3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications
Abstract
:1. Introduction
2. Synthesis and Processing Approach Using Chemical Vapor Deposition Method on Various 3D-Shaped Catalytic Templates
2.1. Catalytic Templates
2.2. Precursors Employed in the CVD Process
2.3. Free-Standing 3D Graphene Foams
3. Properties of 3D Graphene Foams
4. Energy-Related Applications
4.1. Energy Storage-Supercapacitors
4.2. Energy Storage-Batteries
4.2.1. Lithium-Ion Batteries (LIB)
4.2.2. Lithium-Sulphur Batteries (LSB)
4.2.3. Zn-Air Batteries
4.3. Energy Conversion–Dye-Sensitized Solar Cells
4.4. Energy Conversion–Photodetectors
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, F.; Seo, T.S. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Funct. Mater. 2010, 20, 1930–1936. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 2010, 4, 7358–7362. [Google Scholar] [CrossRef]
- Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A.L.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P.M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Shi, Y.; Shi, W.; Lu, G.; Huang, X.; Yan, Q.; Zhang, Q.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Fang, S.; Hu, Y.H. 3D graphene materials: From understanding to design and synthesis control. Chem Rev. 2020, 120, 10336–10453. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y. Three-dimensional graphene networks: Synthesis, properties and applications. Natl. Sci. Rev. 2015, 2, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Cong, H.-P.; Chen, J.-F.; Yu, S.-H. Graphene-based macroscopic assemblies and architectures: An emerging material system. Chem. Soc. Rev. 2014, 43, 7295–7325. [Google Scholar] [CrossRef]
- Xia, X.H.; Chao, D.L.; Zhang, Y.Q.; Shen, Z.X.; Fan, H.J. Three-dimensional graphene and their integrated electrodes. Nano Today 2014, 9, 785–807. [Google Scholar] [CrossRef]
- Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, M.; Liu, B.; Wang, F.; Wei, G.; Su, Z. Graphene foams for electromagnetic interference shielding: A review. ACS Appl. Nano Mater. 2020, 3, 6140–6155. [Google Scholar] [CrossRef]
- Banciu, C.A.; Patroi, D.; Lungulescu, E.M.; Sbarcea, B.G.; Marinescu, V.E. Freestanding graphene networks. J. Optoelectron. Adv. Mater. 2021, 23, 173–182. [Google Scholar]
- Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M.H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil−water separation. J. Am. Chem. Soc. 2016, 138, 6360–6363. [Google Scholar] [CrossRef]
- Lee, H.C.; Liu, W.-W.; Chai, S.-P.; Mohamed, A.R.; Lai, C.W.; Khe, C.-S.; Voon, C.H.; Hashim, U.; Hidayah, N.M.S. Synthesis of single-layer graphene: A review of recent development. Procedia Chem. 2016, 19, 916–921. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Huang, F.; Bi, H.; Liu, Z.; Wan, D. Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. J. Pow. Sour. 2012, 203, 130–134. [Google Scholar] [CrossRef]
- Kim, B.-J.; Yang, G.; Park, M.J.; Kwak, J.S.; Baik, K.H.; Kim, D.; Kim, J. Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes. Appl. Phys. Lett. 2013, 102, 161902. [Google Scholar] [CrossRef]
- Madito, M.J.; Matshoba, K.S.; Ochai-Ejeh, F.U.; Mongwaketsi, N.; Mtshali, C.B.; Fabiane, M.; Manyala, N. Nickel-copper graphene foam prepared by atmospheric pressure chemical vapour deposition for supercapacitor applications. Surf. Coat. Technol. 2020, 383, 125230. [Google Scholar] [CrossRef]
- Pan, F.; Chen, S.-M.; Li, Y.; Tao, Z.; Ye, J.; Ni, K.; Yu, H.; Xiang, B.; Ren, Y.; Qin, F.; et al. 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv. Funct. Mater. 2018, 28, 1803221. [Google Scholar] [CrossRef]
- Drieschner, S.; Weber, M.; Wohlketzetter, J.; Vieten, J.; Makrygiannis, E.; Blaschke, B.M.; Morandi, V.; Colombo, L.; Bonaccorso, F.; Garrido, J.A. High surface area graphene foams by chemical vapor deposition. 2D Mater. 2016, 3, 045013. [Google Scholar] [CrossRef] [Green Version]
- Xia, D.; Yi, K.; Zheng, B.; Li, M.; Qi, G.; Cai, Z.; Cao, M.; Liu, D.; Peng, L.; Wei, D.; et al. Solvent-free process to produce three dimensional graphene network with high electrochemical stability. J. Phys. Chem. C 2017, 121, 3062–3069. [Google Scholar] [CrossRef]
- Fleming, E.; Kholmanov, I.; Shi, L. Enhanced specific surface area and thermal conductivity in ultrathin graphite foams grown by chemical vapor deposition on sintered nickel powder templates. Carbon 2018, 136, 380–386. [Google Scholar] [CrossRef]
- Tynan, M.K.; Johnson, D.W.; Dobson, B.P.; Coleman, K.S. Formation of 3D graphene foams on soft templated metal monoliths. Nanoscale 2016, 8, 13303–13310. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; De Hosson, J.T.M.; Pei, Y. Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries. Carbon 2019, 144, 713–723. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, C.; Liu, J.; Chabi, S.; Xia, Y.; Zhu, Y. Designing 3D graphene networks via a 3D-printed Ni template. RSC Adv. 2015, 5, 29397–29400. [Google Scholar] [CrossRef] [Green Version]
- Qi, G.; Yang, J.; Bao, R.; Xia, D.; Cao, M.; Yang, W.; Yang, M.; Wei, D. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802–813. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, H.Y.; Yu, Z.M.; Huang, S.; Gao, X.; Wang, B.; Song, S.S.; Guan, E.H.; Wang, W.Q.; Zhang, H.J. A novel 3D porous graphene foam prepared by chemical vapor deposition using nickel nanoparticles: Electrochemical determination of levodopa in the presence of uric acid. Microchem. J. 2019, 147, 163–169. [Google Scholar] [CrossRef]
- Li, W.; Gao, S.; Wu, L.; Qiu, S.; Guo, Y.; Geng, X.; Chen, M.; Liao, S.; Zhu, C.; Gong, Y.; et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci. Rep. 2013, 3, 2125. [Google Scholar] [CrossRef] [Green Version]
- Min, B.H.; Kim, D.W.; Kim, K.H.; Choi, H.O.; Jang, S.W.; Jung, H.-T. Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode. Carbon 2014, 80, 446–452. [Google Scholar] [CrossRef]
- Hsia, B.; Kim, M.S.; Luna, L.E.; Mair, N.R.; Kim, Y.; Carraro, C.; Maboudian, R. Templated 3D ultrathin CVD graphite networks with controllable geometry: Synthesis and application as supercapacitor electrodes. ACS Appl. Mater. Interfaces 2014, 6, 18413–18417. [Google Scholar] [CrossRef] [PubMed]
- Banciu, C.; Lungulescu, M.; Bara, A.; Sbarcea, G.; Patroi, D.; Marinescu, V. Graphene grown by chemical vapor deposition on metal foams. AIP Conf. Proc. 2020, 2206, 050001. [Google Scholar] [CrossRef]
- Dong, Y.; Guo, S.; Mao, H.; Xu, C.; Xie, Y.; Cheng, C.; Mao, X.; Deng, J.; Pan, G.; Sun, J. The growth of graphene on Ni-Cu alloy thin films at a low temperature and its carbon diffusion mechanism. Nanomaterials 2019, 9, 1633. [Google Scholar] [CrossRef] [Green Version]
- Al-Hilfi, S.H.; Derby, B.; Martin, P.A.; Whitehead, J.C. Chemical vapour deposition of graphene on copper-nickel alloys: The simulation of a thermodynamic and kinetic approach. Nanoscale 2020, 12, 15283–15294. [Google Scholar] [CrossRef]
- Huang, M.; Wang, C.; Quan, L.; Nguyen, T.H.-Y.; Zhang, H.; Jiang, Y.; Byun, G.; Ruoff, R.S. CVD Growth of Porous Graphene Foam in Film Form. Matter 2020, 3, 487–497. [Google Scholar] [CrossRef]
- Lee, J.-S.; Ahn, H.-J.; Yoon, J.-C.; Jang, J.-H. Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Phys. Chem. Chem. Phys. 2012, 14, 7938–7943. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kuila, T.; Kim, N.H.; Lee, S.H.; Lee, J.H. Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 2015, 89, 328–339. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M.; Zhang, M.; Peng, L.; Wei, H.; Gao, Y. Facile method to prepare 3D foam-like MnO2 film/multilayer graphene film/Ni foam hybrid structure for flexible supercapacitors. J. Alloy. Compd. 2017, 696, 1159–1167. [Google Scholar] [CrossRef]
- Xiao, T.; Hu, X.; Heng, B.; Chen, X.; Huang, W.; Tao, W.; Wang, H.; Tang, Y.; Tan, X.; Huang, X. Ni(OH)2 nanosheets grown on graphene-coated nickel foam for high-performance pseudocapacitors. J. Alloy. Compd. 2013, 549, 147–151. [Google Scholar] [CrossRef]
- Zhang, Y.; Samani, M.K.; Liu, J. Synthesis and characterization of three-dimensional graphene foams by chemical vapor deposition. In Proceedings of the 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac), Gothenburg, Sweden, 18–20 June 2017; pp. 139–142. [Google Scholar] [CrossRef]
- Reddy, S.K.; Ya’akobovitz, A. Electromechanical behavior of graphene foams. Appl. Phys. Lett. 2019, 115, 211902. [Google Scholar] [CrossRef]
- Kairi, M.I.; Khavarian, M.; Bakar, S.A.; Vigolo, B.; Mohamed, A.R. Recent trends in graphene materials synthesized by CVD with various carbon precursors. J. Mater. Sci. 2018, 53, 851–879. [Google Scholar] [CrossRef]
- Maiyalagan, T.; Dong, X.; Chen, P.; Wang, X. Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. J. Mater. Chem. 2012, 22, 5286–5290. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Wang, J.; Chan-Park, M.B.; Li, X.; Wang, L.; Huang, W.; Chen, P. Supercapacitor electrode based on three-dimensional graphene-polyaniline hybrid. Mater. Chem. Phys. 2012, 134, 576–580. [Google Scholar] [CrossRef]
- Huang, Z.X.; Wang, Y.; Zhu, Y.G.; Shi, Y.; Wong, J.I.; Yang, H.Y. 3D graphene supported MoO2 for high performance binder-free lithium ion battery. Nanoscale 2014, 6, 9839–9845. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Lu, Y.; Jiang, C.; Chen, J.; Mao, P.; Gao, G.; Zhang, L.; Wu, S. Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor. ACS Appl. Mater. Interfaces 2014, 6, 13455–13460. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, M.; Yang, J.; Huang, W.; Dong, X. Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Adv. 2014, 4, 8466–8471. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Qiu, Y.; Pan, Q.; Hu, P. 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloy. Compd. 2015, 620, 31–37. [Google Scholar] [CrossRef]
- Lim, Y.V.; Huang, Z.X.; Wang, Y.; Du, F.H.; Zhang, J.; Chen, T.P.; Ang, L.K.; Yang, H.Y. WS2–3D graphene nano-architecture networks for high performance anode materials of lithium ion batteries. RSC Adv. 2016, 6, 107768–107775. [Google Scholar] [CrossRef]
- Qiao, F.; Yang, J.; Liang, Q.; Wang, X.; Xu, Q.; Wang, Q. Fabrication of 3D graphene/CdTe quantum dots composite through electrophoretic deposition and its electrical properties. J. Mater. Sci. Mater. Electron. 2017, 28, 15333–15337. [Google Scholar] [CrossRef]
- Liu, Z.; Tu, Z.; Li, Y.; Yang, F.; Han, S.; Yang, W.; Zhang, L.; Wang, G.; Xu, C.; Gao, J. Synthesis of three-dimensional graphene from petroleum asphalt by chemical vapour deposition. Mater. Lett. 2014, 122, 285–288. [Google Scholar] [CrossRef]
- Gao, X.; Zheng, L.; Cheng, X.; Xin, W.; Ye, P.; Zhang, D.W. Low-temperature deposition of multilayer graphene with continuous morphology and few defects. J. Mater. Sci. Mater. Electron. 2020, 31, 5807–5813. [Google Scholar] [CrossRef]
- Yavari, F.; Chen, Z.; Thomas, A.V.; Ren, W.; Cheng, H.-M.; Koratkar, N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 2011, 1, 166. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Yue, H.; Zhou, J.; Zhang, J.; Zhang, C.; Gao, X.; Chang, J. Highly selective and sensitive determination of dopamine in the presence of ascorbic acid using a 3D graphene foam electrode. Electroanalysis 2014, 26, 184–190. [Google Scholar] [CrossRef]
- Nakanishi, K.; Aria, A.I.; Berwind, M.F.; Weatherup, R.S.; Eberl, C.; Hofmann, S.; Fleck, N.A. Compressive behavior and failure mechanisms of freestanding and composite 3D graphitic foams. Acta Mater. 2018, 159, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Chen, L.; Sun, Y.; Ma, M.; Fu, L. Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 2015, 92, 177–184. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.; Wu, X.; Liu, J.; Tian, W. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage. Phys. Chem. Chem. Phys. 2016, 18, 908–915. [Google Scholar] [CrossRef]
- Veca, L.M.; Năstase, F.; Banciu, C.; Popescu, M.; Romanițan, C.; Lungulescu, M.; Popa, R. Synthesis of macroporous ZnO-graphene hybrid monoliths with potential for functional electrodes. Diam. Relat. Mater. 2018, 87, 70–77. [Google Scholar] [CrossRef]
- Pettes, M.T.; Ji, H.; Ruoff, R.S.; Shi, L. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 2012, 12, 2959–2964. [Google Scholar] [CrossRef]
- Bi, H.; Huang, F.Q.; Liang, J.; Tang, Y.F.; Lu, X.J.; Xie, X.M.; Jiang, M.H. Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J. Mater. Chem. 2011, 21, 17366–17370. [Google Scholar] [CrossRef]
- Bi, H.; Chen, I.-W.; Lin, T.; Huang, F. A new tubular graphene form of a tetrahedrally connected cellular structure. Adv. Mater. 2015, 27, 5943–5949. [Google Scholar] [CrossRef]
- Bi, H.; Lin, T.; Xu, F.; Tang, Y.; Liu, Z.; Huang, F. New graphene form of nanoporous monolith for excellent energy storage. Nano Lett. 2016, 16, 349–354. [Google Scholar] [CrossRef]
- Shulga, Y.M.; Kabachkov, E.N.; Korepanov, V.I.; Khodos, I.I.; Kovalev, D.Y.; Melezhik, A.V.; Tkachev, A.G.; Gutsev, G.L. The concentration of C(sp3) atoms and properties of an activated carbon with over 3000 m2/g BET surface area. Nanomaterials 2021, 11, 1324. [Google Scholar] [CrossRef]
- Balasubramaniam, S.; Mohanty, A.; Balasingam, S.K.; Kim, S.J.; Ramadoss, A. Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett. 2020, 12, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.; Dou, H.; Wei, G.; Wang, X. Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode. Ceram. Int. 2016, 42, 9858–9865. [Google Scholar] [CrossRef]
- Usman, M.; Pan, L.; Sohail, A.; Mahmood, Z.; Cui, R. Fabrication of 3D vertically aligned silver nanoplates on nickel foam-graphene substrate by a novel electrodeposition with sonication for efficient supercapacitors. Chem. Eng. J. 2017, 311, 359–366. [Google Scholar] [CrossRef]
- Cheng, T.; Yu, B.; Cao, L.; Tan, H.; Li, X.; Zheng, X.; Li, W.; Ren, Z.; Bai, J. Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors. J. Colloid Interface Sci. 2017, 501, 1–10. [Google Scholar] [CrossRef]
- Garakani, M.A.; Abouali, S.; Xu, Z.-L.; Huang, J.; Huang, J.Q.; Kim, J.-K. Heterogeneous, mesoporous NiCo2O4-MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. J. Mater. Chem. A 2017, 5, 3547. [Google Scholar] [CrossRef]
- Liu, S.; Yin, Y.; Hui, K.S.; Hui, K.N.; Lee, S.C.; Jun, S.C. Nickel hydroxide/chemical vapor deposition-grown graphene/nickel hydroxide/nickel foam hybrid electrode for high performance supercapacitors. Electrochim. Acta 2019, 297, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.; Kang, J.; Li, J.; Liu, E.; Shi, C.; Zhang, Z.; Zhang, X.; Zhao, N. Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance. Nano Energy 2016, 24, 158–164. [Google Scholar] [CrossRef]
- Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zhang, L.L.; MacDonald, A.H.; Ruoff, R.S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317. [Google Scholar] [CrossRef]
- Güneş, F. A direct synthesis of Si-nanowires on a 3D porous graphene as high performance anode material for Li-ion batteries. RSC Adv. 2016, 6, 1678–1685. [Google Scholar] [CrossRef]
- Luo, J.; Liu, J.; Zeng, Z.; Ng, C.F.; Ma, L.; Zhang, H.; Lin, J.; Shen, Z.; Fan, H.J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Lv, W.; Wen, K.; Li, P.; Qi, F.; Wang, Z.; Zhang, W.; Li, Y.; Qin, W.; et al. Highly-flexible 3D Li2S/graphene cathode for high-performance lithium sulfur batteries. J. Power Sources 2016, 327, 474–480. [Google Scholar] [CrossRef]
- Xi, K.; Kidambi, P.R.; Chen, R.; Gao, C.; Peng, X.; Ducati, C.; Hofmann, S.; Kumar, R.V. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 2014, 6, 5746–5753. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.-L.; Tang, C.; Peng, H.-J.; Zhu, L.; Cheng, X.-B.; Huang, J.-Q.; Zhu, W.; Zhang, Q. 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries. Small 2015, 11, 5243–5252. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.-J.; Du, P.; Hu, K.; Gao, J.; Li, H.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 2019, 31, 1900843. [Google Scholar] [CrossRef] [PubMed]
- Nazeeruddin, M.K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390. [Google Scholar] [CrossRef]
- Chang, Q.; Huang, L.; Wang, J.; Ma, Z.; Li, P.; Yan, Y.; Zhu, J.; Xu, S.; Shen, L.; Chen, Q.; et al. Nanoarchitecture of variable sized graphene nanosheets incorporated into 3D graphene network for DSSC. Carbon 2015, 85, 185–193. [Google Scholar] [CrossRef]
- Tang, B.; Yu, H.; Huang, W.; Sun, Y.; Li, X.; Li, S.; Ma, T. Three-dimensional graphene networks and RGO-based counter electrode for DSSC. RSC Adv. 2019, 9, 15678–15685. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.-J.; Kim, I.K.-H.; Yoon, J.-C.; Kim, S.-I.; Jang, J.-H. p-Doped three-dimensional graphene nanonetworks superior to platinum as a counter electrode for dye-sensitized solar cells. Chem. Commun. 2014, 50, 2412–2415. [Google Scholar] [CrossRef]
- Tang, B.; Hu, G.; Gao, H.; Shi, Z. Three-dimensional graphene network assisted high performance dye sensitized solar cells. J. Power Sources 2013, 234, 60–68. [Google Scholar] [CrossRef]
- Tang, B.; Ji, G.; Wang, Z.; Chen, H.; Li, X.; Yu, H.; Li, S.; Liu, H. Three-dimensional graphene networks and reduced graphene oxide nanosheets co-modified dye-sensitized solar cells. RSC Adv. 2017, 7, 45280–45286. [Google Scholar] [CrossRef] [Green Version]
- Loeblein, M.; Bruno, A.; Loh, G.C.; Bolker, A.; Saguy, C.; Antila, L.; Tsang, S.H.; Teo, E.H.T. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application. Chem. Phys. Lett. 2017, 685, 442–450. [Google Scholar] [CrossRef]
- Dawlaty, J.M.; Shivaraman, S.; Strait, J.; George, P.; Chandrashekhar, M.; Rana, F.; Spencer, M.G.; Veksler, D.; Chen, Y. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 2008, 93, 131905. [Google Scholar] [CrossRef] [Green Version]
- Boruah, B.D.; Mukherjee, A.; Sridhar, S.; Misra, A. Highly dense ZnO nanowires grown on graphene foam for UV photodetection. ACS Appl. Mater. Interfaces 2015, 7, 10606–10611. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Yu, Y.; Chen, Z.; Li, Q.; Li, T.; Li, J.; Zhao, H.; Sheng, Q.; Yan, F.; et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams. Photonics Res. 2020, 8, 368–374. [Google Scholar] [CrossRef]
- Ge, Z.; Xu, N.; Zhu, Y.; Zhao, K.; Ma, Y.; Li, G.; Chen, Y. Visible to Mid-Infrared photodetection based on flexible 3D graphene/organic hybrid photodetector with ultrahigh responsivity at ambient conditions. ACS Photonics 2022, 9, 59–67. [Google Scholar] [CrossRef]
Topics | Results from Web of Science | Articles | Review Articles | Open Access | Peak Year |
---|---|---|---|---|---|
3D graphene foam + chemical vapor deposition | 298 | 283 | 15 | 47 | 2018 (46) |
3D graphene foam + chemical vapor deposition + energy storage | 97 | 89 | 8 | 16 | 2016 (19) |
3D graphene foam + chemical vapor deposition + energy conversion | 23 | 21 | 2 | 4 | 2016 (7) |
3D graphene foam + chemical vapor deposition + energy storage + energy conversion | 20 | 18 | 2 | 4 | 2016 (6) |
3D graphene foam + chemical vapor deposition + supercapacitors | 76 | 68 | 8 | 13 | 2016 (14) |
3D graphene foam + chemical vapor deposition + batteries | 63 | 55 | 8 | 10 | 2016 (15) |
3D graphene foam + chemical vapor deposition + supercapacitors + batteries | 14 | 11 | 3 | 2 | 2017 (4) |
3D Graphene Macrostructures | SSA (m2·g−1) | Density (mg·cm−3) | Number of Layers | Pore Size | Electrical/Thermal Conductivity (S·cm−1/Wm−1K−1) | Mechanical Property | Ref. |
---|---|---|---|---|---|---|---|
Graphene foam (GF) | ~850 | ~5 | ~3 average | - | ~10 S·cm−1 (GF/PDMS composite) | Flexible (GF/PDMS composite) | [4] |
3D graphene foam | - | ~3 | 1–3 | ~300 nm (average) | ~30 Ω | No significant electrical resistance change over 200 mechanical bending cycles | [14] |
3D graphene network | 500–600 | - | ~3 | - | ~600 S·cm−1 (1.6 Ω·sq−1) | - | [16] |
3D graphene films | - | - | 7–11 or 6–12 | 1–4 μm | 11.6 S·cm−1 (3D-GF-1000/PDMS) | Stretching the sample without any apparent cracks observed | [19] |
Graphene foams | - | - | 1-few-multilayer | ~1 μm | ~20 Ω (equivalent series resistance) | - | [20] |
Solvent-free 3D graphene network | - | ~50–100 | 1–4 | 10–20 μm | ~1600 S·cm−1 | Strong enough to avoid collapsing without the copper skeletons support | [21] |
Ultrathin graphite foam and hybrid foams | 1.61 (UGF) 1.19–24.2 (hybrid foams) | 19 (UGF) 48–188 (hybrid foams) | - | - | 2.4 Wm−1K−1 (UGF) 2.6–16.5 Wm−1K−1 (effective composite thermal conductivity) | - | [22] |
3D micron-porous graphene foam | 316 | ~28 | 7–10 | - | 451 S·cm−1 | - | [24] |
Hierarchical graphene foam | - | - | 1–13 | several hundreds of micrometers | 2.28 Wm−1K−1 (thermal conductivity of HGF in paraffin wax) | - | [26] |
High-density three-dimension graphene macroscopic objects (3D-GMOs) | ~560 | ~22 | 1–10 | 1–50 μm | ~12 S·cm−1 | - | [28] |
3D graphene foams | 145 | 73 | >5 | Micron scale pores | 17.5 S·cm−1 | Flexible covered with PDMS | [29] |
3D graphene foam | ~850 | ~5 (corresponding to 99.7%) | 1-few | - | ~10 S·cm−1 | Mechanically robust and flexible | [52] |
3D graphene networks | 500–600 | 4.8–5.5 | ≤3 | 60–130 µm | 550–600 S·cm−1 | - | [59] |
3D tubular graphene network | 970 | 1.6–153 (9.8) | 2–3 | - | - | Young’s modulus 1.74 MPa at ρ = 9.8 mg·cm−3 | [60] |
3D nanoporous graphene monolith | 1591 | 40–60 | 1–2 | ∼2.62 cm3·g−1 pore volume | 25.2/32.5 S·cm−1 | Yield stress and modulus >0.15 and 9.5 MPa | [61] |
Electrode Configuration | Specific Capacitance (Electrode/Supercapacitor) | Energy Density (Max) | Power Density (Max) | Ref. |
---|---|---|---|---|
flexible 3D graphene networks, loaded with MnO2 | 130 Fg−1, calculated for the entire electrode; 465 Fg−1 for the sample with mass loading of 0.1 mg·cm−2 at a scan rate of 2 mVs−1; | 6.8 Whkg−1 | 62 Wkg−1 | [64] |
graphene/carbon nanotubes/Mn2O3; (graphene/CNT/Mn2O3) | ~370 Fg−1 at 100 mAg−1; ~180 Fg−1 after ~1000 cycles of charge/discharge; | [46] | ||
flower-like NiCo2O4 fabricated on 3D graphene foam | 1402 Fg−1 at the current density of 1 Ag−1 | [36] | ||
3Dgraphene/Ni3S2 | 11.529 F·cm−2 at 2 mA·cm−2; 10.424 F·cm−2 at 5 mA·cm−2; 9.448 F·cm−2 at 10 mA·cm−2; 9.12 F·cm−2 at 20 mA·cm−2; | [65] | ||
3D foam-like MnO2 film/multilayer graphene film/Ni foam | 714 mF·cm−2 (14.28 F·cm−3); | 0.634 mWh·cm−3 | 126 mW·cm−3 | [37] |
3D vertically aligned Ag nanoplates on nickel foam-graphene (NFG) | 900 Fg−1 at an applied current density of 0.5 Ag−1; | 35 Whkg−1 at a power density of 0.91 kWkg−1; 26 Whkg−1 at a power density of 12.4 kWkg−1; | [66] | |
nitrogen-doped graphene foam/CNT/MnO2 | 284 Fg−1 at the scan rate of 2 mVs−1; | [67] | ||
graphene on both Ni and Ni-Cu foams | 289.7 Fg−1 at the current density of 1 Ag−1; | [18] | ||
3DG/ZnO | 554.23 Fg−1 at 5 mVs−1 | 650 Ahg−1 | [47] | |
3D GF with small pore size | 100 Fg−1 | 11.2 Whkg−1 | 10.1 kWkg−1 | [20] |
NiCo2O4-MnO2/ graphene foam | 2577 Fg−1 at the current density of 1 Ag−1 | 55.1 Whkg−1 | 187.5 Wkg−1 | [68] |
Ni (OH)2/G-NF/Ni (OH)2 | 991 Cg−1 at a current density of 1 Ag−1 | 49.5 Whkg−1 7500 Whkg−1 | 750 Wkg−1 26.9 Wkg−1 | [69] |
hierarchical nanoporous graphene (hnp-G) | 38.2 F·cm−3 | 2.65 mWh·cm−3 | 20.8 W·cm−3 | [70] |
NiO on 3D graphene | ~816 Fg−1 | [5] | ||
nickel foam coated with graphene Ni(OH)2/graphene | 1440 Fg−1 at charge/discharge current density of 10 Ag−1 | current density of 20 Ag−1 | [38] | |
close-packed hollow 3D graphitic bicontinuous foam | ~20–30 µF·cm−2; 1 mF·cm−2 was achieved for a 10-layer sample of 0.5 µm diameter spheres | 382 mJ·cm−3 | 3.2 W·cm−3 | [30] |
Graphene-Based Materials | Capacity | Ref. |
---|---|---|
Lithium-Ion Batteries (LIB) | ||
MoO2 nanoparticles grown on 3D-graphene | 975.4 mAhg−1 at the 50 mAg−1 current density; 537.3 mAhg−1 at the 1000 mAg−1 current density; | [44] |
WS2-3D graphene | 927 mAhg−1 at the 100 mAg−1 current density; 416 mAhg−1 at the 1500 mAg−1 current density; | [48] |
MnO2 nanoflakes assembled on GF | 1200 mAhg−1 at the 500 mAg−1 current density; ~500 mAhg−1 at the 5 Ag−1 current density; | [55] |
GF/SiNWs composite | 2949 mAhg−1 at the 200 mAg−1 current density; | [72] |
NiMoO4 (NWAs)/3DGF composites | 1088.02 mAhg−1 at the 200 mAg−1 current density; 867.86 mAhg−1 after 150 cycles | [56] |
3D graphene/LiFePO4 composite | 109 mAhg−1 at 10C 158 mAhg−1 at 0.2C | [16] |
mesoporous nanostructure Fe3O4 on 3D graphene | 780 mAhg−1 at 1C and 350 mAhg−1 at 10C up to 500 cycles; | [73] |
Lithium-Sulfur Batteries (LSB) | ||
3D Li2S/graphene hierarchical architecture | 894.7 mAhg−1 at 0.1C; (1C corresponds to a current density value of 1166 mAg−1); | [74] |
sulphur-FLG foam three-dimensional cathode | high-rate discharge capacity retention for up to 400 discharge/charge cycles at a high current density of 3200 mAg−1 | [75] |
3D graphene with mesopores | 1187 mAhg−1 at 1C; (1C = 1672 mAg−1, based on sulfur) 852 mAhg−1 after 500 cycles | [76] |
metal-free sulfur cathode using 3D-MPGF as a current collector | 1187 mAhg−1 at 0.1C and 618 mAhg−1 at 10C up to 50 cycles; | [24] |
Zn-air Batteries | ||
codoped np-graphene-based Zn-air battery | power density of 83.8 mW·cm−2 | [77] |
Electrode Materials | Jsc (Short Circuit Current Density) | Voc (Open Circuit Voltage) | FF (Fill Factor) | Overall Efficiency | Observations | Ref. |
---|---|---|---|---|---|---|
Standard TiO2/Pt commercial | 18.2 mA·cm−2 5.09 mA | 720 mV 691 mV | 73 61 | 10 5.93 | [78] Solaronix | |
CE: L-GQD/GF CE: H-GN/GF | 15.21 mA·cm−2 13.52 mA·cm−2 | 760 mV 740 mV | 72 70 | 7.7 7.1 | CE’s SSA: ~422 m2g−1 CE’s SSA: ~330 m2g−1 | [79] |
CE: RGO-3DGN WE: RGO-TiO2 | 20.6 mA·cm−2 | 700 mV | 65.2 | 9.79 | [80] | |
CE: p-doped 3D-NFG | 17.2 mA·cm−2 | 713 | 69 | 8.46 | 3D-NFG from PVA-NiCl2 × 6H2O films, and nitrogen doping in HNO3 | [81] |
CE: 3D-NFG | 12.2 mA | 710 mV | 60 | 5.2 | 3D-NFG from PVA-NiCl2 × 6H2O films | [35] |
CE: Pt WE: 1wt% 3DGN -P25 composite | 15.4 mA·cm−2 | 673 mV | 63.5 | 6.58% | The thinner the WE, the higher the efficiency | [82] |
WE:3DGN-RGO-TiO2 | 16.3 mA·cm−2 | 682 mV | 63.7 | 7.08 | 1% RGO | [83] |
Oxidized three–dimensional graphene (o-3D-GN) | - | - | - | - | A stand-alone, TiO2-free photoanode for DSSC. | [84] |
PD Architecture | External Quantum Efficiency/Responsivity | Illumination Power and Applied Bias | λ (Wavelength) | Response Time Rise/Recovery | Ref. |
---|---|---|---|---|---|
ZnO NW on GF | 2490.8% | 1.3 mW·cm−2 @ 5 V | UV | 9.5/38 s | [86] |
3DGF photodiode with Au-Ti electrodes | 0.2–0.02 mA·W−1 104 A·W−1–maximum 2.4 × 106 mA·W−1 | 0.05 V −0.1 V 5 V | UV to µW (405 nm−1.36 mm) 532 nm 300 nm | 40 ms 48/116 ms | [87] |
Photoconductive characteristics of GO sponge in the organic PD based on the classical P3HT-PCBM BHJ configuration | Vis to MIR | 24/114 ms 1.04/2.52 s | [88] | ||
5.8 × 105 A·W−1 | 0.4 nW·cm−2 @ −1 V | 520 nm | |||
6.25 × 103 A·W−1 | 10 nW·cm−2 @ −1 V | 520 nm | |||
2 × 104 A·W−1 | 1 nW·cm−2 @ −1 V | 520 nm | |||
Similar R | - | 450 and 635 nm | |||
0.6 A·W−1 | 2.4 mW·cm−2 | 1000 nm | |||
108 A·W−1 | 4 µW·cm−2 | 1000 nm | |||
Clear and stable R | 700 mW·cm−2 | 10.6 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banciu, C.A.; Nastase, F.; Istrate, A.-I.; Veca, L.M. 3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications. Molecules 2022, 27, 3634. https://doi.org/10.3390/molecules27113634
Banciu CA, Nastase F, Istrate A-I, Veca LM. 3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications. Molecules. 2022; 27(11):3634. https://doi.org/10.3390/molecules27113634
Chicago/Turabian StyleBanciu, Cristina Antonela, Florin Nastase, Anca-Ionela Istrate, and Lucia Monica Veca. 2022. "3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications" Molecules 27, no. 11: 3634. https://doi.org/10.3390/molecules27113634
APA StyleBanciu, C. A., Nastase, F., Istrate, A. -I., & Veca, L. M. (2022). 3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications. Molecules, 27(11), 3634. https://doi.org/10.3390/molecules27113634