UPLC–Q–TOF–MS/MS Analysis of Phenolic Compounds from the Fruit of Cephalostachyum fuchsianum Gamble and Their Antioxidant and Cytoprotective Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagent
2.2. Plant Materials
2.3. Extraction of Soluble Phenolics (SPs) and Insoluble-Bound Phenolics (IBPs) in CFG
2.4. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.5. Identification of Phenolic Compounds
UPLC–Q–TOF–MS/MS Analysis Conditions
2.6. Antioxidant Activity Analysis
2.6.1. DPPH Radical Scavenging Assay (DRSA)
2.6.2. Trolox Equivalent Antioxidant Capacity (TEAC)
2.6.3. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6.4. Hydrogen Peroxide Scavenging Assay (HPSA)
2.7. Cell Assays for Antioxidative Activities
2.7.1. Cell Culture
2.7.2. Cell Viability Assay
2.8. Determination of Oxidative Stress Parameters
2.9. Data and Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.2. Identification of Phenolic Compositions
3.2.1. Structural Characterization of Hydroxybenzoic Acid
3.2.2. Structural Characterization of Flavonoids
3.2.3. Structural Characterization of Coumarins
3.2.4. Structural Characterization of Cinnamic Acids
3.2.5. Structural Characterization of Terpenoid
3.2.6. Structural Characterization of Lignin
3.2.7. Analysis of UPLC–QTOF–MS/MS
3.3. In Vitro Antioxidant Activities
3.4. Cell Viability
3.5. Protective Effects of Polyphenols from CFG on H2O2-Induced Intracellular ROS Production in HepG2 Cells
3.6. The Effects of CFG on the Activities of SOD, CAT, GSH and MDA in H2O2-Induced HepG2 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.H.; Choi, M.H. Bamboo Stems (Phyllostachys nigra variety henosis) Containing Polyphenol Mixtures Activate Nrf2 and Attenuate Phenylhydrazine-Induced Oxidative Stress and Liver Injury. Nutrients 2019, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Gamble, J.S. The Bambuseae of British India. Annals of the Royal Botanic Garden, Calcutta; Johnson Reprint Corp: New York, NY, USA, 1896; Volume 7, pp. 1–133. [Google Scholar]
- Xu, B.H. Ying Jiangsu Dian’s empty bamboo and empty bamboo rice. Plant Mag. 1996, 4, 36. [Google Scholar]
- Jong-Yoon, P.; Hoyeun, K.; Ilha, L. Comparative analysis of molecular and physiological traits between perennial Arabis alpina Pajares and annual Arabidopsis thaliana Sy-0. Sci. Rep. 2017, 7, 13348. [Google Scholar]
- Tan, R.Q.; Tan, H.C.; Zhang, X.Z. A Study of Seed Quality Property of Cephalostachyum fuchsianum Gamble. World Bamboo Ratt. 2017, 15, 32–35. [Google Scholar]
- Liu, J.; Tan, F.; Liu, X.; Yi, R.; Zhao, X. Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02. Biomolecules 2019, 9, 575. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, C.; Huang, R.; Ding, Y.; Ruan, C.; Shen, X.C. Mechanisms of Reactive Oxygen Species Generated by Inorganic Nanomaterials for Cancer Therapeutics. Front. Chem. 2021, 9, 630969. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cai, F.; Chen, X.; Luo, M.; Hu, L.; Lu, Y. The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS ONE 2013, 8, 75044. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Li, Y.; Xue, X.; Huang, Y.; Luo, H.; Zhang, Y.; Lu, Z. Comparative Evaluation of Soluble and Insoluble-Bound Phenolics and Antioxidant Activity of Two Chinese Mistletoes. Molecules 2018, 23, 359. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, S.; Huang, Y.; Huang, J.; Li, Y. Effect of in vitro gastrointestinal digestion on phenolic compounds and antioxidant properties of soluble and insoluble dietary fibers derived from hulless barley. J. Food Sci. 2021, 86, 628–634. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef]
- Yeo, J.; Shahidi, F. Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chem. 2020, 315, 126202. [Google Scholar] [CrossRef]
- Bak, M.J.; Jeong, W.S.; Kim, K.B. Detoxifying effect of fermented black ginseng on H2O2-induced oxidative stress in HepG2 cells. Int. J. Mol. Med. 2014, 34, 1516–1522. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Li, P.; Xue, H.; Li, Q. Cyanidin-3-glucoside prevents hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. Biotechnol. Lett. 2020, 42, 2453–2466. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.M.; Wang, Y.M.; Zhao, Y.Q.; Chi, C.F.; Wang, B. Antioxidant Peptides from the Protein Hydrolysate of Monkfish (Lophius litulon) Muscle: Purification, Identification, and Cytoprotective Function on HepG2 Cells Damage by H2O2. Mar. Drugs 2020, 18, 153. [Google Scholar] [CrossRef] [PubMed]
- Govindan, B.; Johnson, A.J.; Nair, S.N.; Gopakumar, B.; Mallampalli, K.S.; Venkataraman, R.; Koshy, K.C.; Baby, S. Nutritional properties of the largest bamboo fruit Melocanna baccifera and its ecological significance. Sci. Rep. 2016, 6, 26135. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Liu, J.; Zheng, W.; Zhang, Y.; Xu, T.; Gao, B.; Yu, L. Chemical Composition Profiling and Biological Activities of Phenolic Compounds in Eleven Red Sorghums. J. Agric. Food Chem. 2021, 69, 9407–9418. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Braidy, N.; Habtemariam, S.; Orhan, I.E.; Daglia, M.; Manayi, A.; Gortzi, O.; Nabavi, S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int. 2015, 90, 224–231. [Google Scholar] [CrossRef]
- Miraj, S.; Alesaeidi, S. A systematic review study of therapeutic effects of Matricaria recuitta chamomile (chamomile). Electron. Physician 2016, 8, 3024–3031. [Google Scholar] [CrossRef]
- Thammapat, P.; Meeso, N.; Siriamornpun, S. Effects of the traditional method and an alternative parboiling process on the fatty acids, vitamin E, gamma-oryzanol and phenolic acids of glutinous rice. Food Chem. 2016, 194, 230–236. [Google Scholar] [CrossRef]
- Hong, C.; Chang, C.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Identification and characterization of polyphenols in different varieties of Camellia oleifera seed cakes by UPLC-QTOF-MS. Food Res. Int. 2019, 126, 108614. [Google Scholar] [CrossRef]
- Di Lella, S.; La Porta, N.; Tognetti, R.; Lombardi, F.; Nardin, T.; Larcher, R. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS. Phytochem. Anal. 2022, 33, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhu, T.; Teng, F.; Yang, D.; Zhu, J.J.; Wang, Z.M.; Liu, Z.G.; Liu, J.Y. Purification and component identification of total proanthocyanidins in Choerospondias axillaris pericarp. Zhongguo Zhong Yao Za Zhi 2021, 46, 2923–2930. [Google Scholar] [PubMed]
- Kassuya, R.M.; Dos Santos, E.; Bosso, F.H.; Pedroso, T.F.; Marinho, J.V.N.; Salvador, M.J.; Kassuya, C.A.L.; Gasparotto Junior, A. Anti-inflammatory Properties of Ethanolic Extract and 2″-O-beta-D-Glucopyranosyl-vitexin Obtained from Alternanthera tenella Colla Whole Plant. Inflammation 2021, 44, 1540–1552. [Google Scholar] [CrossRef]
- Hori, K.; Watanabe, T.; Devkota, H.P. Phenolic Acid Derivatives, Flavonoids and Other Bioactive Compounds from the Leaves of Cardiocrinum cordatum (Thunb.) Makino (Liliaceae). Plants 2021, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.S.; Lin, Y.C.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Ishikawa, T.; Ishii, H. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry 1995, 39, 1091–1097. [Google Scholar] [CrossRef]
- Shoko, T.; Maharaj, V.J.; Naidoo, D.; Tselanyane, M.; Nthambeleni, R.; Khorombi, E.; Apostolides, Z. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC–Q–TOF–MS. BMC Complement. Altern Med. 2018, 18, 54. [Google Scholar] [CrossRef]
- Dao, P.T.; Quan, T.L.; Mai, N.T. Constituents of the Stem of Nauclea orientalis. Nat. Prod. Commun 2015, 10, 1901–1903. [Google Scholar] [CrossRef]
- Rob, M.M.; Hossen, K.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic Activity and Identification of Phytotoxic Substances from Schumannianthus dichotomus. Plants 2020, 9, 102. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, X.; Cao, Y.; Huang, L. The exploration of neuraminidase inhibitory activity on Fallopia denticulata, an ethnic herb in China. Biomed. Chromatogr. 2021, 35, 5024. [Google Scholar] [CrossRef]
- Miyazawa, M.; Oshima, T.; Koshio, K.; Itsuzaki, Y.; Anzai, J. Tyrosinase inhibitor from black rice bran. J. Agric. Food Chem. 2003, 51, 6953–6956. [Google Scholar] [CrossRef]
- Qi, L.W.; Gu, X.J.; Li, P.; Liang, Y.; Hao, H.; Wang, G. Structural characterization of pregnane glycosides from Cynanchum auriculatum by liquid chromatography on a hybrid ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 2009, 23, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.J.; Chen, N.; Li, H.; Zhang, X.; Yang, B.; Huang, L.Q. Analysis of flavonoids from saffron floral bio-residues. Zhongguo Zhong Yao Za Zhi 2021, 46, 1438–1449. [Google Scholar] [PubMed]
- Funari, C.S.; Gullo, F.P.; Napolitano, A.; Carneiro, R.L.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M.; Piacente, S.; Pizza, C.; Silva, D.H. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem. 2012, 135, 2086–2094. [Google Scholar] [CrossRef]
- Cai, J.; Yang, C.; Chen, T.; Zhao, L. Detection of new phenylpropanoids from Dendrobium chrysanthum. Nat. Prod. Res. 2018, 32, 1600–1604. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, Y.Q. On-line scavenging activity of Huanglian by HPLC-ABTS-DAD-Q-TOF-MS. Zhongguo Zhong Yao Za Zhi 2018, 43, 2570–2574. [Google Scholar] [PubMed]
- Luo, L.; Liu, X.; Jin, X.; Liu, Y.; Ma, J.; Zhang, S.; Zhang, D.; Chen, X.; Sheng, L.; Li, Y. Simultaneous determination of skimmin, apiosylskimmin, 7-hydroxycoumarin and 7-hydroxycoumarin glucuronide in rat plasma by liquid chromatography-Orbitrap mass spectrometry and its application to pharmacokinetics. Biomed. Chromatogr. 2022, 36, 5223. [Google Scholar] [CrossRef]
- Qu, B.; Jiang, J.; Mao, X.; Dong, G.; Liu, Y.; Li, L.; Zhao, H. Simultaneous determination of vanillin, ethyl vanillin and methyl vanillin in Chinese infant food and other dairy products by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2021, 38, 1096–1104. [Google Scholar] [CrossRef]
- Zaynap, T.; Zhong, J.; Xin, X.; Hajiakber, A. Comparative studies in content of major active compositions in different parts of Cichorium glandulosum. Zhongguo Zhong Yao Za Zhi 2010, 35, 1018–1021. [Google Scholar]
- Schripsema, J.; Caprini, G.P.; Dagnino, D. Revision of the structures of citrifolinin A, citrifolinoside, yopaaoside A, yopaaoside B, and morindacin, iridoids from Morinda citrifolia L. and Morinda coreia Ham. Org. Lett. 2006, 8, 5337–5340. [Google Scholar] [CrossRef]
- Yim, D.; Singh, R.P.; Agarwal, C.; Lee, S.; Chi, H.; Agarwal, R. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res. 2005, 65, 1035–1044. [Google Scholar]
- Olszewska, M.A.; Granica, S.; Kolodziejczyk-Czepas, J.; Magiera, A.; Czerwinska, M.E.; Nowak, P.; Rutkowska, M.; Wasinski, P.; Owczarek, A. Variability of sinapic acid derivatives during germination and their contribution to antioxidant and anti-inflammatory effects of broccoli sprouts on human plasma and human peripheral blood mononuclear cells. Food Funct. 2020, 11, 7231–7244. [Google Scholar] [CrossRef]
- Zhang, W.M.; Wang, W.; Zhang, J.J.; Wang, Z.R.; Wang, Y.; Hao, W.J.; Huang, W.Y. Antibacterial Constituents of Hainan Morinda citrifolia (Noni) Leaves. J. Food Sci. 2016, 81, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Mateus-Ruiz, J.B.; Cordero-Vargas, A. Visible-Light-Mediated Photoredox Reactions in the Total Synthesis of Natural Products. Synthesis 2020, 52, 3111–3128. [Google Scholar]
- Yannai, S. Dictionary of Food Compounds: Additives, Flavors, and Ingredients; Taylor & Francis: Abingdon, UK, 2004. [Google Scholar]
- Cho, J.Y.; Yang, X.; Park, K.H.; Park, H.J.; Park, S.Y.; Moon, J.H.; Ham, K.S. Isolation and identification of antioxidative compounds and their activities from Suaeda japonica. Food Sci. Biotechnol. 2013, 22, 1547–1557. [Google Scholar] [CrossRef]
- Chen, J.X.; Ni, L.; Zhang, Y.; Fu, J.R.; Huang, W.; Zou, S.Q. A new lignan from Euscaphis konishii. Zhongguo Zhong Yao Za Zhi 2021, 46, 2072–2078. [Google Scholar]
- Orlova, S.V.; Tatarinov, V.V.; Nikitina, E.A.; Sheremeta, A.V.; Ivlev, V.A.; Vasil’ev, V.G.; Paliy, K.V.; Goryainov, S.V. Bioavailability and Safety of Dihydroquercetin (Review). Pharm. Chem. J. 2022, 55, 1133–1137. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Pan, Q.M.; Zhang, G.J.; Liang, D. Study on chemical constituents of stems and leaves of Sapium discolor. Zhongguo Zhong Yao Za Zhi 2019, 44, 3738–3744. [Google Scholar] [PubMed]
- Zhao, G.W.; Xia, W.; Chen, P.; Han, E.J.; Xiang, L. Study on the bioactive constituents of Piper wallichii. Zhong Yao Cai 2012, 35, 53–56. [Google Scholar]
- Tezuka, Y.; Yamamoto, K.; Awale, S.; Lia, F.; Yomoda, S.; Kadota, S. Anti-austeric activity of phenolic constituents of seeds of Arctium lappa. Nat. Prod. Commun. 2013, 8, 463–466. [Google Scholar] [CrossRef]
- Tsvetkov, D.E.; Kumar, R.; Dmitrenok, A.S.; Tsvetkov, Y.E.; Nifantiev, N.E. Components of the extracts of the knot wood of Dalbergia Sissoo Linn. and their antioxidant activity. Russ. Chem. Bull. 2019, 68, 1756–1762. [Google Scholar] [CrossRef]
- Yang, J.M.; Liu, Y.Y.; Yang, W.C.; Ma, X.X.; Nie, Y.Y.; Glukhov, E.; Gerwick, L.; Gerwick, W.H.; Lei, X.L.; Zhang, Y. An anti-inflammatory isoflavone from soybean inoculated with a marine fungus Aspergillus terreus C23-3. Biosci. Biotechnol. BioChem. 2020, 84, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Greger, H. Comparative phytochemistry of flavaglines (=rocaglamides), a group of highly bioactive flavolignans from Aglaia species (Meliaceae). PhytoChem. Rev. 2021, 1–40. [Google Scholar] [CrossRef]
- Allais, F.; Pla, T.; Ducrot, P. An Access to Chiral beta-Benzyl-gamma-butyrolactones and Its Application to the Synthesis of Enantiopure (+)-Secoisolariciresinol, (–)-Secoisolariciresinol, and (–)-Enterolactone. Synthesis 2011, 9, 1456–1464. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Aalizadeh, R.; Dasenaki, M.E.; Panagopoulou, E.I.; Drivelos, S.; Halagarda, M.; Georgiou, C.A.; Proestos, C.; Thomaidis, N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules 2021, 26, 2769. [Google Scholar] [CrossRef]
- El-Mawla, A.; Mohamed, K.M.; Mostafa, A.M. Induction of Biologically Active Flavonoids in Cell Cultures of Morus nigra and Testing their Hypoglycemic Efficacy. Sci. Pharm. 2011, 79, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Rahman, H.; Khan, A.; Bibi, S.; Ullah, O.; Ullah, S.; Ur Rehman, N.; Murad, W.; Al-Harrasi, A. Identification of alpha-Glucosidase Inhibitors from Scutellaria edelbergii: ESI-LC-MS and Computational Approach. Molecules 2022, 27, 1322. [Google Scholar] [CrossRef] [PubMed]
- Singh, F.V.; Mangaonkar, S.R. Hypervalent Iodine(III)-Catalyzed Synthesis of 2-Arylbenzofurans. Synthesis 2018, 50, 4940–4948. [Google Scholar] [CrossRef]
- Ren, Z.; Lv, M.; Sun, Z.; Li, T.; Zhang, S.; Xu, H. Regioselective hemisynthesis and insecticidal activity of C8-hydrazones/acylhydrazones/sulfonylhydrazones coumarin-type derivatives of osthole. Bioorg Med. Chem. Lett 2021, 40, 127962. [Google Scholar] [CrossRef]
- Govindan, B.; Johnson, A.J.; Viswanathan, G.; Ramaswamy, V.; Koshy, K.C.; Baby, S. Secondary metabolites from the unique bamboo, Melocanna baccifera. Nat. Prod. Res. 2019, 33, 122–125. [Google Scholar] [CrossRef]
- Gadallah, A.S.; Mujeeb Ur, R.; Atta Ur, R.; Yousuf, S.; Atia Tul, W.; Jabeen, A.; Swilam, M.M.; Khalifa, S.A.M.; El-Seedi, H.R.; Choudhary, M.I. Anti-Inflammatory Principles from Tamarix aphylla L.: A Bioassay-Guided Fractionation Study. Molecules 2020, 25, 2994. [Google Scholar] [CrossRef]
- Wei, X.; Chen, D.; Yi, Y.; Qi, H.; Gao, X.; Fang, H.; Gu, Q.; Wang, L.; Gu, L. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity. Evid Based Complement. Altern. Med. 2012, 2012, 426537. [Google Scholar] [CrossRef]
- Subramanya, S.B.; Venkataraman, B.; Meeran, M.F.N.; Goyal, S.N.; Patil, C.R.; Ojha, S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int. J. Mol. Sci. 2018, 19, 3776. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Yang, L.; Xue, Q.; Yin, P.; Sun, L.; Liu, Y. Comparison of Free, Esterified, and Insoluble-Bound Phenolics and Their Bioactivities in Three Organs of Lonicera japonica and L. macranthoides. Molecules 2019, 24, 970. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, T.; Pillay, Y.; Ghazi, T.; Nagiah, S.; Abdul, N.S.; Chuturgoon, A.A. Fumonisin B1-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2) cells. Mycotoxin Res. 2019, 35, 99–109. [Google Scholar] [CrossRef]
- Razali, N.; Aziz, A.A.; Lim, C.Y.; Junit, S.M. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells. Peerj 2015, 3, 1227–1238. [Google Scholar] [CrossRef]
- Xie, Y.K.; Zhou, X.; Yuan, H.T.; Qiu, J.; Xin, D.Q.; Chu, X.L.; Wang, D.C.; Wang, Z. Resveratrol reduces brain injury after subarachnoid hemorrhage by inhibiting oxidative stress and endoplasmic reticulum stress. Neural Regen. Res. 2019, 14, 1734–1742. [Google Scholar]
- Leng, Z.G.; Lin, S.J.; Wu, Z.R.; Guo, Y.H.; Cai, L.; Shang, H.B.; Tang, H.; Xue, Y.J.; Lou, M.Q.; Zhao, W.; et al. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy 2017, 13, 1404–1419. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Y.; Zheng, Y.; Zhao, J.; Yu, H.; Zhu, J.; Li, D. Neuroprotective Effects and Mechanisms of Procyanidins In Vitro and In Vivo. Molecules 2021, 26, 2963. [Google Scholar] [CrossRef]
- Benhar, M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radic. Biol. Med. 2018, 127, 160–164. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, M.; Li, C.; Chang, Q.; Liu, X.; Liao, Y.; Pan, R. Study on the Material Basis of Neuroprotection of Myrica rubra Bark. Molecules 2019, 24, 2993. [Google Scholar] [CrossRef]
Phenol Analyses | Phenolics | FF | FP |
---|---|---|---|
TPC (μmol FAE/g DS) | SPs | 8.721 ± 0.499 b | 17.679 ± 0.550 a |
IBPs | 7.544 ± 0.592 b | 12.903 ± 0.480 a | |
TFC (μmol CE/g DS) | SPs | 1.237 ± 0.027 a | 1.052 ± 0.048 b |
IBPs | 0.622 ± 0.022 b | 0.837 ± 0.047 a |
Peak No. | RT (min) | Formula | Exact Mass, [M − H]−, m/z | Theoretical Mass, [M − H]−, m/z | Error (ppm) | Characteristic MS/MS Ions (m/z) | Tentative Identification | Plant Part | Reference | Database | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TCM | Metlin | PubChem | ||||||||||
1 | 4.288 | C9H10O4 | 181.0505 | 181.0506 | 0.7 | 151.0396 | Methyl vanillate | FP | [22] | √ | √ | |
133.0292 | ||||||||||||
2 | 4.295 | C8H8O3 | 151.0401 | 151.0401 | −0.2 | 105.0344 | Vanillin | FP | [23] | √ | √ | √ |
133.0302 | ||||||||||||
3 | 5.536 | C30H26O12 | 577.1357 | 577.1351 | −1 | 425.087 | Vitexin 2′′-O-p-coumarate | FP | [24] | √ | √ | √ |
287.056 | ||||||||||||
4 | 5.961 | C10H12O5 | 211.0613 | 211.0612 | −0.5 | 150.0313 | Methyl Syringic acid | FP | [25] | √ | ||
193.0516 | ||||||||||||
5 | 6.083 | C12H12O5 | 235.0609 | 235.0612 | 0.1 | 205.0506 | Schinicoumarin | FP | [26] | √ | √ | |
6 | 6.127 | C15H14O6 | 289.0716 | 289.0718 | 0.6 | 137.0241 | Catechin | FP | [27] | √ | √ | |
151.0396 | ||||||||||||
7 | 6.361 | C8H8O4 | 167.0348 | 167.035 | 1.1 | 108.0215 | Vanillic acid | FP | [28] | √ | √ | √ |
123.0448 | ||||||||||||
8 | 6.745 | C9H8O4 | 179.0348 | 179.035 | 1 | 135.0446 | Caffeic acid | FP | [29] | √ | √ | √ |
133.0296 | ||||||||||||
9 | 6.985 | C9H10O5 | 197.0455 | 197.0455 | 0.2 | 182.0217 | Syringic acid | FP | [30] | √ | √ | √ |
153.0551 | ||||||||||||
10 | 7.156 | C10H12O4 | 195.0661 | 195.0663 | 0.1 | 150.0319 | Methyl veratrate | FP | [31] | √ | √ | |
165.0554 | ||||||||||||
11 | 7.556 | C22H26O10 | 449.1456 | 449.1453 | −0.6 | 431.1346 | Auriculoside | FP | [32] | √ | √ | |
138.0319 | ||||||||||||
12 | 8.052 | C10H10O4 | 193.0504 | 193.0506 | 1.2 | 178.0271 | Ferulic acid | FP | [33] | √ | √ | √ |
108.0219 | ||||||||||||
13 | 8.074 | C16H16O5 | 287.0924 | 287.0925 | 0.3 | 120.0217 | Phloretin 4′-methyl ether | FP | [34] | √ | ||
14 | 8.23 | C9H8O3 | 163.0401 | 163.0401 | −0.2 | 119.05 | p-coumaric acid | FP, FF | [35] | √ | √ | √ |
15 | 8.34 | C17H20O9 | 367.1036 | 367.1035 | −0.4 | 193.0504 | 5-O-Feruloylquinic acid | FF | [36] | √ | √ | √ |
134.0372 | ||||||||||||
16 | 8.489 | C9H6O3 | 161.0244 | 161.0244 | 0.1 | 134.0366 | 7-Hydroxycoumarin | FP | [37] | √ | √ | |
119.05 | ||||||||||||
17 | 8.63 | C9H10O3 | 165.0557 | 165.0557 | 0.1 | 150.0312 | Ethylvanillin | FP | [38] | √ | √ | √ |
121.0284 | ||||||||||||
18 | 8.647 | C23H22O7 | 409.1294 | 409.1293 | 0.3 | 121.0295 | Lactucopicrin | FP | [39] | √ | √ | √ |
361.1084 | ||||||||||||
19 | 8.865 | C26H28O14 | 563.1409 | 563.1406 | 1.3 | 353.0668 | Yopaaoside B | FP | [40] | √ | √ | |
443.099 | ||||||||||||
20 | 8.931 | C19H20O5 | 327.1237 | 327.1238 | 0.3 | 281.0817 | Decursin | FP | [41] | √ | √ | √ |
312.1015 | ||||||||||||
21 | 9.007 | C11H12O5 | 223.0611 | 223.0612 | 0.4 | 208.038 | Sinapic acid | FP, FF | [42] | √ | √ | √ |
164.0475 | ||||||||||||
22 | 9.324 | C10H10O3 | 177.0555 | 177.0557 | 1.2 | 162.0314 | Methyl 4-hydroxycinnamate | FP | [43] | √ | √ | |
23 | 9.679 | C18H18O5 | 313.1081 | 313.1081 | 0.2 | 253.0868 | beta,2-Dihydroxy-4,6-dimethoxy-3-methylchalcone | FP | [44] | √ | √ | |
266.0924 | ||||||||||||
24 | 9.997 | C27H30O15 | 593.1515 | 593.1512 | −0.5 | 181.051 | Isoorientin 6′′-rhamnoside | FP | [45] | √ | √ | |
315.0857 | ||||||||||||
25 | 10.226 | C16H14O7 | 317.0664 | 317.0667 | 0.9 | 125.0238 | Dihydroisorhamnetin | FP, FF | [46] | √ | √ | |
26 | 10.36 | C20H22O7 | 373.1291 | 373.1293 | −0.8 | 179.0709 | Nortrachelogenin | FP | [47] | √ | √ | |
194.0566 | ||||||||||||
27 | 10.372 | C27H30O16 | 609.1466 | 609.1461 | −0.8 | 301.0346 | Rutin | FP, FF | [48] | √ | √ | √ |
178.9986 | ||||||||||||
28 | 10.498 | C22H26O9 | 433.1501 | 433.1504 | 1.7 | 403.1401 | Ciwujiatone | FP | [49] | √ | √ | |
373.1297 | ||||||||||||
29 | 10.776 | C20H20O5 | 339.1239 | 339.1238 | 0.5 | 324.1004 | Futoenone | FP | [50] | √ | √ | |
309.0763 | ||||||||||||
30 | 10.785 | C30H34O10 | 553.2079 | 553.2079 | 0 | 165.0552 | Lappaol C | FP | [51] | √ | √ | |
150.0319 | ||||||||||||
31 | 10.895 | C16H12O4 | 267.066 | 267.0663 | −1 | 137.0245 | Dalbergin | FP | [52] | √ | √ | √ |
121.0292 | ||||||||||||
32 | 10.985 | C20H20O7 | 371.1129 | 371.1136 | −2.6 | 283.0976 | Cimicifugc acid | FP | √ | √ | ||
162.0319 | ||||||||||||
33 | 11.495 | C20H18O5 | 337.1081 | 337.1081 | 0.1 | 322.0826 | Psoralenol | FP | [53] | √ | √ | √ |
34 | 12.069 | C9H8O2 | 147.045 | 146.0373 | 1 | 103.055 | Cinnamic acid | FP, FF | [54] | √ | √ | √ |
35 | 12.188 | C18H14O4 | 293.0819 | 293.0819 | 0.1 | 189.0555 | 3-Methoxy-2-4H-1-benzopyran-4-one | FP | √ | √ | ||
119.0501 | ||||||||||||
36 | 12.484 | C18H18O4 | 297.1133 | 297.1132 | 0.4 | 107.05 | Enterolactone | FP | [55] | √ | √ | √ |
253.1234 | ||||||||||||
37 | 12.625 | C15H12O5 | 271.0614 | 271.0612 | −0.7 | 151.0039 | Pinobanksin | FP, FF | [56] | √ | √ | √ |
107.0142 | ||||||||||||
38 | 12.688 | C25H22O6 | 417.1344 | 417.1344 | −4.8 | 387.1252 | Cyclomulberrochromene | FP | [57] | √ | √ | |
399.1254 | ||||||||||||
39 | 13.896 | C30H38O15 | 637.2141 | 637.2138 | −0.5 | 515.1785 | Leucosceptoside A | FF | [58] | √ | √ | |
40 | 14.097 | C12H12O4 | 219.0661 | 219.0663 | 0.9 | 204.0423 | Polygonolide | FP | √ | √ | √ | |
203.0355 | ||||||||||||
41 | 14.41 | C19H18O5 | 325.1082 | 325.1081 | 6.3 | 310.0841 | Ailanthoidol | FP | [59] | √ | √ | |
281.0808 | ||||||||||||
42 | 15.821 | C15H16O3 | 243.1026 | 243.1027 | 0.3 | 227.1081 | Osthole | FP | [60] | √ | √ | √ |
199.1134 | ||||||||||||
43 | 20.942 | C38H66O4 | 585.4876 | 585.4888 | 2.1 | 281.2483 | Erythrinasinate A | FF | √ | √ |
DPPH Radical Scavenging Activity (μmol TE/g DS) | ||
---|---|---|
Plant Material | SPs | IBPs |
FF | 1.355 ± 0.018 Ay | 1.124 ± 0.080 By |
FP | 4.686 ± 0.126 Ax | 1.292 ± 0.137 Bx |
Ferric Reducing Antioxidant Power (μmol FE/g DS) | ||
Plant Material | SPs | IBPs |
FF | 11.098 ± 0.708 By | 6.433 ± 0.324 Ax |
FP | 17.424 ± 0.353 Ax | 10.597 ± 0.369 Ay |
Trolox Equivalent Antioxidant Capacity (μmol TE/g DS) | ||
Plant Material | SPs | IBPs |
FF | 35.328 ± 2.819 Ay | 17.758 ± 1.234 By |
FP | 59.847 ± 0.371 Ax | 56.299 ± 0.241 Bx |
Hydrogen Peroxide Scavenging Activity (μmol TE/g DS) | ||
Plant Material | SPs | IBPs |
FF | 47.547 ± 0.967 Ay | 39.281 ± 0.796 By |
FP | 72.884 ± 1.924 Ax | 64.843 ± 1.138 Bx |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y.; Chen, B.; Deng, X.; Luo, Q.; Zao, X. UPLC–Q–TOF–MS/MS Analysis of Phenolic Compounds from the Fruit of Cephalostachyum fuchsianum Gamble and Their Antioxidant and Cytoprotective Activities. Molecules 2022, 27, 3767. https://doi.org/10.3390/molecules27123767
Wang Y, Li Y, Chen B, Deng X, Luo Q, Zao X. UPLC–Q–TOF–MS/MS Analysis of Phenolic Compounds from the Fruit of Cephalostachyum fuchsianum Gamble and Their Antioxidant and Cytoprotective Activities. Molecules. 2022; 27(12):3767. https://doi.org/10.3390/molecules27123767
Chicago/Turabian StyleWang, Yan, Yongqiang Li, Bi Chen, Xianfeng Deng, Qin Luo, and Xingru Zao. 2022. "UPLC–Q–TOF–MS/MS Analysis of Phenolic Compounds from the Fruit of Cephalostachyum fuchsianum Gamble and Their Antioxidant and Cytoprotective Activities" Molecules 27, no. 12: 3767. https://doi.org/10.3390/molecules27123767
APA StyleWang, Y., Li, Y., Chen, B., Deng, X., Luo, Q., & Zao, X. (2022). UPLC–Q–TOF–MS/MS Analysis of Phenolic Compounds from the Fruit of Cephalostachyum fuchsianum Gamble and Their Antioxidant and Cytoprotective Activities. Molecules, 27(12), 3767. https://doi.org/10.3390/molecules27123767