Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights
Abstract
:1. Introduction
2. Mechanisms of FLP Catalysis
3. Current Developments in Heterogeneous FLP Catalysts
3.1. FLPs Based on Metal Oxides
3.2. FLPs Based on Functionalized Surfaces
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, M.; Green, A.; Cohn, G.; Andersen, H.J.I.; Chemistry, E. Purifying hydrogen by selective oxidation of carbon monoxide. Ind. Eng. Chem. 1960, 52, 841–844. [Google Scholar] [CrossRef]
- Oh, S.H.; Sinkevitch, R.M. Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation. J. Catal. 1993, 142, 254–262. [Google Scholar] [CrossRef]
- Rosso, I.; Galletti, C.; Saracco, G.; Garrone, E.; Specchia, V. Development of A zeolites-supported noble-metal catalysts for CO preferential oxidation: H2 gas purification for fuel cell. Appl. Catal. B 2004, 48, 195–203. [Google Scholar] [CrossRef]
- Miyata, T.; Li, D.; Shiraga, M.; Shishido, T.; Oumi, Y.; Sano, T.; Takehira, K. Promoting effect of Rh, Pd and Pt noble metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in CH4 steam reforming. Appl. Catal. A 2006, 310, 97–104. [Google Scholar] [CrossRef]
- Ren, N.; Yang, Y.-H.; Shen, J.; Zhang, Y.-H.; Xu, H.-L.; Gao, Z.; Tang, Y. Novel, efficient hollow zeolitically microcapsulized noble metal catalysts. J. Catal. 2007, 251, 182–188. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, X.; Lu, G.; Li, S. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2—Investigation of different noble metal loading. J. Mol. Catal. A Chem. 2006, 259, 275–280. [Google Scholar] [CrossRef]
- Bai, S.; Liu, F.; Huang, B.; Li, F.; Lin, H.; Wu, T.; Sun, M.; Wu, J.; Shao, Q.; Xu, Y.; et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 2020, 11, 954. [Google Scholar] [CrossRef]
- Yu, D.; Nagelli, E.; Du, F.; Dai, L. Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. J. Phys. Chem. Lett. 2010, 1, 2165–2173. [Google Scholar] [CrossRef]
- Lu, S.; Pan, J.; Huang, A.; Zhuang, L.; Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. USA 2008, 105, 20611. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Wang, A.-Q.; Liu, J.-H.; Lin, S.D.; Lin, T.-S.; Mou, C.-Y. A novel efficient Au–Ag alloy catalyst system: Preparation, activity, and characterization. J. Catal. 2005, 233, 186–197. [Google Scholar] [CrossRef]
- Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y.-F. Biphasic Pd–Au Alloy Catalyst for Low-Temperature CO Oxidation. J. Am. Chem. Soc. 2010, 132, 10398–10406. [Google Scholar] [CrossRef] [PubMed]
- Greeley, J.; Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 2004, 3, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Wang, S.; Gao, Z.; Luo, Z.; Wang, X.; Zeng, R.; Li, A.; Li, H.; Wang, M.; et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 2016, 7, 14036. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zeng, S.; Jiang, C.; Dong, H.; Liu, L.; Zhang, S.; Zhang, X. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341. [Google Scholar] [CrossRef]
- Wang, Q.; Lei, Y.; Wang, D.; Li, Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750. [Google Scholar] [CrossRef]
- Ortiz-Medina, J.; Wang, Z.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X.; Terrones, M.; Endo, M. Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis. Adv. Mater. 2019, 31, 1805717. [Google Scholar] [CrossRef]
- Yue, Q.; Liu, C.; Wan, Y.; Wu, X.; Zhang, X.; Du, P. Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis. J. Catal. 2018, 358, 1–7. [Google Scholar] [CrossRef]
- Geier, S.J.; Stephan, D.W. Lutidine/B(C6F5)3: At the Boundary of Classical and Frustrated Lewis Pair Reactivity. J. Am. Chem. Soc. 2009, 131, 3476–3477. [Google Scholar] [CrossRef]
- Simanullang, W.F.; Itahara, H.; Takahashi, N.; Kosaka, S.; Shimizu, K.-i.; Furukawa, S. Highly active and noble-metal-alternative hydrogenation catalysts prepared by dealloying Ni–Si intermetallic compounds. Chem. Commun. 2019, 55, 13999–14002. [Google Scholar] [CrossRef]
- Liang, Q.; Hayashi, K.; Song, D. Catalytic Alkyne Dimerization without Noble Metals. ACS Catal. 2020, 10, 4895–4905. [Google Scholar] [CrossRef]
- Basu, M.; Zhang, Z.-W.; Chen, C.-J.; Chen, P.-T.; Yang, K.-C.; Ma, C.-G.; Lin, C.C.; Hu, S.-F.; Liu, R.-S. Heterostructure of Si and CoSe2: A Promising Photocathode Based on a Non-noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 6211–6216. [Google Scholar] [CrossRef] [PubMed]
- Welch, G.C.; Juan, R.R.S.; Masuda, J.D.; Stephan, D.W. Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, P.A.; Stephan, D.W. Hydrogen and Amine Activation by a Frustrated Lewis Pair of a Bulky N-Heterocyclic Carbene and B(C6F5)3. Angew. Chem. Int. Ed. 2008, 47, 7433–7437. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W.; Erker, G. Frustrated Lewis pairs: Metal-free hydrogen activation and more. Angew. Chem. Int. Ed. 2010, 49, 46–76. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. The broadening reach of frustrated Lewis pair chemistry. Science 2016, 354, aaf7229. [Google Scholar] [CrossRef]
- Jupp, A.R.; Stephan, D.W. New Directions for Frustrated Lewis Pair Chemistry. Trends Chem. 2019, 1, 35–48. [Google Scholar] [CrossRef]
- Welch, G.C.; Stephan, D.W. Facile Heterolytic Cleavage of Dihydrogen by Phosphines and Boranes. J. Am. Chem. Soc. 2007, 129, 1880–1881. [Google Scholar] [CrossRef]
- Spikes, G.H.; Fettinger, J.C.; Power, P.P. Facile Activation of Dihydrogen by an Unsaturated Heavier Main Group Compound. J. Am. Chem. Soc. 2005, 127, 12232–12233. [Google Scholar] [CrossRef]
- McCahill, J.S.J.; Welch, G.C.; Stephan, D.W. Reactivity of “Frustrated Lewis Pairs”: Three-Component Reactions of Phosphines, a Borane, and Olefins. Angew. Chem. Int. Ed. 2007, 46, 4968–4971. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, M.; Seto, K.S.H.; Lough, A.J.; Stephan, D.W. 1,4-Addition reactions of frustrated Lewis pairs to 1,3-dienes. Chem. Commun. 2009, 17, 2335–2337. [Google Scholar] [CrossRef] [PubMed]
- Mömming, C.M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D.W.; Erker, G. Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2009, 48, 6643–6646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. Catalytic CO2 Activation Assisted by Rhenium Hydride/B(C6F5)3 Frustrated Lewis Pairs—Metal Hydrides Functioning as FLP Bases. J. Am. Chem. Soc. 2013, 135, 7751–7760. [Google Scholar] [CrossRef]
- Pal, R.; Ghara, M.; Chattaraj, P.K. Activation of Small Molecules and Hydrogenation of CO2 Catalyzed by Frustrated Lewis Pairs. Catalysts 2022, 12, 201. [Google Scholar] [CrossRef]
- Ghara, M.; Giri, S.; Das, P.; Chattaraj, P. Possible C-F Bond Activation by B(C6F5)3/Lutidine and Al(C6F5)3/Lutidine Frustrated Lewis Pair: An In Silico Study. J. Chem. Sci. 2021, 134, 14. [Google Scholar] [CrossRef]
- Sheng, J.; He, Y.; Huang, M.; Yuan, C.; Wang, S.; Dong, F. Frustrated Lewis Pair Sites Boosting CO2 Photoreduction on Cs2CuBr4 Perovskite Quantum Dots. ACS Catalysis 2022, 12, 2915–2926. [Google Scholar] [CrossRef]
- Liu, S.; Dong, M.; Wu, Y.; Luan, S.; Xin, Y.; Du, J.; Li, S.; Liu, H.; Han, B. Solid surface frustrated Lewis pair constructed on layered AlOOH for hydrogenation reaction. Nat. Commun. 2022, 13, 2320. [Google Scholar] [CrossRef]
- Xing, J.-Y.; Buffet, J.-C.; Rees, N.H.; Nørby, P.; O’Hare, D. Hydrogen cleavage by solid-phase frustrated Lewis pairs. Chem. Commun. 2016, 52, 10478–10481. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Chang, C.-R.; Huang, Z.-Q.; Ho, J.C.; Qu, Y. Semi-solid and solid frustrated Lewis pair catalysts. Chem. Soc. Rev. 2018, 47, 5541–5553. [Google Scholar] [CrossRef]
- Jupp, A.R. Heterogeneous Catalysis by Frustrated Lewis Pairs. In Frustrated Lewis Pairs; Chris Slootweg, J., Jupp, A.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 237–281. [Google Scholar]
- Zhang, Y.; Lan, P.C.; Martin, K.; Ma, S. Porous frustrated Lewis pair catalysts: Advances and perspective. Chem. Catal. 2022, 2, 439–457. [Google Scholar] [CrossRef]
- Wischert, R.; Coperet, C.; Delbecq, F.; Sautet, P. Optimal water coverage on alumina: A key to generate Lewis acid-base pairs that are reactive towards the C-H bond activation of methane. Angew. Chem. Int. Ed. 2011, 50, 3202–3205. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yuan, H.; Li, Z.; Wang, W.; Li, Z.; Shao, X. Low-Temperature Heterolytic Adsorption of H2 on ZnO(10) Surface. J. Phys. Chem. C 2019, 123, 13283–13287. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Liu, L.-P.; Qi, S.; Zhang, S.; Qu, Y.; Chang, C.-R. Understanding all-solid frustrated-Lewis-pair sites on CeO2 from theoretical perspectives. ACS Catal. 2018, 8, 546–554. [Google Scholar] [CrossRef]
- Riley, C.; Zhou, S.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L.; Lin, S.; Guo, H.; Datye, A. Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973. [Google Scholar] [CrossRef] [PubMed]
- Vilé, G.; Bridier, B.; Wichert, J.; Pérez-Ramírez, J. Ceria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins. Angew. Chem. Int. Ed. 2012, 51, 8620–8623. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Cheng, Y.; Tao, F.; Daemen, L.; Foo, G.S.; Nguyen, L.; Zhang, X.; Beste, A.; Ramirez-Cuesta, A.J. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. J. Am. Chem. Soc. 2017, 139, 9721–9727. [Google Scholar] [CrossRef]
- Werner, K.; Weng, X.; Calaza, F.; Sterrer, M.; Kropp, T.; Paier, J.; Sauer, J.; Wilde, M.; Fukutani, K.; Shaikhutdinov, S.; et al. Toward an understanding of selective alkyne hydrogenation on ceria: On the impact of O vacancies on H2 interaction with CeO2(111). J. Am. Chem. Soc. 2017, 139, 17608–17616. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, P.; Sun, D.; Wang, L.; Zhou, K.; Wang, Z.-X.; Guo, G.-C. Gold catalyzed hydrogenations of small imines and nitriles: Enhanced reactivity of Au surface toward H2via collaboration with a Lewis base. Chem. Sci. 2014, 5, 1082–1090. [Google Scholar] [CrossRef]
- Fiorio, J.L.; López, N.; Rossi, L.M. Gold–Ligand-Catalyzed Selective Hydrogenation of Alkynes into cis-Alkenes via H2 Heterolytic Activation by Frustrated Lewis Pairs. ACS Catal. 2017, 7, 2973–2980. [Google Scholar] [CrossRef] [Green Version]
- Fiorio, J.L.; Gonçalves, R.V.; Teixeira-Neto, E.; Ortuño, M.A.; López, N.; Rossi, L.M. Accessing Frustrated Lewis Pair Chemistry through Robust Gold@N-Doped Carbon for Selective Hydrogenation of Alkynes. ACS Catal. 2018, 8, 3516–3524. [Google Scholar] [CrossRef]
- Shyshkanov, S.; Nguyen, T.N.; Ebrahim, F.M.; Stylianou, K.C.; Dyson, P.J. In Situ Formation of Frustrated Lewis Pairs in a Water-Tolerant Metal-Organic Framework for the Transformation of CO2. Angew. Chem. Int. Ed. 2019, 58, 5371–5375. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, X.; Chen, Z. Frustrated Lewis Pair Catalysts in Two Dimensions: B/Al-Doped Phosphorenes as Promising Catalysts for Hydrogenation of Small Unsaturated Molecules. ACS Catal. 2016, 7, 766–771. [Google Scholar] [CrossRef]
- Wan, Q.; Li, J.; Jiang, R.; Lin, S. Construction of frustrated Lewis pairs on carbon nitride nanosheets for catalytic hydrogenation of acetylene. Phys. Chem. Chem. Phys. 2021, 23, 24349–24356. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiong, C.; Moon, J.; Ivanov, A.S.; Lin, W.; Wang, T.; Fu, J.; Jiang, D.-e.; Wu, Z.; Yang, Z.; et al. Defect-Regulated Frustrated-Lewis-Pair Behavior of Boron Nitride in Ambient Pressure Hydrogen Activation. J. Am. Chem. Soc. 2022, in press. [CrossRef]
- Ran, Y.; Yu, X.; Liu, J.; Cui, J.; Wang, J.; Wang, L.; Zhang, Y.; Xiang, X.; Ye, J. Polymeric carbon nitride with frustrated Lewis pair sites for enhanced photofixation of nitrogen. J. Mater. Chem. A 2020, 8, 13292–13298. [Google Scholar] [CrossRef]
- Rouf, A.M.; Dai, C.; Xu, F.; Zhu, J. Dinitrogen Activation by Tricoordinated Boron Species: A Systematic Design. Adv. Theory Simul. 2020, 3, 1900205. [Google Scholar] [CrossRef]
- Daru, J.; Bakó, I.; Stirling, A.; Pápai, I. Mechanism of Heterolytic Hydrogen Splitting by Frustrated Lewis Pairs: Comparison of Static and Dynamic Models. ACS Catal. 2019, 9, 6049–6057. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lukose, B.; Jaque, P.; Ensing, B. Reaction mechanism of hydrogen activation by frustrated Lewis pairs. Green Energy Environ. 2019, 4, 20–28. [Google Scholar] [CrossRef]
- Liu, L.; Cao, L.L.; Shao, Y.; Ménard, G.; Stephan, D.W. A Radical Mechanism for Frustrated Lewis Pair Reactivity. Chem 2017, 3, 259–267. [Google Scholar] [CrossRef]
- Rokob, T.A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. Turning Frustration into Bond Activation: A Theoretical Mechanistic Study on Heterolytic Hydrogen Splitting by Frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2008, 47, 2435–2438. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew. Chem. Int. Ed. 2010, 49, 1402–1405. [Google Scholar] [CrossRef] [PubMed]
- Rokob, T.A.; Bako, I.; Stirling, A.; Hamza, A.; Papai, I. Reactivity models of hydrogen activation by frustrated Lewis pairs: Synergistic electron transfers or polarization by electric field? J. Am. Chem. Soc. 2013, 135, 4425–4437. [Google Scholar] [CrossRef]
- Biswas, S.; Pramanik, A.; Sarkar, P. Computational studies on the reactivity of alkyl halides over (Al2O3)n nanoclusters: An approach towards room temperature dehydrohalogenation. Nanoscale 2016, 8, 10205–10218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wischert, R.; Laurent, P.; Coperet, C.; Delbecq, F.; Sautet, P. γ-Alumina: The essential and unexpected role of water for the structure, stability, and reactivity of “defect” sites. J. Am. Chem. Soc. 2012, 134, 14430–14449. [Google Scholar] [CrossRef]
- Ghuman, K.K.; Wood, T.E.; Hoch, L.B.; Mims, C.A.; Ozin, G.A.; Singh, C.V. Illuminating CO2 reduction on frustrated Lewis pair surfaces: Investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3−x(OH)y. Phys. Chem. Chem. Phys. 2015, 17, 14623–14635. [Google Scholar] [CrossRef]
- Bernal, S.; Calvino, J.J.; Gatica, J.; López Cartes, C.; Pintado, J.M.; Trovarelli, A. Catalysis by ceria and related materials. Catal. Sci. Ser. 2002, 2, 85–168. [Google Scholar]
- Carrasco, J.; Vilé, G.; Fernández-Torre, D.; Pérez, R.; Pérez-Ramírez, J.; Ganduglia-Pirovano, M.V. Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J. Phys. Chem. C 2014, 118, 5352–5360. [Google Scholar] [CrossRef] [Green Version]
- Vilé, G.; Colussi, S.; Krumeich, F.; Trovarelli, A.; Pérez-Ramírez, J. Opposite Face Sensitivity of CeO2 in Hydrogenation and Oxidation Catalysis. Angew. Chem. Int. Ed. 2014, 53, 12069–12072. [Google Scholar] [CrossRef]
- Zhou, S.; Wan, Q.; Lin, S.; Guo, H. Acetylene hydrogenation catalyzed by bare and Ni doped CeO2(110): The role of frustrated Lewis pairs. Phys. Chem. Chem. Phys. 2022, 24, 11295–11304. [Google Scholar] [CrossRef]
- García-Melchor, M.; López, N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: The example of CeO2. J. Phys. Chem. C 2014, 118, 10921–10926. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Huang, Z.Q.; Ma, Y.; Gao, W.; Li, J.; Cao, F.; Li, L.; Chang, C.R.; Qu, Y. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat. Commun. 2017, 8, 15266. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, L.; Wei, F.; Lin, S.; Guo, H. On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria. J. Catal. 2019, 375, 410–418. [Google Scholar] [CrossRef]
- Moon, J.; Cheng, Y.; Daemen, L.L.; Li, M.; Polo-Garzon, F.; Ramirez-Cuesta, A.J.; Wu, Z. Discriminating the role of surface hydride and hydroxyl for acetylene semihydrogenation over ceria through in situ neutron and infrared spectroscopy. ACS Catal. 2020, 10, 5278–5287. [Google Scholar] [CrossRef]
- Riley, C.; De La Riva, A.; Zhou, S.; Wan, Q.; Peterson, E.; Artyushkova, K.; Farahani, M.D.; Friedrich, H.B.; Burkemper, L.; Atudorei, N.-V.; et al. Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation. ChemCatChem 2019, 11, 1526–1533. [Google Scholar] [CrossRef]
- Zhao, Y.; Jalal, A.; Uzun, A. Interplay between Copper Nanoparticle Size and Oxygen Vacancy on Mg-Doped Ceria Controls Partial Hydrogenation Performance and Stability. ACS Catal. 2021, 11, 8116–8131. [Google Scholar] [CrossRef]
- Shi, X.; Lin, Y.; Huang, L.; Sun, Z.; Yang, Y.; Zhou, X.; Vovk, E.; Liu, X.; Huang, X.; Sun, M.; et al. Copper Catalysts in Semihydrogenation of Acetylene: From Single Atoms to Nanoparticles. ACS Catal. 2020, 10, 3495–3504. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Zhang, T.; Chang, C.-R.; Li, J. Dynamic Frustrated Lewis Pairs on Ceria for Direct Nonoxidative Coupling of Methane. ACS Catal. 2019, 9, 5523–5536. [Google Scholar] [CrossRef]
- Wan, Q.; Chen, Y.; Zhou, S.; Lin, J.; Lin, S. Selective hydrogenation of acetylene to ethylene on anatase TiO2 through first-principles studies. J. Mater. Chem. A 2021, 9, 14064–14073. [Google Scholar] [CrossRef]
- Ghoussoub, M.; Yadav, S.; Ghuman, K.K.; Ozin, G.A.; Singh, C.V. Metadynamics-Biased ab Initio Molecular Dynamics Study of Heterogeneous CO2 Reduction via Surface Frustrated Lewis Pairs. ACS Catal. 2016, 6, 7109–7117. [Google Scholar] [CrossRef]
- Negreiros, F.R.; Camellone, M.F.; Fabris, S. Effects of thermal fluctuations on the hydroxylation and reduction of ceria surfaces by molecular H2. J. Phys. Chem. C 2015, 119, 21567–21573. [Google Scholar] [CrossRef]
- Jian, M.; Liu, J.-X.; Li, W.-X. Hydroxyl improving the activity, selectivity and stability of supported Ni single atoms for selective semi-hydrogenation. Chem. Sci. 2021, 12, 10290–10298. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Johnson, J.K. Design of Lewis Pair-Functionalized Metal Organic Frameworks for CO2 Hydrogenation. ACS Catal. 2015, 5, 2921–2928. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, L.; Huang, W.; Zhang, R.; Wang, D.; Mu, R.; Fu, Q.; Bao, X. Design of Lewis Pairs via Interface Engineering of Oxide-Metal Composite Catalyst for Water Activation. J. Phys. Chem. Lett. 2021, 12, 1443–1452. [Google Scholar] [CrossRef]
- Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Commun. 2014, 5, 5291. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, B.; Liu, T.; Song, J.; Su, D.S. Designing graphene as a new frustrated Lewis pair catalyst for hydrogen activation by co-doping. Phys. Chem. Chem. Phys. 2016, 18, 11120–11124. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, J.; Jiao, Y.; Wang, T.; Yin, L. Achieving efficient N2 electrochemical reduction by stabilizing the N2H* intermediate with the frustrated Lewis pairs. J. Energy Chem. 2022, 66, 628–634. [Google Scholar] [CrossRef]
- Hao, Y.-C.; Guo, Y.; Chen, L.-W.; Shu, M.; Wang, X.-Y.; Bu, T.-A.; Gao, W.-Y.; Zhang, N.; Su, X.; Feng, X.; et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456. [Google Scholar] [CrossRef]
- Zhang, Y.; Mo, Y.; Cao, Z. Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO2 Hydrogenation to Formic Acid. ACS Appl. Mater. Interfaces 2022, 14, 1002–1014. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Q.; Lin, S.; Guo, H. Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights. Molecules 2022, 27, 3734. https://doi.org/10.3390/molecules27123734
Wan Q, Lin S, Guo H. Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights. Molecules. 2022; 27(12):3734. https://doi.org/10.3390/molecules27123734
Chicago/Turabian StyleWan, Qiang, Sen Lin, and Hua Guo. 2022. "Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights" Molecules 27, no. 12: 3734. https://doi.org/10.3390/molecules27123734
APA StyleWan, Q., Lin, S., & Guo, H. (2022). Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights. Molecules, 27(12), 3734. https://doi.org/10.3390/molecules27123734