Next Article in Journal
Nanoemulsions of Jasminum humile L. and Jasminum grandiflorum L. Essential Oils: An Approach to Enhance Their Cytotoxic and Antiviral Effects
Next Article in Special Issue
Syntheses and Applications of 1,2,3-Triazole-Fused Pyrazines and Pyridazines
Previous Article in Journal
Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
Previous Article in Special Issue
Synthesis and Biochemical Evaluation of 8H-Indeno[1,2-d]thiazole Derivatives as Novel SARS-CoV-2 3CL Protease Inhibitors
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Synthesis and Luminescent Properties of s-Tetrazine Derivatives Conjugated with the 4H-1,2,4-Triazole Ring

1
Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, PL-44100 Gliwice, Poland
2
Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, PL-90924 Lodz, Poland
*
Author to whom correspondence should be addressed.
Molecules 2022, 27(11), 3642; https://doi.org/10.3390/molecules27113642
Submission received: 11 May 2022 / Revised: 1 June 2022 / Accepted: 2 June 2022 / Published: 6 June 2022
(This article belongs to the Special Issue Synthesis of Heteroaromatic Compounds)

Abstract

:
New derivatives obtained by the combination of unique 1,2,4,5-tetrazine and 4H-1,2,4-triazole rings have great application potential in many fields. Therefore, two synthetic few-step methodologies, which make use of commercially available 4-cyanobenzoic acid (method A) and ethyl diazoacetate (method B), were applied to produce two groups of the aforementioned heterocyclic conjugates. In both cases, the target compounds were obtained in various combinations, by introducing electron-donating or electron-withdrawing substituents into the terminal rings, together with aromatic or aliphatic substituents on the triazole nitrogen atom. Synthesis of such designed systems made it possible to analyze the influence of individual elements of the structure on the reaction course, as well as the absorption and emission properties. The structure of all products was confirmed by conventional spectroscopic methods, and their luminescent properties were also determined.

Graphical Abstract

1. Introduction

Over the years, scientists from around the world have been keen to study heterocyclic organic compounds, and nitrogen-rich systems have proven to be particularly valuable. One of the most interesting areas of this research is the synthesis and properties of 1,2,4,5-tetrazine derivatives (s-tetrazine). This unique ring contains four nitrogen atoms, which is the maximum content in a stable six-membered system. This specific structure has attracted scientists’ attention as an important candidate for high energy density materials (HEDMs, A, Scheme 1), as its thermal decomposition leads to ring opening and the release of a nitrogen molecule [1,2,3]. The high nitrogen content has also encouraged research into its biological activity (B, Scheme 1), which has resulted in compounds that have anti-tubercular, anti-cancer, or anti-malarial effects [4,5,6]. Moreover, its high reactivity in Diels–Alder reactions with inverse electron demand determines its application potential in bioorthogonal chemistry (C, Scheme 1) [7,8,9,10]. Important features of the s-tetrazine ring are its low-energy n→π electronic transitions, which are especially valuable from the point of view of optoelectronics (Scheme 1). It can be used in the production of organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and solar cells. Due to the high electronegativity of nitrogen, the ring in question is also characterized by a high electron deficit, and thus a high electron affinity. Consequently, it is also a promising building block in ambipolar and n-type materials [11,12].
The five-membered compound, which, like s-tetrazine, shows high nitrogen content, is 4H-1,2,4-triazole. In this case, too, the presence of nitrogen is associated with a high affinity toward biological macromolecules, which results in biological activity, such as the possession of antiviral, anti-migraine, antifungal, anti-cancer, or psychotropic properties, and various commercially available products incorporate 4H-1,2,4-triazole rings (E, Scheme 1) [13,14,15,16]. Another consequence of the nitrogen atoms is the aforementioned change in the electron density distribution, and the associated ability to transport electrons, making it an acceptor unit (F, Scheme 1). Therefore, 4H-1,2,4-triazole derivatives are often used in the production of blue OLEDs [17,18,19,20].
Many synthetic methods can be found in the literature for both s-tetrazine and 4H-1,2,4-triazole derivatives. The five-membered heterocycle is usually obtained from acyclic compounds such as N,N’-diacylhydrazines, N-cyanoguanidine, isothiocyanates, hydrazides, aminoethylidenehydrazones, aldehydes, and semicarbazides [21]. For the six-membered s-tetrazine system, the Pinner method is the most popular: cyclization, supported by an activating agent, occurs as a result of the reaction of carbonitriles with hydrazine hydrate. The product of this transformation is the corresponding dihydro derivative that requires oxidation to give the desired ring [22,23]. This approach is distinguished by a wide range of substrates, but also the ability to synthesize both symmetrical and unsymmetrical products. Our research to date proves that, among its other uses, it is perfect for the preparation of complex conjugated systems that contain additional five-membered rings. In recent years, we have successfully synthesized s-tetrazine conjugated via a 1,4-phenylene linker with a range of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 4H-1,2,4-triazoles; however, in the latter case, we have so far only obtained symmetrical systems [24,25,26]. In a continuation of our research, we decided to use the Pinner method to prepare unsymmetrical ones. Moreover, encouraged by the improvement in the luminescent properties after the introduction of the 4H-1,2,4-triazole ring, we found that the directly connected heterocycles could be the basis of very promising products. Therefore, we focused on modifying the methodology used to prepare analogous compounds containing 1,3,4-oxadiazole and 1,3,4-thiadiazole, so as to introduce the triazole ring instead [27]. This study was planned to make it possible not only to obtain new, unknown compounds, but also to analyze the influence of their structure on their absorption and emission properties.

2. Results

2.1. Synthesis

As already mentioned in previous studies, we obtained a series of symmetric s-tetrazine derivatives conjugated via a 1,4-phenylene linker with a 4H-1,2,4-triazole ring. For this purpose, it was necessary to prepare appropriate precursors for the Pinner reaction, i.e., carbonitriles containing a five-membered ring (Scheme 2, 6ah). Initially, from the commercially available 4-cyanobenzoic acid (1), we obtained the hydrazide (2) in a two-step reaction sequence. The original assumption was to treat it with acid chlorides (3ad) in order to obtain diacyl derivatives (4ad), and then convert them into the corresponding imidoyl chlorides (5ad), which, under the influence of amines, would be cyclized to the assumed products (6ah). This approach, however, turned out to be very troublesome due to the formation of the undesirable products 7ad. This prompted us to change the reaction path by synthesizing other imidoyl chlorides (8ah) from the corresponding amides. These intermediates were treated with hydrazide (3), resulting in the target precursors (6ah) in satisfactory yields [26].
The presence of the carbonitrile moiety allows the formation of a second heterocycle, which is s-tetrazine. Under the conditions of the Pinner method, the treatment of the precursors 6ah with hydrazine hydrate, in the presence of an activating agent, leads to the formation of unoxidized derivatives of the assumed products 9al. One of the popular activating agents is sulfur, with the help of which we have successfully obtained symmetrical s-tetrazine derivatives connected via a 1,4-phenylene linker with a 4H-1,2,4-triazole ring, and extended systems containing 1,3,4-oxadiazole and 1,3,4-thiadiazole cores [24,25,26]. Therefore, we also began to research the synthesis of unsymmetrical compounds with the use of this methodology, which allowed us to obtain the product 10a with a yield of 42% (Entry 1, Table 1). In connection with literature reports on the possibility of improving this yield with the use of zinc catalysts [28,29], we attempted to repeat the described transformation with its participation and, as a result, the yield increased to 56% (Entry 2, Table 1). An analogous test was performed for derivatives containing an aliphatic chain attached to the triazole nitrogen atom, instead of an aromatic ring (10g). Again, the yield improved from 35% to 50% (Entries 8 and 9, Table 1). These results were an important reason to modify the previously used procedure. Such a modified approach resulted in obtaining a series of unsymmetrical systems containing both electron-donating and electron-withdrawing substituents in the terminal ring. Traces of two symmetrical products were also detected. As in the previous studies, the oxidation was carried out with hydrogen peroxide (Scheme 3).
The next step was the synthesis of products in which s-tetrazine is directly linked to the 4H-1,2,4-triazole ring. As part of our previous research, we had already obtained similar compounds containing 1,3,4-oxadiazole and 1,3,4-thiadiazole, but their synthesis required the use of microwave irradiation [27]. The methodology was based on the use of commercially available ethyl diazoacetate (11), which was transformed into a dihydrazide (12) in a sequence of several transformations (Scheme 4). The product was then treated with acid chlorides to prepare bisdiacyl derivatives (13). In this case, too, we intended to convert these compounds into imidoyl chlorides (14), which could then be cyclized to triazoles (15a) under the influence of amines. However, the high reactivity of such derivatives again caused serious difficulties. Despite the maximum shortening of the reaction times, which had a beneficial effect in previous studies, the observed undesirable derivatives of 1,3,4-oxadiazole (16) were predominantly formed. Additionally, isolation of the desired product from the reaction mixture was extremely problematic and, as a result, only traces of the target compound were obtained.
Based on the experience of obtaining triazole precursors for the Pinner reaction, where we encountered a similar problem, we decided to use an alternative methodology. For this purpose, the dihydrazide 12 was reacted with a range of imidoyl chlorides (8ah) previously obtained from amides (Scheme 5). This approach was effective for both systems containing an aromatic ring (15ad) and an aliphatic chain (15eh) on the triazole nitrogen atom. In addition, derivatives containing both electron-donating and electron-withdrawing moieties attached to a terminal aromatic ring were obtained. Compared to the unsubstituted products, the electron-withdrawing nitro group showed a decreased yield (Entries 4 and 8, Table 2), while for the electron-donating groups (methoxy and tert-butyl) the yield was increased (Entries 2, 3, 6, 7, Table 2). The presence of an aliphatic chain also had a beneficial effect on the reaction yield (Entries 5–8, Table 2).
The structure of all the obtained intermediates and final products was confirmed by 1H- and 13C-NMR spectroscopy. Both in the case of systems containing a 1,4-phenylene linker, and with directly conjugated heterocycles, the 13C-NMR spectra were the most characteristic. The presence of the 4H-1,2,4-triazole ring was confirmed by signals above 140 ppm, and the presence of the s-tetrazine ring by signals above 160 ppm. The introduction of individual groups to the terminal aromatic ring conditioned the appearance of specific signals for the benzene carbon attached to them: above 160 ppm for the methoxy group, above 150 ppm for the tert-butyl group, and above 140 ppm for the nitro group. The lowest shifts corresponded to the carbon atoms of the aliphatic chain (13–45 ppm), the methoxy group (about 55 ppm), and the tert-butyl group (30–35 ppm). The 1H-NMR spectra mainly included aromatic signals. Additionally, the protons of the aliphatic chain (butyl) gave a series of signals in the range of 0.6–4.5 ppm, the methoxy group a peak around 3.8 ppm, and the tert-butyl group a peak around 1.3 ppm.

2.2. Luminescent Properties

UV-Vis and 3D fluorescence spectra were registered for compounds 10al and 15ah (Figures S40–S64, Supplementary Materials). The fluorescence was completely quenched in the case of 15d and 15h, due to the presence of two NO2 groups in their structure. The rest of the compounds exhibited a maximum of one emission. The range of emission wavelengths is 375–412 nm for the 10al series (Entries 1–12, Table 3) and 353–375 nm for the 15ah series (Entries 13–20, Table 3). It shows that the separation of fluorophore moieties by phenyl ring leads to a bathochromic shift of fluorescence. In the tetrazine and triazole derivatives, the n→π* transitions are a source of fluorescence [30,31,32,33]. The location of emission maximum (excitation wavelength—λex and emission wavelength—λem) is dependent on substituents R1, R2, and R3, which indicates that both tetrazine and triazole rings are involved in the orbitals from which the excitation occurs. The influence of substituents on λex and λem is the same as in previously reported symmetrically substituted analogs of the 10al series [26]. The R2 affects the λex, whereas R1 and R3 affect the λem. The Ph substituent as R2 induces the bathochromic shift of λex (Entries 1–6 and 13–16, Table 3) in comparison to n-Bu (Entries 7–12 and 17–20, Table 3, red color vs. blue color in Figure S65). In the case of the 15ah series, which consists of the symmetrically substituted compounds, the λem increases together with the rising electron-donating strength of R1 (H < t-Bu < OCH3), which is typical for tetrazine derivatives [34,35]. A partially similar relationship is observed in the unsymmetrically substituted 10al series. Taking into account compounds with the same substituent as one of R1/R3, e.g., NO2, the λem shifts bathochromically in line with the electron-donating properties of the second R1/R3 substituent, i.e., H < t-Bu < OCH3. However, there are some exceptions to that rule in this series because, compared to compounds containing OCH3/t-Bu and OCH3/NO2 substituents (10d vs. 10e and 10j vs. 10k, Entries 4, 5, 10 and 11, Table 3), those with NO2 (which is an electron-withdrawing group) unexpectedly possess a larger λem. This shows that the changes in the electron density distribution induced by different substituents in unsymmetrically substituted compounds are difficult to predict, thus inferring their absorption-emission properties based only on a molecular structure can be misleading. The quantum yield (Φ) is directly related to the fluorescence intensity for the studied compounds (Figure S66). Generally, the compounds with Ph as R2 exhibit higher Φs than those with n-Bu, which is in agreement with previous findings [26]. However, most of the studied compounds are not efficient fluorescent materials, because their Φs do not exceed 0.3 (Table 3). The relatively favorable conjugation occurs only for three compounds, i.e., 10a, 10b, and 10d. It shows that the direct coupling of tetrazine and triazole rings, as well as n-Bu as R2 and NO2 as R1/R3, decreases the population of fluorescent transitions.
Summarizing the current and previous research on s-tetrazine derivatives in terms of their Φs, it can be stated that they are moderately efficient fluorescent materials. Most of the investigated tetrazine derivatives exhibit Φ no higher than 0.60, but there are some examples, which achieve Φ close to 1, which shows their great potential to use as functional materials, e.g., in optoelectronic applications. In the case of s-tetrazines conjugated via phenylene linkers with different 5-membered rings (Scheme 6, Table 4), the Φ changes approximately according to the following order, Triazole (R2 = n-Bu) < Oxadiazole ≤ Thiadiazole < Triazole (R2 = Ph). On the other hand, the analogical order for s-tetrazines directly conjugated with the same 5-membered rings is as follows, Triazole (R2 = n-Bu) < Triazole (R2 = Ph) < Oxadiazole < Thiadiazole (Scheme 7, Table 5). The greatest similarities are between oxadiazoles and thiadiazoles bearing s-tetrazine, due to small structural changes resulting from the replacement of oxygen with sulfur (atoms with similar electronic properties). Notably, the separation of tetrazine rings and triazole rings via phenylene linkers is more favorable for the fluorescence efficiency than the direct conjugation of them. This is in agreement with the study on the nature of the absorption–emission properties of tetrazine derivatives, which revealed that fluorescence is dependent on the character of HOMO and HOMO-1 orbitals [34]. Fluorescence occurs when the orbital involved in the excitation has a nonbonding n character, but if it is π orbital, the fluorescence is quenched. In this research, it was found that tetrazine derivatives directly conjugated with heteroatomic rings did not exhibit fluorescence, while diphenyl s-tetrazine was reported to be weakly fluorescent [34,39]. It showed that the conjugation with phenyl rings allows for the retention of the nonbonding n character of the excited orbitals, whereas the direct conjugation with heteroatomic rings changes its character to the π one.

3. Experimental Section

3.1. General Information

All reagents were purchased from commercial sources and used without further purification. Melting points were measured on a Stuart SMP3 melting point apparatus (Staffordshire, UK). NMR spectra were recorded at 25 °C on an Agilent 400-NMR spectrometer (Agilent Technologies, Waldbronn, Germany) at 400 MHz for 1H and 100 MHz for 13C, using CDCl3 or DMSO as the solvent and TMS as the internal standard. UV-Vis absorption and 3D fluorescence spectra were registered in dichloromethane solutions (c = 5 × 10−6 mol/dm3) with Jasco V-660 (Jasco Corporation, Tokyo, Japan) and Jasco F-6300 (Jasco Corporation, Tokyo, Japan) spectrometers, respectively. FT-IR spectra were measured between 4000 and 650 cm−1 on an FT-IR Nicolet 6700 apparatus (Thermo Fischer Scientific, Wesel, Germany) with a Smart iTR accessory. Elemental analyses were performed with a VarioELanalyser (Elementar UK Ltd., Stockport, UK). High-resolution mass spectra were obtained by means of a Waters ACQUITY UPLC/Xevo G2QT instrument (Waters Corporation, Milford, MA, USA). Thin-layer chromatography was performed on silica gel 60 F254 (Merck, Merck KGaA, Darmstadt, Germany) thin-layer chromatography plates using chloroform, chloroform/ethyl acetate (1:1 v/v), or chloroform/ethyl acetate (5:1 v/v) as the mobile phases.

3.2. Synthesis and Characterization

Compounds 6, 8 and 12 were synthesized according to the literature [26,27].

3.2.1. Synthesis of s-Tetrazine Derivatives Coupled via a 1,4-Phenylene Linkage with a 4H-1,2,4-Triazole Ring (10al)

Two of substrates (6ah, 0.5 mmol of each compound) and zinc trifluoromethanesulfonate (0.009 g, 5 mol%) were suspended in ethanol (25 mL) and hydrazine hydrate (hydrazine 64%, 0.1 mL) was added dropwise. It was heated under reflux for 12 h, then filtered and evaporated on a rotary evaporator. The obtained crude intermediate (9al) was dissolved in methanol (10 mL), hydrogen peroxide was added (hydrogen peroxide solution 34.5−36.5%, 11 mL), and it was stirred at room temperature for 24 h. The resulting mixture was filtered and concentrated on a rotary evaporator. The crude product (10al) was purified by column chromatography using chloroform/ethyl acetate (1:1 v/v) as the mobile phases.

3-(4-(4,5-Diphenyl-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10a)

The product was obtained as yellow powder (0.20 g, 56%); m.p. 187–188 °C. UV (CH2Cl2) λmax (log ε) 257 (4.76), 283 (4.64) nm; IR (ATR) νmax 3064, 2947, 2232, 2187, 2141, 2129, 2098, 1696, 1683, 1609, 1565, 1533, 1494, 1472, 1445, 1256, 1179, 1077, 1019, 991, 972, 932, 848, 790, 772, 751, 730, 713, 699, 678 cm–1; 1H-NMR (400 MHz, CDCl3): δ 3.79 (s, 3H, OCH3), 6.81 (d, 2H, J = 8.0 Hz, Ar), 7.17–7.21 (m, 2H, Ar), 7.30–7.38 (m, 7H, Ar), 7.52–7.58 (m, 12H, Ar), 7.76 (d, 2H, J = 12.0 Hz, Ar), 8.11 (d, 2H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 55.3, 113.4, 114.1, 117.6, 117.7, 118.1 126.2, 127.7, 127.7, 128.6, 128.8, 129.0, 129.9, 130.1, 130.2, 130.3, 130.3, 130.4, 130.4, 131.1, 132.2, 123.5, 134.2, 134.7, 152.7, 153.0, 155.3, 155.5, 161.0, 169.2, 171.1. Anal. calc. for C43H30N10O: C, 73.49; H, 4.30; N, 19.93. Found: C, 73. 46; H, 4.32; N, 19.91; HRMS (ESI): m/z calcd for C43H30N10O + H+: 703.2682; found: 703.2684.

3-(4-(5-(4-(tert-Butyl)phenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10b)

The product was obtained as pink powder (0.19 g, 52%); m.p. 174–175 °C. UV (CH2Cl2) λmax (log ε) 284 (4.64) nm; IR (ATR) νmax 3062, 2964, 2868, 2232, 2167, 2155, 2028, 2007, 1966, 1695, 1610, 1527, 1494, 1473, 1435, 1362, 1305, 1269, 1201, 1181, 1156, 1108, 1078, 1019, 973, 932, 850, 837, 790, 773, 749, 730, 699 cm–1; 1H-NMR (400 MHz, CDCl3): δ 1.28 (s, 9H, C(CH3)3), 7.18 (t, 2H, J = 8.0 Hz, Ar), 7.29–7.39 (m, 9H, Ar), 7.48–7.57 (m, 14H, Ar), 7.78 (d, 2H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 31.1, 34.8, 113.2, 113.3, 118.1, 118.1, 123.4, 125.5, 126.2, 127.6, 127.7, 128.3, 128.5, 128.8, 128.9, 129.0, 129.0, 130.0, 130.2, 130.2, 131.3, 132.2, 132.4, 134.7, 134.9, 152.9, 153.0, 153.3, 155.5, 155.5, 166.7, 167.6. Anal. calc. for C46H36N10: C, 75.80; H, 4.98; N, 19.22. Found: C, 75.81; H, 4.99; N, 19.20; HRMS (ESI): m/z calcd for C46H36N10 + H+: 729.3203; found: 729.3202.

3-(4-(4,5-Diphenyl-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(5-(4-nitrophenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10c)

The product was obtained as yellow powder (0.18 g, 49%); m.p. 199–200 °C. UV (CH2Cl2) λmax (log ε) 293 (4.71) nm; IR (ATR) νmax 3053, 2232, 2172, 2142, 2129, 2003, 1965, 1698, 1608, 1550, 1515, 1494, 1468, 1446, 1428, 1406, 1337, 1317, 1277, 1202, 1181, 1152, 1108, 1078, 1018, 1002, 973, 933, 848, 790, 773, 760, 739, 713, 698, 685 cm–1; 1H-NMR (400 MHz, CDCl3): δ 7.22 (d, 2H, J = 8.0 Hz, Ar), 7.54–7.63 (m, 21H, Ar), 7.88 (d, 2H, J = 8.0 Hz, Ar), 8.16 (d, 2H, J= 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 113.3, 113.8, 117.9, 118.1, 123.8, 126.4, 127.5, 127.7, 128.1, 128.5, 128.8, 129.0 129.0, 129.4, 130.1, 130.2, 130.4, 130.8, 131.3, 132.2, 132.3, 134.2, 134.8, 148.4, 153.0, 153.5, 153.8, 155.5, 163.6, 164.0. Anal. calc. for C42H27N11O2: C, 70.28; H, 3.79; N, 21.47. Found: C, 70.25; H, 3.77; N, 21.45; HRMS (ESI): m/z calcd for C42H27N11O2 + H+: 718.2427; found: 718.2425.

3-(4-(5-(4-(tert-Butyl)phenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10d)

The product was obtained as pink powder (0.21 g, 56%); m.p. 159–160 °C. UV (CH2Cl2) λmax (log ε) 238 (4.56), 287 (4,62) nm; IR (ATR) νmax 3060, 2966, 2268, 2232, 2172, 2140, 2032, 2003, 1972, 1948, 1911, 1690, 1609, 1565,1531, 1496, 1475, 1459, 1434, 1362, 1305, 1254, 1200, 1175, 1156, 1099, 1076, 1020, 992, 972, 920, 851, 837, 789, 774, 749, 737, 714, 699 cm–1; 1H-NMR (400 MHz, CDCl3): δ 1.28 (s, 9H, C(CH3)3), 3.79 (s, 3H, OCH3), 6.80 (d, 2H, J= 8.0 Hz, Ar), 7.17 (m, 4H, Ar), 7.29–735 (m, 6H, Ar), 7.49–7.58 (m, 14H, Ar); 13C-NMR (100 MHz, CDCl3): δ 31.1, 34.8, 55.3, 113.2, 114.0, 118.1, 118.6, 120.2, 123.3, 125.5, 125.7, 127.7, 127.7, 128.3, 129.0, 129.9, 130.2, 130.2, 130.4, 131.3, 132.2, 132.4, 132.5, 132.9, 134.9, 152.9, 153.3, 154.6, 155.4, 155.5, 160.9, 164.0, 154.8. Anal. calc. for C47H38N10O: C, 74.39; H, 5.05; N, 18.46. Found: C, 74.38; H, 5.07; N, 18.44; HRMS (ESI): m/z calcd for C47H38N10O + H+: 759.3308; found: 759.3309.

3-(4-(5-(4-Methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(5-(4-nitrophenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10e)

The product was obtained as orange powder (0.20 g, 54%); m.p. 189–190 °C. UV (CH2Cl2) λmax (log ε) 303 (4.68) nm; IR (ATR) νmax 3073, 2957, 2228, 2175, 2138, 2030, 2014, 1978, 1960, 1697, 1684, 1607, 1577, 1515, 1493, 1472, 1434, 1407, 1337, 1316, 1288, 1253, 1178, 1108, 1068, 1021, 992, 972, 848, 834, 784, 771, 752, 741, 698 cm–1; 1H-NMR (400 MHz, DMSO-d6): δ 3.75 (s, 3H, OCH3), 6.92 (d, 2H, J = 8.0 Hz, Ar), 7.33 (d, 2H, J = 12.0 Hz, Ar), 7.47–7.59 (m, 10H, Ar), 7.67 (d, 4H, J = 8.0 Hz, Ar), 7.88 (d, 4H, J = 8.0 Hz, Ar), 8.23 (d, 4H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, DMSO-d6): δ 55.2, 112.4, 113.95, 116.5, 118.1, 118.8, 123.7, 127.6, 128.1, 128.9, 129.1, 129.5, 129.7, 129.9, 130.0, 130.2, 130.4, 131.0, 131.5, 132.4, 132.5, 133.9, 134.6, 147.9, 152.6, 153.2, 153.6, 154.7, 160.3, 161.2, 163.3. Anal. calc. for C43H29N11O3: C, 69.07; H, 3.91; N, 20.60. Found: C, 69.09; H, 3.94; N, 20.58; HRMS (ESI): m/z calcd for C43H29N11O3 + H+: 748.2533; found: 748.2531.

3-(4-(5-(4-(tert-Butyl)phenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(5-(4-nitrophenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10f)

The product was obtained as orange powder (0.20 g, 52%); m.p. 124–125 °C. UV (CH2Cl2) λmax (log ε) 292 (4.65) nm; IR (ATR) νmax 3062, 2962, 2229, 2159, 2136, 2127, 2099, 2028, 1989, 1974, 1966, 1700, 1608, 1523, 1498, 1476, 1433, 1407, 1338, 1268, 1200, 1156, 1109, 1075, 1019, 972, 842, 787, 771, 752, 739, 729, 698 cm–1; 1H-NMR (400 MHz, CDCl3): δ 1.28 (s, 9H, C(CH3)3), 7.23 (d, 4H, J = 8.0 Hz, Ar), 7.32 (d, 2H, J = 8.0 Hz, Ar), 7.37 (d, 2H, J = 8.0 Hz, Ar), 7.48–7.64 (m, 16H, Ar), 8.16 (d, 2H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 31.1, 34.9, 113.6, 113.8, 117.9, 118.0, 122.2, 123.8, 125.7, 127.5, 127.8, 128.6, 129.1, 129.2, 129.4, 130.5, 130.5, 130.6, 130.8, 130.9, 132.2, 132.3, 134.2, 134.3, 148.5, 152.9, 153.5, 153.8, 154.0, 155.2, 164.6, 166.0. Anal. calc. for C46H35N11O2: C, 71.40; H, 4.56; N, 19.91. Found: C, 71.42; H, 4.54; N, 19.90; HRMS (ESI): m/z calcd for C46H35N11O2 + H+: 774.3054; found: 774.3056.

3-(4-(4-Butyl-5-(4-methoxyphenyl)-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(4-butyl-5-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10g)

The product was obtained as orange powder (0.16 g, 52%); m.p. 173–174 °C. UV (CH2Cl2) λmax (log ε) 242 (4.52) nm; IR (ATR) νmax 3103, 3075, 3053, 2329, 2231, 2175, 2138, 1945, 1695, 1682, 1607, 1566, 1504, 1403, 1317, 1294, 1243, 1176, 1130, 1112, 1052, 1024, 990, 869, 856, 844, 769, 751, 676 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.63–0.67 (m, 6H, CH3), 0.91–0.93 (m, 4H CH2), 1.36–1.43 (m, 4H, CH2), 3.87 (s, 3H, OCH3), 3.93–3.96 (m, 4H, CH2), 7.13 (d, 2H, J = 8.0 Hz, Ar), 7.73–7.78 (m, 9H, Ar), 7.90 (d, 2H, J = 8.0 Hz, Ar), 7.97–8.01 (m, 4H, Ar); 13C-NMR (100 MHz, CDCl3): δ 14.2, 14.3, 22.7, 22.8, 29.9, 30.4, 47.6, 47.6, 55.7, 113.7, 114.1, 117.7, 117.8, 128.2, 129.5, 129.7, 130.0, 130.2, 130.4, 131.7, 131.9, 132.3, 133.1, 134.3, 151.9, 152.1, 154.6, 155.4, 162.2, 164.1, 165.1. Anal. calc. for C39H38N10O: C, 70.67; H, 5.78; N, 21.13. Found: C, 70.69; H, 5.75; N, 21.11; HRMS (ESI): m/z calcd for C39H38N10O + H+: 663.3308; found: 663.3309.

3-(4-(4-Butyl-5-(4-(tert-butyl)phenyl)-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(4-butyl-5-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10h)

The product was obtained as pink powder (0.16 g, 47%); m.p. 90–91 °C. UV (CH2Cl2) λmax (log ε) 232 (4.51) nm; IR (ATR) νmax 3316, 3067, 2958, 2932, 2867, 2231, 2193, 2170, 2134, 2034, 1978, 1959, 1721, 1637, 1578, 1541, 1490, 1465, 1395, 1364, 1308, 1275, 1249, 1221, 1178, 1154, 1109, 1074, 1018, 993, 946, 845, 803, 772, 694 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.63–0.67 (m, 6H, CH3), 0.92–0.95 (m, 4H CH2), 1.36–1.41 (m, 13H, CH2, C(CH3)3), 3.42–3.46 (m, 4H, CH2), 7.45–7.50 (m, 3H, Ar), 7.53 (d, 2H, J = 8.0 Hz, Ar), 7.60 (d, 2H, J = 8.0 Hz, Ar), 7.68–7.71 (m, 2H, Ar), 7.74–7.77 (m, 4H, Ar), 7.84 (d, 4H, J = 4.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.1, 13.8, 19.3, 20.2, 31.2, 31.2, 21.7, 34.9, 44.8, 44.9, 113.9, 114.7, 118.0, 118.1, 124.0, 126.9, 127.8, 128.5, 129.4, 129.5, 129.9, 130.1, 131.3, 132.3, 132.5, 153.7, 153.8, 154.8, 155.3, 156.4, 167.5, 167.6. Anal. calc. for C42H44N10: C, 73.23; H, 6.44; N, 20.33. Found: C, 73.21; H, 6.46; N, 20.32; HRMS (ESI): m/z calcd for C42H44N10 + H+: 689.3829; found: 689.3827.

3-(4-(4-Butyl-5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(4-butyl-5-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10i)

The product was obtained as orange powder (0.15 g, 45%); m.p. 183–184 °C. UV (CH2Cl2) λmax (log ε) 236 (4.34) nm; IR (ATR) νmax 3307, 3067, 2958, 2928, 2872, 2231, 2173, 2136, 1697, 1637, 1602, 1578, 1526, 1490, 1466, 1346, 1307, 1248, 1178, 1108, 1074, 1016, 995, 853, 803, 771, 753, 694 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.94–0.97 (m, 6H, CH3), 1.36–1.46 (m, 4H CH2), 1.57–1.64 (m, 4H, CH2), 3.43–3.48 (m, 4H, CH2), 7.42 (t, 3H, J = 8.0 Hz, Ar), 7.47–7.49 (m, 2H, Ar), 7.74–7.76, m, 8H, Ar), 7.94 (d, 2H, J = 12.0 Hz, Ar), 8.24 (d, 2H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.1, 13.8, 19.3, 20.2, 31.6, 31.7, 39.9, 40.2, 114.4, 114.8, 117.9, 119.0, 123.7, 126.8, 127.7, 128.2, 128.6, 129.5, 129.9, 130.4, 131.4, 132.5, 132.9, 149.5, 151.8, 152.0, 154.8, 155.1, 165.6, 167.7. Anal. calc. for C38H35N11O2: C, 67.34; H, 5.21; N, 22.73. Found: C, 67.33; H, 5.23; N, 22.74; HRMS (ESI): m/z calcd for C38H35N11O2 + H+: 678.3054; found: 678.3053.

3-(4-(4-Butyl-5-(4-(tert-butyl)phenyl)-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(4-butyl-5-(4-methoxyphenyl)-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10j)

The product was obtained as pink powder (0.18 g, 51%); m.p. 95–96 °C. UV (CH2Cl2) λmax (log ε) 253 (4.58) nm; IR (ATR) νmax 3265, 2957, 2871, 2229, 1632, 1607, 1544, 1504, 1464, 1396, 1365, 1307, 1253, 1222, 1176, 1113, 1031, 978, 918, 841, 772 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.65–0.67 (m, 6H, CH3), 0.92–0.96 (m, 4H CH2), 1.37–1.41 (m, 13H, CH2, C(CH3)3), 3.84 (s, 3H, OCH3), 3.86–3.89 (m, 4H, CH2), 7.04 (d, 2H, J = 8.0 Hz, Ar), 7.54 (d, 2H, J = 8.0 Hz, Ar), 7.61 (d, 2H, J = 4.0 Hz, Ar), 7.66–7.74 (m, 8H, Ar), 7.92 (d, 2H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.2, 13.5, 19.2, 19.7, 31.2, 31.6, 31.8, 34.9, 44.8, 44.9, 55.4, 113.7, 114.6, 117.4, 118.2, 125.4, 126.0, 127.8, 128.6, 128.7, 129.4, 130.5, 131.5, 132.3, 133.0, 153.8, 154.7, 154.8, 155.2, 155.8, 162.0, 167.1, 167.5. Anal. calc. for C43H46N10O: C, 71.84; H, 6.45; N, 19.48. Found: C, 71.86; H, 6.44; N, 19.45; HRMS (ESI): m/z calcd for C43H46N10O + H+: 719.3934; found: 719.3935.

3-(4-(4-Butyl-5-(4-methoxyphenyl)-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(4-butyl-5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10k)

The product was obtained as orange powder (0.17 g, 48%); m.p. 194–195 °C. UV (CH2Cl2) λmax (log ε) 257 (4.51) nm; IR (ATR) νmax 2964, 2842, 2228, 2128, 1601, 1578, 1519, 1437, 1308, 1256, 1171, 1105, 1050, 1033, 1021, 919, 837, 762, 747, 727, 686 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.65–0.69 (m, 6H, CH3), 0.94–0.99 (m, 4H CH2), 1.38–1.46 (m, 4H, CH2), 3.88–3.95 (m, 7H, CH2, OCH3), 6.92 (d, 2H, J = 8.0 Hz, Ar), 7.60 (d, 2H, J = 12.0 Hz, Ar), 7.72 (d, 2H, J = 8.0 Hz, Ar), 7.81–7.84 (m, 4H, Ar), 7.90–7.93 (m, 4H, Ar), 8.27–8.29 (m, 2H, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.8, 13.8, 20.1, 20.2, 31.8, 31.9, 39.8, 40.2, 55.5, 113.7, 114.7, 117.5, 118.2, 124.1, 128.0, 128.6, 129.0, 129.4, 129.6, 130.3, 130.4, 130.7, 133.0, 148.0, 150.8, 150.8, 155.4, 156.2, 160.6, 165.1, 165.8. Anal. calc. for C39H37N11O3: C, 66.18; H, 5.27; N, 21.77. Found: C, 66.15; H, 5.29; N, 21.76; HRMS (ESI): m/z calcd for C39H37N11O3 + H+: 708.3159; found: 707.3157.

3-(4-(4-Butyl-5-(4-(tert-butyl)phenyl)-4H-1,2,4-triazol-3-yl)phenyl)-6-(4-(4-butyl-5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (10l)

The product was obtained as orange powder (0.17 g, 47%); m.p. 99–100 °C. UV (CH2Cl2) λmax (log ε) 239 (4.57) nm; IR (ATR) νmax 3265, 3067, 2958, 2933, 2867, 2230, 2149, 2132, 1636, 1611, 1526, 1501, 1477, 1464, 1395, 1364, 1346, 1304, 1286, 1269, 1200, 1154, 1111, 1016, 977, 841, 773, 751, 710, 693 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.64–0.69 (m, 6H, CH3), 1.02–1.05 (m, 4H CH2), 1.38–1.44 (m, 13H, CH2, C(CH3)3), 4.12–4.20 (m, 4H, CH2), 7.55 (d, 2H, J = 8.0 Hz, Ar), 7.61 (d, 2H, J = 8.0 Hz, Ar), 7.69–7.71 (m, 4H, Ar), 7.84–7.90 (m, 4H, Ar), 7.96 (d, 2H, J = 12.0 Hz, Ar), 8.25 (d, 2H, J = 12.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.1, 13.8, 19.3, 20.2, 31.2, 31.6, 31.8, 35.0, 39.7, 40.2, 114.8, 114.9, 117.9, 118.1, 123.7, 125.5, 126.1, 126.6, 127.7, 128.2, 128.7, 129.3, 132.0, 132.4, 149.4, 151.2, 151.4, 154.8, 155.2, 155.7, 165.7, 167.5. Anal. calc. for C42H43N11O2: C, 68.74; H, 5.91; N, 20.99. Found: C, 68.75; H, 5.94; N, 20.97; HRMS (ESI): m/z calcd for C42H43N11O2 + H+: 734.3679; found: 734.3678.

3.2.2. Synthesis of s-Tetrazine Derivatives Directly Conjugated with a 4H-1,2,4-Triazole Ring (15ah)

The crude imidoyl chloride (8ah, 5.5 mmol) and 1,2,4,5-tetrazine-3,6-dicarbohydrazide (12, 0.50 g, 2.5 mmol) were dissolved in chloroform (20 mL) and heated under reflux for 24 h. The mixture was then cooled to room temperature, filtered, and evaporated on a rotary evaporator. For systems containing an aromatic ring attached to a triazole nitrogen atom (15ad) and compound 15h, residue was washed with a small amount of cold ethanol to produce a pure product. For systems with an aliphatic chain, except compound 15h (15eg), a small amount of ethanol (5 mL) was added, filtered, and the filtrate was evaporated again to give the product as an oil.

3,6-Bis(4,5-diphenyl-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine (15a)

The product was obtained as brown powder (0.59 g, 45%); m.p. 208–209 °C. UV (CH2Cl2) λmax (log ε) 278 (4.48) nm; IR (ATR) νmax 3352, 3061, 1967, 1685, 1596, 1541, 1497, 1466, 1444, 1385, 1317, 1261, 1188, 1074, 1017, 1000, 973, 931, 803, 781, 769, 730, 715, 692 cm–1; 1H-NMR (400 MHz, DMSO-d6): δ 7.39–7.45 (m, 12H, Ar), 7.50–7.56 (m, 8H, Ar); 13C-NMR (100 MHz, DMSO-d6): δ 120.3, 123.6, 127.6, 128.3, 128.4, 128.5, 128.6, 134.2, 154.5, 155.3, 164.1. Anal. calc. for C30H20N10: C, 69.22; H, 3.87; N, 26.91. Found: C, 69.25; H, 3.89; N, 26.90; HRMS (ESI): m/z calcd for C30H20N10 + H+: 521.1951; found: 521.1952.

3,6-Bis(5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine (15b)

The product was obtained as yellow powder (0.99 g, 68%); m.p. 217–218 °C. UV (CH2Cl2) λmax (log ε) 256 (4.56) nm; IR (ATR) νmax 3308, 3212, 2938, 2840, 2038, 1712, 1697, 1686, 1604, 1578, 1551, 1535, 1512, 1458, 1432, 1363, 1318, 1307, 1276, 1252, 1172, 1105, 1073, 1020, 916, 887, 851, 832, 795, 771, 741, 697 cm–1; 1H-NMR (400 MHz, DMSO-d6): δ 3.83 (s, 6H, OCH3), 7.04 (d, 4H, J = 8.0 Hz, Ar), 7.27–7.51 (m, 10H, Ar), 7.92 (d, 4H, J = 12.0 Hz, Ar); 13C-NMR (100 MHz, DMSO-d6): δ 55.5, 113.9, 120.3, 122.1, 127.7, 129.3, 130.1, 131.1, 153.8, 155.4, 163.0, 165.4. Anal. calc. for C32H24N10O2: C, 66.20; H, 4.17; N, 24.12. Found: C, 66.21; H, 4.19; N, 24.11; HRMS (ESI): m/z calcd for C32H24N10O2 + H+: 581.2162; found: 581.2160.

3,6-Bis(5-(4-(tert-butyl)phenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine(15c)

The product was obtained as orange powder (0.93 g, 59%); m.p. 198–199 °C. UV (CH2Cl2) λmax (log ε) 276 (4.51) nm; IR (ATR) νmax 3058, 2957, 2866, 2238, 2184, 2174, 2019, 1982, 1958, 1697, 1596, 1541, 1495, 1466, 1439, 1394, 1363, 1316, 1269, 1201, 1112, 1076, 1017, 963, 915, 841, 751, 731, 711, 692 cm–1; 1H-NMR (400 MHz, DMSO-d6): δ 1.22 (s, 18H, C(CH3)3), 7.14–7.19 (m, 4H, Ar), 7.24(d, 4H, J = 8.0 Hz, Ar), 7.47–7.53 (m, 10H, Ar); 13C-NMR (100 MHz, DMSO-d6): δ 29.8, 33.5, 119.2, 124.4, 126.8, 127.0, 127.2, 127.8, 132.9, 151.8, 153.0, 153.3, 163.1. Anal. calc. for C38H36N10: C, 72.13; H, 5.73; N, 22.14. Found: C, 72.11; H, 5.76; N, 22.12; HRMS (ESI): m/z calcd for C38H36N10 + H+: 633.3203; found: 633.3204.

3,6-Bis(5-(4-nitrophenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine (15d)

The product was obtained as orange powder (0.61 g, 40%); m.p. 172–173 °C. UV (CH2Cl2) λmax (log ε) 298 (4.50) nm; IR (ATR) νmax 3064, 2851, 2206, 2166, 2030, 1983, 1948, 1698, 1653, 1598, 1576, 1520, 1494, 1441, 1343, 1205, 1178, 1108, 1075, 1014, 965, 919, 853, 756, 708, 692 cm–1; 1H-NMR (400 MHz, DMSO-d6): δ 7.61–7.69 (m, 6H, Ar), 7.80(d, 4H, J = 8.0 Hz, Ar), 8.21 (d, 4H, J = 8.0 Hz, Ar), 8.37 (d, 4H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, DMSO-d6): δ 120.5, 123.5, 123.7, 124.1, 128.7, 129.2, 138.7, 149.1, 153.2, 153.4, 163.8. Anal. calc. for C30H18N12O4: C, 59.02; H, 2.97; N, 27.53. Found: C, 59.03; H, 2.99; N, 27.51; HRMS (ESI): m/z calcd for C30H18N12O4 + H+: 611.1652; found: 611.1650.

3,6-Bis(4-butyl-5-phenyl-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine (15e)

The product was obtained as brown oil (0.67 g, 56%). UV (CH2Cl2) λmax (log ε) 257 (4.45) nm; IR (ATR) νmax 3264, 2957, 2932, 2873, 2212, 2165, 1636, 1541, 1491, 1449, 1378, 1308, 1220, 1157, 1113, 1074, 1026, 930, 802, 772, 694 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.92 (t, 6H, J = 8.0 Hz, CH3), 1.37 (sextet, 4H, J = 8.0 Hz, CH2), 1.63 (quintet, 4H, J = 8.0 Hz, CH2), 3.48 (t, 4H, J = 8.0 Hz, CH2), 7.39 (t, 4H, J = 8.0 Hz, Ar), 7.51 (t, 2H, J = 8.0 Hz, Ar), 7.85 (d, 4H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.7, 20.1, 31.0, 41.3, 128.1, 128.6, 130.9, 132.8, 149.3, 153.8, 169.8. Anal. calc. for C26H28N10: C, 64.98; H, 5.87; N, 29.15. Found: C, 64.96; H, 5.88; N, 29.17; HRMS (ESI): m/z calcd for C26H28N10 + H+: 481.2577; found: 481.2578.

3,6-Bis(4-butyl-5-(4-methoxyphenyl)-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine (15f)

The product was obtained as brown oil (1.05 g, 78%). UV (CH2Cl2) λmax (log ε) 253 (4.57) nm; IR (ATR) νmax 3299, 2957, 2932, 2872, 2213, 2151, 1697, 1608, 1577, 1541, 1506, 1464, 1440, 1365, 1295, 1251, 1176, 1112, 1027, 971, 837, 801, 770 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.95 (t, 6H, J = 8.0 Hz, CH3), 1.40 (sextet, 4H, J = 8.0 Hz, CH2), 1.59 (quintet, 4H, J = 8.0 Hz, CH2), 4.44 (t, 4H, J = 8.0 Hz, CH2), 3.84 (s, 6H, OCH3), 6.90 (d, 4H, J = 8.0 Hz, Ar), 7.74 (d, 4H, J = 12.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.9, 20.3, 31.9, 39.8, 55.5, 113.8, 114.6, 128.7, 144.6, 155.0, 161.3, 167.1. Anal. calc. for C28H32N10O2: C, 62.21; H, 5.97; N, 25.91. Found: C, 62.24; H, 5.99; N, 25.90; HRMS (ESI): m/z calcd for C28H32N10O2 + H+: 541.2788; found: 541.2789.

3,6-Bis(4-butyl-5-(4-(tert-butyl)phenyl)-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine (15g)

The product was obtained as brown oil (1.08 g, 73%). UV (CH2Cl2) λmax (log ε) 259 (4.18) nm; IR (ATR) νmax 3265, 2958, 2867, 2240, 2212, 2170, 2049, 1978, 1958, 1698, 1612, 1541, 1504, 1464, 1363, 1302, 1254, 1219, 1177, 1114, 1024, 924, 839, 771, 751 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.94 (t, 6H, J = 8.0 Hz, CH3), 1,35–1,38 (m, 22H, CH2, C(CH3)3), 1.58 (quintet, 4H, J = 8.0 Hz, CH2), 3.72 (t, 4H, J = 8.0 Hz, CH2), 7.42 (d, 4H, J = 8.0 Hz, Ar), 7.69 (d, 4H, J = 8.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.9, 20.3, 31.3, 31.9, 35.1, 39.8, 125.5, 126.2, 126.8, 145.4, 154,8, 155.0, 167.5. Anal. calc. for C34H44N10: C, 68.89; H, 7.48; N, 23.63. Found: C, 68.87; H, 7.49; N, 23.65; HRMS (ESI): m/z calcd for C34H44N10 + H+: 593.3829; found: 593.3827.

3,6-Bis(4-butyl-5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)-1,2,4,5-tetrazine (15h)

The product was obtained as yellow powder (0.60 g, 42%); m.p. 103–104 °C. UV (CH2Cl2) λmax (log ε) 269 (4.11) nm; IR (ATR) νmax 3303, 3110, 2938, 2864, 2167, 2142, 2038, 2029, 2004, 1949, 1635, 1599, 1518, 1481, 1466, 1422, 1343, 1317, 1294, 1255, 1181, 1153, 1132, 1108, 1011, 973, 938, 868, 855, 841, 762, 723, 710, 691 cm–1; 1H-NMR (400 MHz, CDCl3): δ 0.97 (t, 6H, J = 8.0 Hz, CH3), 1.43 (sextet, 4H, J = 8.0 Hz, CH2), 1.63 (quintet, 4H, J = 8.0 Hz, CH2), 3.49 (t, 4H, J = 8.0 Hz, CH2), 7.93 (d, 4H, J = 12.0 Hz, Ar), 8.28 (d, 4H, J = 12.0 Hz, Ar); 13C-NMR (100 MHz, CDCl3): δ 13.9, 20.3, 31.7, 40.3, 123.9, 128.2, 130.2, 140.6, 145.1, 149.6, 165.6. Anal. calc. for C26H26N12O4: C, 54.73; H, 4.59; N, 29.46. Found: C, 54.71; H, 4.58; N, 29.47; HRMS (ESI): m/z calcd for C26H26N12O4 + H+: 571.2278; found: 571.2277.

4. Conclusions

Two effective methodologies for the synthesis of extended systems containing 1,2,4,5-tetrazine and 4H-1,2,4-triazole have been presented. The first methodology, comprising the Pinner reaction of carbonitriles bearing a 4H-1,2,4-triazole scaffold, is useful for obtaining unsymmetrical derivatives with heterocycles connected via a 1,4-phenylene linker. The second procedure, which makes use of imidoyl chloride and s-tetrazine-3,6-dicarbohydrazide, has proven to be successful for symmetrical systems with directly conjugated rings. In both cases, the approach leads to the desired products in satisfactory yields, regardless of the nature of the substituents attached to the terminal rings, as well as the type of groups on the triazole nitrogen atom. The obtained compounds exhibit mainly violet luminescence in CH2Cl2 solution. Their absorption–emission properties are directly related to the compound structure. The spectroscopic investigation revealed the dependency between the electron-donating strength of substituents and the emission wavelength, as well as the relationship between the quantum yield and the separation or direct conjunction of fluorophore moieties (tetrazine and triazole rings).

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/molecules27113642/s1. Copies of the 1H-NMR, 13C-NMR, UV-Vis and fluorescent spectra of the title compounds are available in the online Supplementary Materials.

Author Contributions

A.M. and A.K. conceived and designed the experiments, performed the experiments and analyzed the data. M.Ś. performed emission measurements. A.M. and A.K. wrote the manuscript with the help of M.Ś. All authors have read and agreed to the published version of the manuscript.

Funding

The synthetic part of the project was financially supported by The Silesian University of Technology (Gliwice, Poland) Grant No. 04/050/RGP20/0115 and 04/050/BKM22/0147, BKM-608/RCh5/2022.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Sample Availability

Samples of the compounds 10al, 15ah are available from the authors.

References

  1. Wang, T.; Zheng, C.; Yang, J.; Zhang, X.; Gong, X.; Xia, M. Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine-1,3,5-trioxide. J. Mol. Model. 2014, 20, 2261–2271. [Google Scholar] [CrossRef]
  2. Saracoglu, N. Recent advances and applications in 1,2,4,5-tetrazine chemistry. Tetrahedron 2007, 63, 4199–4235. [Google Scholar] [CrossRef]
  3. Sinditskii, V.; Egorshev, V.Y.; Rudakov, G.F.; Filatov, S.A.; Burzhava, A.V. High-Nitrogen Energetic Materials of 1,2,4,5-Tetrazine Family: Thermal and Combustion Behaviors. In Chemical Rocket Propulsion a Comprehensive Survey of Energetic Materials; de Luca, L.T., Shimada, T., Sinditskii, V.P., Calabro, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 45, pp. 89–125. [Google Scholar] [CrossRef]
  4. Ishmetova, R.I.; Ignatenko, N.K.; Ganebnykh, I.N.; Tolschina, S.G.; Korotina, A.V.; Kravchenko, M.A.; Skornyakov, S.N.; Rusinov, G.L. Synthesis and tuberculostatic activity of amine-substituted 1,2,4,5-tetrazines and pyridazines. Russ. Chem. Bull. 2014, 63, 1423–1430. [Google Scholar] [CrossRef]
  5. Hu, W.X.; Rao, G.W.; Sun, Y.Q. Synthesis and antitumor activity of s-tetrazine derivatives. Bioorg. Med. Chem. Lett. 2004, 14, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
  6. Werbel, L.M.; Mc Namara, D.J.; Colbry, N.L.; Johnson, J.L.; Degan, M.J.; Whitney, B. Synthesis and antimalarial effects of N,N-dialkyl-6-(substituted phenyl)-1,2,4,5-tetrazin-3-amines. J. Heterocycl. Chem. 1979, 16, 881–894. [Google Scholar] [CrossRef]
  7. Devaraj, N.K.; Upadhyay, R.; Haun, J.B.; Hilderbrand, S.A.; Weissleder, R. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 7013–7016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Wang, M.; Svatunek, D.; Rohlfing, K.; Liu, Y.; Wang, H.; Giglio, B.; Yuan, H.; Wu, Z.; Li, Z.; Fox, J. Conformationally strained trans-cyclooctene (sTCO) enables the rapid construction of 18F-PET probes via tetrazine ligation. Theranostics 2016, 6, 887–895. [Google Scholar] [CrossRef] [Green Version]
  9. Brown, S.P.; Smith, A.B. Peptide/protein stapling and unstapling: Introduction of s-tetrazine, photochemical release, and regeneration of the peptide/protein. J. Am. Chem. Soc. 2015, 137, 4034–4037. [Google Scholar] [CrossRef] [PubMed]
  10. Li, J.; Jia, S.; Chen, P.R. Diels-Alder reaction–triggered bioorthogonal protein decaging in living cells. Nat. Chem. Biol. 2014, 10, 1003–1005. [Google Scholar] [CrossRef]
  11. Moral, M.; Garzon, A.; Olivier, Y.; Muccioli, L.; Sancho-Garcia, J.C.; Granadino-Roldan, J.M.; Fernandez-Gomez, M. Bis(arylene-ethynylene)-s-tetrazines: A promising family of n-type organic semiconductors? J. Phys. Chem. C 2015, 119, 18945–18955. [Google Scholar] [CrossRef] [Green Version]
  12. Pluczyk, S.; Zassowski, P.; Quinton, C.; Audebert, P.; Alain-Rizzo, V.; Łapkowski, M. Unusual electrochemical properties of the electropolymerized thin layer based on a s-tetrazine-triphenylamine monomer. J. Phys. Chem. C 2016, 120, 4382–4391. [Google Scholar] [CrossRef]
  13. Gaber, M.; Fathalla, S.K.; El-Ghamry, H.A. 2,4-Dihydroxy-5-[(5-mercapto-1H-1,2,4-triazole-3-yl)diazenyl]benzaldehyde acetato, chloro and nitrato Cu(II) complexes: Synthesis, structural characterization, DNA binding and anticancer and antimicrobial activity. Appl. Organomet. Chem. 2019, 33, e4707. [Google Scholar] [CrossRef]
  14. Shcherbyna, R.O.; Danilchenko, D.M.; Khromykh, N.O. The study of 2-((3-R-4-R1-4H-1,2,4-triazole-5-yl)thio) acetic acid salts as growth stimulators of winter wheat sprouts. Vìsn. Farm. 2017, 89, 61–65. [Google Scholar] [CrossRef] [Green Version]
  15. Kaproń, B.; Łuszczki, J.J.; Płazińska, A.; Siwek, A.; Karcz, T.; Gryboś, A.; Nowak, G.; Makuch-Kocka, A.; Walczak, K.; Langner, E.; et al. Development of the 1, 2, 4-triazole-based anticonvulsant drug candidates acting on the voltage-gated sodium channels. Insights from in-vivo, in-vitro, and in-silico studies. Eur. J. Pharm. Sci. 2019, 129, 42–57. [Google Scholar] [CrossRef]
  16. Jalihal, P.C.; Kashaw, V. Synthesis, antimicrobial and anti-inflammatory activity of some bioactive 1,2,4-triazoles analogues. Int. J. Pharm. Biol. Sci. 2018, 8, 94–104. [Google Scholar]
  17. Maindron, T.; Wang, Y.; Dodelet, J.P.; Miyatake, K.; Hlil, A.R.; Hay, A.S.; Tao, Y.; D’lorio, M. Highly electroluminescent devices made with a conveniently synthesized triazole-triphenylamine derivative. Thin Solid Film. 2004, 466, 209–216. [Google Scholar] [CrossRef]
  18. Dutta, R.; Kalita, D.J. Charge injection and hopping transport in bridged-dithiophene-triazole-bridged-dithiophene (DT-Tr-DT) conducting oligomers: A DFT approach. Comput. Theor. Chem. 2018, 1132, 42–49. [Google Scholar] [CrossRef]
  19. Tang, Y.; Zhuang, J.; Xie, L.; Chen, X.; Zhang, D.; Hao, J.; Su, W.; Cui, Z. Thermally cross-linkable host materials for solution-processed OLEDs: Synthesis, characterization, and optoelectronic properties. Eur. J. Org. Chem. 2016, 22, 3737–3747. [Google Scholar] [CrossRef]
  20. Tsai, L.R.; Yun, C. Hyperbranched luminescent polyfluorenes containing aromatic triazole branching units. J. Polym. Sci. A Polym. Chem. 2007, 45, 4465–4476. [Google Scholar] [CrossRef]
  21. Curtis, N.J.; Jennings, N. 1,2,4-Triazoles. In Comprehensive Heterocyclic Chemistry, 3rd ed.; Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., Taylor, R.J.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 5, pp. 159–209. [Google Scholar] [CrossRef]
  22. Clavier, G.; Audebert, P. s-Tetrazines as building blocks for new functional molecules and molecular materials. Chem. Rev. 2010, 110, 3299–3314. [Google Scholar] [CrossRef]
  23. Savastano, M.; García-Gallarín, C.; Dolores López de la Torre, M.; Bazzicalupi, C.; Bianchi, A.; Melguizo, M. Anion-π and lone pair-π interactions with s-tetrazine-based ligands. Coord. Chem. Rev. 2019, 397, 112–137. [Google Scholar] [CrossRef]
  24. Kędzia, A.; Kudelko, A.; Świątkowski, M.; Kruszyński, R. Highly fluorescent 1,2,4,5-tetrazine derivatives containing 1,3,4-oxadiazolering conjugated via a 1,4-phenylene linker. Dyes Pigm. 2020, 183, 108715–108723. [Google Scholar] [CrossRef]
  25. Maj, A.; Kudelko, A.; Świątkowski, M. 1,3,4-Thiadiazol-2-ylphenyl-1,2,4,5-tetrazines: Efficient synthesis via Pinner reaction and their luminescent properties. Arkivoc 2021, 8, 167–178. [Google Scholar] [CrossRef]
  26. Maj, A.; Kudelko, A.; Świątkowski, M. Novel conjugated s-tetrazinederivatives bearing a 4H-1,2,4-triazole scaffold: Synthesis and luminescent properties. Molecules 2022, 27, 459. [Google Scholar] [CrossRef] [PubMed]
  27. Kędzia, A.; Kudelko, A.; Świątkowski, M.; Kruszyński, R. Microwave-promoted synthesis of highly luminescent s-tetrazine-1,3,4-oxadiazole and s-tetrazine-1,3,4-thiadiazole hybrids. Dyes Pigm. 2020, 172, 107865–107872. [Google Scholar] [CrossRef]
  28. Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W.S.C.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J.; et al. Optimized tetrazine derivatives for rapid bioorthogonal decaging in living cells. Angew. Chem. Int. Ed. 2016, 55, 14046–14050. [Google Scholar] [CrossRef]
  29. Yang, J.; Karver, M.R.; Li, W.; Sahu, S.; Devaraj, N.K. Metal-catalyzed one-pot synthesis of tetrazines directly from aliphatic nitriles and hydrazine. Angew. Chem. Int. Ed. 2012, 51, 5222–5225. [Google Scholar] [CrossRef]
  30. Chowdhury, M.; Goodman, L. Fluorescence of s-tetrazine. J. Chem. Phys. 1962, 36, 548–549. [Google Scholar] [CrossRef]
  31. Chowdhury, M.; Goodman, L. Nature of s-tetrazine emission spectra. J. Chem. Phys. 1963, 38, 2979–2985. [Google Scholar] [CrossRef]
  32. Choi, S.-K.; Kim, J.; Kim, E. Overview of syntheses and molecular-design strategies for tetrazine-based fluorogenic probes. Molecules 2021, 26, 1868. [Google Scholar] [CrossRef]
  33. Liu, K.; Shi, W.; Cheng, P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1,2,4-triazole derivatives. Dalton Trans. 2011, 40, 8475–8490. [Google Scholar] [CrossRef] [PubMed]
  34. Li, C.; Ge, H.; Yin, B.; She, M.; Liu, P.; Lia, X.; Li, J. Novel 3,6-unsymmetrically disubstituted-1,2,4,5-tetrazines: S-induced one-pot synthesis, properties and theoretical study. RSC Adv. 2015, 5, 12277–12886. [Google Scholar] [CrossRef]
  35. Gong, Y.-H.; Miomandre, F.; Méallet-Renault, R.; Badré, S.; Galmiche, L.; Tang, J.; Audebert, P.; Clavier, G. Synthesis and physical chemistry of s-tetrazines: Which ones are fluorescent and why? Eur. J. Org. Chem. 2009, 6121–6128. [Google Scholar] [CrossRef]
  36. Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
  37. Melhuish, W.H. Quantum efficiencies of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute. J. Phys. Chem. 1961, 65, 229–235. [Google Scholar] [CrossRef]
  38. Birks, J.B.; Dyson, D.J. The relations between the fluorescence and absorption properties of organic molecules. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1963, 275, 135–148. [Google Scholar] [CrossRef]
  39. Ghosh, S.; Chowdhury, M. S1 (n,π*), T1 (n,π*) and S2 (n,π*) emissions in 3,6-diphenyl-s-tetrazine. Chem. Phys. Lett. 1982, 85, 233–238. [Google Scholar] [CrossRef]
Scheme 1. Derivatives of the title heterocycles with great application potential [3,4,7,12,13,17].
Scheme 1. Derivatives of the title heterocycles with great application potential [3,4,7,12,13,17].
Molecules 27 03642 sch001
Scheme 2. Synthesis of precursors containing a 4H-1,2,4-triazole ring (6ah) [26].
Scheme 2. Synthesis of precursors containing a 4H-1,2,4-triazole ring (6ah) [26].
Molecules 27 03642 sch002
Scheme 3. Synthesis of s-tetrazine derivatives conjugated via a 1,4-phenylene linker with a 4H-1,2,4-triazole ring (10al). Reaction conditions: step 1: two precursors (6ah, 0.5 mmol of each compound), activating agent (zinc trifluoromethanesulfonate (0.009 g, 5 mol%) or sulfur (0.02 g, 125 mol%), ethanol (25 mL), hydrazine hydrate (hydrazine 64%,0.1 mL), reflux 12 h; step 2: methanol (10 mL), hydrogen peroxide (solution 34.5–36.5%,11 mL), rt, 24 h.
Scheme 3. Synthesis of s-tetrazine derivatives conjugated via a 1,4-phenylene linker with a 4H-1,2,4-triazole ring (10al). Reaction conditions: step 1: two precursors (6ah, 0.5 mmol of each compound), activating agent (zinc trifluoromethanesulfonate (0.009 g, 5 mol%) or sulfur (0.02 g, 125 mol%), ethanol (25 mL), hydrazine hydrate (hydrazine 64%,0.1 mL), reflux 12 h; step 2: methanol (10 mL), hydrogen peroxide (solution 34.5–36.5%,11 mL), rt, 24 h.
Molecules 27 03642 sch003
Scheme 4. An attempt to synthesize s-tetrazine derivatives directly conjugated to the 4H-1,2,4-triazole ring.
Scheme 4. An attempt to synthesize s-tetrazine derivatives directly conjugated to the 4H-1,2,4-triazole ring.
Molecules 27 03642 sch004
Scheme 5. Synthesis of s-tetrazine derivatives directly conjugated to the 4H-1,2,4-triazole ring (15ah). Reaction conditions: 1,2,4,5-tetrazine-3,6-dicarbohydrazide (12, 0.50 g, 2.5 mmol), imidoyl chloride (8ah, 5.5 mmol), chloroform (20 mL), reflux, 24 h.
Scheme 5. Synthesis of s-tetrazine derivatives directly conjugated to the 4H-1,2,4-triazole ring (15ah). Reaction conditions: 1,2,4,5-tetrazine-3,6-dicarbohydrazide (12, 0.50 g, 2.5 mmol), imidoyl chloride (8ah, 5.5 mmol), chloroform (20 mL), reflux, 24 h.
Molecules 27 03642 sch005
Scheme 6. Structure of s-tetrazine derivatives conjugated via phenylene linkers with oxadiazole, thiadiazole, and triazole rings.
Scheme 6. Structure of s-tetrazine derivatives conjugated via phenylene linkers with oxadiazole, thiadiazole, and triazole rings.
Molecules 27 03642 sch006
Scheme 7. Structure of s-tetrazine derivatives directly conjugated with oxadiazole, thiadiazole, and triazole rings.
Scheme 7. Structure of s-tetrazine derivatives directly conjugated with oxadiazole, thiadiazole, and triazole rings.
Molecules 27 03642 sch007
Table 1. The yield of the reaction for the preparation of s-tetrazine derivatives conjugated via a 1,4-phenylene linker with a 4H-1,2,4-triazole ring (10a–l).
Table 1. The yield of the reaction for the preparation of s-tetrazine derivatives conjugated via a 1,4-phenylene linker with a 4H-1,2,4-triazole ring (10a–l).
EntryProductR1R3R2Activating AgentYield
[%]
110aHOCH3PhS42
2 Zn(CF3SO3)256
310bHt-BuPhZn(CF3SO3)252
410cHNO2PhZn(CF3SO3)249
510dOCH3t-BuPhZn(CF3SO3)256
610eOCH3NO2PhZn(CF3SO3)254
710ft-BuNO2PhZn(CF3SO3)252
810gHOCH3n-BuS35
9Zn(CF3SO3)250
1010hHt-Bun-BuZn(CF3SO3)247
1110iHNO2n-BuZn(CF3SO3)245
1210jOCH3t-Bun-BuZn(CF3SO3)251
1310kOCH3NO2n-BuZn(CF3SO3)248
1410lt-BuNO2n-BuZn(CF3SO3)247
Table 2. The yield of the reaction for the preparation of s-tetrazine derivatives directly conjugated to the 4H-1,2,4-triazole ring (15ah).
Table 2. The yield of the reaction for the preparation of s-tetrazine derivatives directly conjugated to the 4H-1,2,4-triazole ring (15ah).
EntryProductR1R2Yield [%]
115aHPh45
215bOCH3Ph68
315ct-BuPh59
415dNO2Ph40
515eHn-Bu56
615fOCH3n-Bu78
715gt-Bun-Bu73
815hNO2n-Bu42
Table 3. Spectroscopic data for the studied s-tetrazine derivatives. λabs—wavelength of absorption maximum directly preceding λem. λex and λem—excitation and emission wavelength at global fluorescence maximum. Stokes shift was calculated as λem − λabs. UV-Vis absorption and 3D fluorescence spectra were registered in dichloromethane solutions (c = 5 × 10−6 mol/dm3). The quantum yields Φ were determined according to the method described by Brouwer [36] by comparison with two standards: quinine sulphate (qn-SO42−) [37] and trans,trans-1,4-diphenyl-1,3-butadiene (dpb) [38].
Table 3. Spectroscopic data for the studied s-tetrazine derivatives. λabs—wavelength of absorption maximum directly preceding λem. λex and λem—excitation and emission wavelength at global fluorescence maximum. Stokes shift was calculated as λem − λabs. UV-Vis absorption and 3D fluorescence spectra were registered in dichloromethane solutions (c = 5 × 10−6 mol/dm3). The quantum yields Φ were determined according to the method described by Brouwer [36] by comparison with two standards: quinine sulphate (qn-SO42−) [37] and trans,trans-1,4-diphenyl-1,3-butadiene (dpb) [38].
EntryCompoundλabs
(nm)
ελex
(nm)
λem
(nm)
Stokes Shift
(nm)
Φ
(mol−1 dm3 cm−1)qn-SO42−dpb
110a28343,7742953861030.500.49
210b28443,560300382980.700.69
310c29350,920294375820.240.24
410d28741,8803023911040.670.66
510e30348,2803034091060.140.14
610f29244,760299384920.290.28
710g24232,8602883991570.190.19
810h23232,6802913781460.200.20
910i23621,7602913751390.040.04
1010j25338,1202883961430.050.05
1110k25732,2603044121550.030.03
1210l23936,9402963861470.220.21
1315a27830,180297354760.260.26
1415b25636,1603093751190.260.25
1515c27632,600298362860.300.29
1615d29831,300-----
1715e25727,900270353960.070.07
1815f25337,1002843731200.210.20
1915g25915,1002833611020.110.10
2015h26912,800-----
Table 4. Comparison of the quantum yields of s-tetrazine derivatives conjugated via phenylene linkers with oxadiazole [24], thiadiazole [25], and triazole rings (symmetrically substituted from [26], and unsymmetrically substituted from current work).
Table 4. Comparison of the quantum yields of s-tetrazine derivatives conjugated via phenylene linkers with oxadiazole [24], thiadiazole [25], and triazole rings (symmetrically substituted from [26], and unsymmetrically substituted from current work).
EntryR1R3OxadiazoleThiadiazoleTriazole
R2 = Ph
Triazole
R2 = n-Bu
1HH0.090.460.690.59
2OCH3OCH30.390.60>0.980.49
3t-But-Bu0.430.580.330.51
4NO2NO20.090.140.020.02
5HOCH30.410.440.500.19
6Ht-Bu0.510.400.700.20
7HNO20.570.260.240.04
8OCH3t-Bu0.540.530.670.05
9OCH3NO20.390.380.140.03
10t-BuNO20.050.260.290.22
Table 5. Comparison of the quantum yields of s-tetrazine derivatives directly conjugated with oxadiazole [27], thiadiazole [27], and triazole rings (current work).
Table 5. Comparison of the quantum yields of s-tetrazine derivatives directly conjugated with oxadiazole [27], thiadiazole [27], and triazole rings (current work).
EntryR1OxadiazoleThiadiazoleTriazole
R2 = Ph
Triazole
R2 = n-Bu
1H0.100.740.260.07
2OCH3>0.98>0.980.260.21
3t-Bu**0.300.11
4NO20.080.50--
* compound was not synthesized.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Maj, A.; Kudelko, A.; Świątkowski, M. Synthesis and Luminescent Properties of s-Tetrazine Derivatives Conjugated with the 4H-1,2,4-Triazole Ring. Molecules 2022, 27, 3642. https://doi.org/10.3390/molecules27113642

AMA Style

Maj A, Kudelko A, Świątkowski M. Synthesis and Luminescent Properties of s-Tetrazine Derivatives Conjugated with the 4H-1,2,4-Triazole Ring. Molecules. 2022; 27(11):3642. https://doi.org/10.3390/molecules27113642

Chicago/Turabian Style

Maj, Anna, Agnieszka Kudelko, and Marcin Świątkowski. 2022. "Synthesis and Luminescent Properties of s-Tetrazine Derivatives Conjugated with the 4H-1,2,4-Triazole Ring" Molecules 27, no. 11: 3642. https://doi.org/10.3390/molecules27113642

APA Style

Maj, A., Kudelko, A., & Świątkowski, M. (2022). Synthesis and Luminescent Properties of s-Tetrazine Derivatives Conjugated with the 4H-1,2,4-Triazole Ring. Molecules, 27(11), 3642. https://doi.org/10.3390/molecules27113642

Article Metrics

Back to TopTop