d ± 0.04 | 0.355 bc ± 0.01 | 0.057 b ± 0.005 | 0.337 ab ± 0.04 |
M0F3 | 0.852 a ± 0.09 | 0.718 abc ± 0.06 | 0.874 bc ± 0.07 | 0.389 bc ± 0.01 | 0.057 b ± 0.005 | 0.268 abc ± 0.03 |
M1F0 | 0.726 b ± 0.1 | 0.728 ab ± 0.08 | 0.922 abc ± 0.11 | 0.499 ab ± 0.05 | 0.068 a ± 0.002 | 0.342 a ± 0.03 |
M1F1 | 0.855 ab ± 0.12 | 0.733 ab ± 0.11 | 0.919 abc ± 0.15 | 0.385 bc ± 0.09 | 0.056 b ± 0.004 | 0.254 abc ± 0.01 |
M1F2 | 0.848 a ± 0.07 | 0.728 ab ± 0.12 | 0.708 d ± 0.17 | 0.388 bc ± 0.12 | 0.057 b ± 0.001 | 0.325 ab ± 0.01 |
M1F3 | 0.890 a ± 0.02 | 0.761 a ± 0.11 | 0.932 abc ± 0.10 | 0.354 bc ± 0.11 | 0.056 b ± 0.001 | 0.246 abc ± 0.02 |
M2F0 | 0.738 b ± 0.01 | 0.733 ab ± 0.06 | 0.956 ab ± 0.07 | 0.572 a ± 0.12 | 0.069 a ± 0.004 | 0.350 a ± 0.09 |
M2F1 | 0.885 a ± 0.01 | 0.809 a ± 0.02 | 0.918 abc ± 0.09 | 0.359 bc ± 0.06 | 0.051 c ± 0.003 | 0.224 bc ± 0.11 |
M2F2 | 0.879 a ± 0.03 | 0.761 a ± 0.05 | 0.945 abc ± 0.05 | 0.361 bc ± 0.05 | 0.057 b ± 0.001 | 0.273 abc ± 0.12 |
M2F3 | 0.949 a ± 0.05 | 0.824 a ± 0.04 | 0.969 a ± 0.01 | 0.323 c ± 0.04 | 0.052 c ± 0.002 | 0.195 c ± 0.11 |
LSD (0.05) | 0.16 | 0.12 | 0.09 | 0.15 | 0.001 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Kaur, J.; Verma, V.; Kaur, M.; Singh, P.; Brestic, M.; Gaber, A.; Hossain, A. Interactive Effects of Molybdenum, Zinc and Iron on the Grain Yield, Quality, and Nodulation of Cowpea (Vignaunguiculata (L.) Walp.) in North-Western India. Molecules 2022, 27, 3622. https://doi.org/10.3390/molecules27113622
Dhaliwal SS, Sharma V, Shukla AK, Kaur J, Verma V, Kaur M, Singh P, Brestic M, Gaber A, Hossain A. Interactive Effects of Molybdenum, Zinc and Iron on the Grain Yield, Quality, and Nodulation of Cowpea (Vignaunguiculata (L.) Walp.) in North-Western India. Molecules. 2022; 27(11):3622. https://doi.org/10.3390/molecules27113622
Chicago/Turabian StyleDhaliwal, Salwinder Singh, Vivek Sharma, Arvind Kumar Shukla, Janpriya Kaur, Vibha Verma, Manmeet Kaur, Prabhjot Singh, Marian Brestic, Ahmed Gaber, and Akbar Hossain. 2022. "Interactive Effects of Molybdenum, Zinc and Iron on the Grain Yield, Quality, and Nodulation of Cowpea (Vignaunguiculata (L.) Walp.) in North-Western India" Molecules 27, no. 11: 3622. https://doi.org/10.3390/molecules27113622
APA StyleDhaliwal, S. S., Sharma, V., Shukla, A. K., Kaur, J., Verma, V., Kaur, M., Singh, P., Brestic, M., Gaber, A., & Hossain, A. (2022). Interactive Effects of Molybdenum, Zinc and Iron on the Grain Yield, Quality, and Nodulation of Cowpea (Vignaunguiculata (L.) Walp.) in North-Western India. Molecules, 27(11), 3622. https://doi.org/10.3390/molecules27113622