Changes in Water Properties in Human Tissue after Double Filtration Plasmapheresis—A Case Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Double-Filtration Plasmapheresis Treatments and Spectroscopic Measurements
2.2. Data Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Agishi, T.; Kaneko, I.; Hasuo, Y.; Hayasaka, Y.; Sanaka, T.; Ota, K.; Amemiya, H.; Sugino, N.; Abe, M.; Ono, T.; et al. Double Filtration Plasmapheresis. ASAIO J. 1980, 26, 406–411. [Google Scholar] [CrossRef]
- Hirano, R.; Namazuda, K.; Hirata, N. Double filtration plasmapheresis: Review of current clinical applications. Ther. Apher. Dial. 2020, 25, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Lumlertgul, D.; Suteeka, Y.; Tumpong, S.; Bunnachak, D.; Boonkaew, S. Double Filtration Plasmapheresis in Different Diseases in Thailand. Ther. Apher. Dial. 2013, 17, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Mineshima, M.; Akiba, T. Double Filtration Plasmapheresis in Critical Care. Ther. Apher. Dial. 2002, 6, 180–183. [Google Scholar] [CrossRef]
- Yeh, J.-H.; Chiu, H.-C. Comparison between double-filtration plasmapheresis and immunoadsorption plasmapheresis in the treatment of patients with myasthenia gravis. J. Neurol. 2000, 247, 510–513. [Google Scholar] [CrossRef]
- Bennani, H.N.; Lagrange, E.; Noble, J.; Malvezzi, P.; Motte, L.; Chevallier, E.; Rostaing, L.; Jouve, T. Treatment of refractory myasthenia gravis by double-filtration plasmapheresis and rituximab: A case series of nine patients and literature review. J. Clin. Apher. 2020, 36, 348–363. [Google Scholar] [CrossRef]
- Liu, J.-F.; Wang, W.-X.; Xue, J.; Zhao, C.-B.; You, H.-Z.; Lu, J.-H.; Gu, Y. Comparing the Autoantibody Levels and Clinical Efficacy of Double Filtration Plasmapheresis, Immunoadsorption, and Intravenous Immunoglobulin for the Treatment of Late-onset Myasthenia Gravis. Ther. Apher. Dial. 2010, 14, 153–160. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Wang, H.; Zhao, C.; Lu, J.; Xue, J.; Gu, Y.; Hao, C.; Lin, S.; Lv, C. Double filtration plasmapheresis benefits myasthenia gravis patients through an immunomodulatory action. J. Clin. Neurosci. 2014, 21, 1570–1574. [Google Scholar] [CrossRef]
- Yeh, J.H.; Chiu, H.C. Double filtration plasmapheresis in myasthenia gravis—Analysis of clinical efficacy and prognostic parameters. Acta Neurol. Scand. 2009, 100, 305–309. [Google Scholar] [CrossRef]
- Yeh, J.H.; Chen, W.H.; Chiu, H.C. Double filtration plasmapheresis in the treatment of myasthenic crisis—analysis of prognostic factors and efficacy. Acta Neurol. Scand. 2001, 104, 78–82. [Google Scholar] [CrossRef]
- Liu, C.; Liu, P.; Ma, M.; Yang, H.; Qi, G. Efficacy and safety of double-filtration plasmapheresis treatment of myasthenia gravis. Medicine 2021, 100, e25622. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Odaka, M.; Tabata, Y.; Soeda, K.; Hayashi, H.; Kobayashi, S.; Sato, T.; Yamane, S.; Isono, K. Clinical Experience of Double Filtration Plasmapheresis for Drug Refractory Neurological Diseases. Biomater. Artif. Cells Immobil. Biotechnol. 2009, 19, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Y.; Tang, Z.; Chen, D.-M.; Gong, D.-H.; Ji, D.-X.; Liu, Z.-H. Comparison of double filtration plasmapheresis with immunoadsorption therapy in patients with anti-glomerular basement membrane nephritis. BMC Nephrol. 2014, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- Koyama, R.; Kato, M.; Yamashita, S.; Nakanishi, K.; Kuwahara, H.; Katori, H. Hypoglycemia and Hyperglycemia Due to Insulin Antibodies against Therapeutic Human Insulin: Treatment with Double Filtration Plasmapheresis and Prednisolone. Am. J. Med. Sci. 2005, 329, 259–264. [Google Scholar] [CrossRef]
- Galán Carrillo, I.; Demelo-Rodriguez, P.; Rodríguez Ferrero, M.L.; Anaya, F. Double filtration plasmapheresis in the treatment of pancreatitis due to severe hypertriglyceridemia. J. Clin. Lipidol. 2015, 9, 698–702. [Google Scholar] [CrossRef]
- Huang, S.-P.; Toh, D.-E.; Sue, Y.-M.; Chen, T.-H.; Cheng, S.-W.; Cheng, C.-Y. Double filtration plasmapheresis in treatment of acute pancreatitis associated with severe hypertriglyceridemia. Medicine 2018, 97, e12987. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Y.; Wu, Y.; Lin, Y.; Yang, N.; Wang, X.; Guo, F. The role of double filtration plasmapheresis in hypertriglyceridemic pancreatitis: A propensity score matching analysis. J. Clin. Apher. 2020, 35, 388–397. [Google Scholar] [CrossRef]
- Lyu, R.-K.; Chen, W.-H.; Hsieh, S.-T. Plasma Exchange Versus Double Filtration Plasmapheresis in the Treatment of Guillain-Barre Syndrome. Ther. Apher. Dial. 2002, 6, 163–166. [Google Scholar] [CrossRef]
- Lin, J.-H.; Tu, K.-H.; Chang, C.-H.; Chen, Y.-C.; Tian, Y.-C.; Yu, C.-C.; Hung, C.-C.; Fang, J.-T.; Yang, C.-W.; Chang, M.-Y. Prognostic factors and complication rates for double-filtration plasmapheresis in patients with Guillain–Barré syndrome. Transfus. Apher. Sci. 2015, 52, 78–83. [Google Scholar] [CrossRef]
- Cheng, B.-C.; Chang, W.-N.; Chen, J.-B.; Chee, E.C.-Y.; Huang, C.-R.; Lu, C.-H.; Chang, C.-J.; Hung, P.-L.; Chuang, Y.-C.; Lee, C.-T.; et al. Long-term prognosis for Guillain-Barré syndrome: Evaluation of prognostic factors and clinical experience of automated double filtration plasmapheresis. J. Clin. Apher. 2003, 18, 175–180. [Google Scholar] [CrossRef]
- Chen, W.-H.; Yeh, J.-H.; Chiu, H.-C. Experience of double filtration plasmapheresis in the treatment of Guillain-Barré syndrome. J. Clin. Apher. 1999, 14, 126–129. [Google Scholar] [CrossRef]
- Yu, X.; Ma, J.; Tian, J.; Jiang, S.; Xu, P.; Han, H.; Wang, L. A Controlled Study of Double Filtration Plasmapheresis in the Treatment of Active Rheumatoid Arthritis. JCR J. Clin. Rheumatol. 2007, 13, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Tsuda, H.; Takasaki, Y.; Hashimoto, H. Double Filtration Plasmapheresis for the Treatment of a Rheumatoid Arthritis Patient with Extremely High Level of C-reactive Protein. Ther. Apher. Dial. 2004, 8, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-D.; Zhang, C.; Li, W.-S.; Lun, L.-D. Double Filtration Plasmapheresis for the Treatment of Rheumatoid Arthritis: A Study of 21 Cases. Artif. Organs 2008, 21, 96–98. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kaneko, S.; Kakumu, S.; Sata, M.; Hige, S.; Tomita, E.; Mochida, S. Double filtration plasmapheresis and interferon combination therapy for chronic hepatitis C patients with genotype 1 and high viral load. Hepatol. Res. 2007, 37, 701–710. [Google Scholar] [CrossRef]
- Kaneko, S.; Sata, M.; Ide, T.; Yamashita, T.; Hige, S.; Tomita, E.; Mochida, S.; Yamashita, Y.; Inui, Y.; Kim, S.R.; et al. Efficacy and safety of double filtration plasmapheresis in combination with interferon therapy for chronic hepatitis C. Hepatol. Res. 2010, 40, 1072–1081. [Google Scholar] [CrossRef]
- Higashihara, T.; Kawase, M.; Kobayashi, M.; Hara, M.; Matsuzaki, H.; Uni, R.; Matsumura, M.; Etoh, T.; Takano, H. Evaluating the Efficacy of Double-Filtration Plasmapheresis in Treating Five Patients With Drug-Resistant Pemphigus. Ther. Apher. Dial. 2017, 21, 243–247. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Ma, J.; Wang, H.; Fan, X.; Zheng, K.; Chen, L.; Li, X.; Qin, Y.; Li, L.; et al. Double-filtration plasmapheresis combined with immunosuppressive treatment for severe pemphigus: 10 years’ experience of a single center in China. J. Clin. Apher. 2020, 36, 20–27. [Google Scholar] [CrossRef]
- Hatano, Y.; Katagiri, K.; Arakawa, S.; Umeki, T.; Takayasu, S.; Fujiwara, S. Successful treatment by double-filtration plasmapheresis of a patient with bullous pemphigoid: Effects in vivo on transcripts of several genes for chemokines and cytokines in peripheral blood mononuclear cells. Br. J. Dermatol. 2003, 148, 573–579. [Google Scholar] [CrossRef]
- Kitabata, Y.; Sakurane, M.; Orita, H.; Kamimura, M.; Siizaki, K.; Narukawa, N.; Kaketaka, A.; Abe, T.; Kobata, H.; Akizawa, T. Double Filtration Plasmapheresis for the Treatment of Bullous Pemphigoid: A Three Case Report. Ther. Apher. Dial. 2001, 5, 484–490. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Park, J.S.; Park, J.-C.; Kim, M.-E.; Nahm, D.-H. Double-Filtration Plasmapheresis for the Treatment of Patients With Recalcitrant Atopic Dermatitis. Ther. Apher. Dial. 2013, 17, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Podestà Manuel, A.; Gennarini, A.; Portalupi, V.; Rota, S.; Alessio Maria, G.; Remuzzi, G.; Ruggenenti, P. Accelerating the Depletion of Circulating Anti-Phospholipase A2 Receptor Antibodies in Patients with Severe Membranous Nephropathy: Preliminary Findings with Double Filtration Plasmapheresis and Ofatumumab. Nephron 2020, 144, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.R.; Sun, L.L.; Wang, W.; Du, F.; Song, A.X.; Ni, C.Y.; Zhu, Q.; Wan, Q. A Case of Acute Thallotoxicosis Successfully Treated With Double-Filtration Plasmapheresis. Clin. Neuropharmacol. 2005, 28, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Ji, D.; Xu, B.; Liu, Z. More Selective Removal of Myeloperoxidase-Anti-Neutrophil Cytoplasmic Antibody From the Circulation of Patients With Vasculitides Using a Novel Double-Filtration Plasmapheresis Therapy. Ther. Apher. Dial. 2013, 17, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, L.; Li, K.; Liu, Z.; Gong, D.; Zhang, H.; Liu, Z.; Hu, W. Double Filtration Plasmapheresis in the Treatment of Antineutrophil Cytoplasmic Autoantibody Associated Vasculitis with Severe Renal Failure: A Preliminary Study of 15 Patients. Ther. Apher. Dial. 2016, 20, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Tang, Y.-Q.; Yi, J.; Ren, Q.; Yang, X.-Y.; Gou, S.-J.; Zhang, L.; Fu, P. Double Filtration Plasmapheresis in the Treatment of Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis with Severe Kidney Dysfunction. Blood Purif. 2020, 49, 713–722. [Google Scholar] [CrossRef]
- Bozkirli, D.E.E.; Kozanoglu, I.; Bozkirli, E.; Yucel, E. Antisynthetase syndrome with refractory lung involvement and myositis successfully treated with double filtration plasmapheresis. J. Clin. Apher. 2013, 28, 422–425. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Qiu, Q.; Wei, R.; Gao, Y.; Zhang, L.; Wang, Y.; Zhang, X.; Chen, X. Therapeutic effect of double-filtration plasmapheresis combined with methylprednisolone to treat diffuse proliferative lupus nephritis. J. Clin. Apher. 2016, 31, 375–380. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, M.; Ying, Y.; Feng, J.; Ye, Y. A Case Report of Double-Filtration Plasmapheresis for the Resolution of Refractory Chronic Urticaria. Ther. Apher. Dial. 2008, 12, 505–508. [Google Scholar] [CrossRef]
- Liu, L.-L.; Li, X.-L.; Wang, L.-N.; Yao, L.; Fan, Q.-L.; Li, Z.-L. Successful treatment of patients with systemic lupus erythematosus complicated with autoimmune thyroid disease using double-filtration plasmapheresis: A retrospective study. J. Clin. Apher. 2011, 26, 174–180. [Google Scholar] [CrossRef]
- Kamei, K.; Yamaguchi, K.; Sato, M.; Ogura, M.; Ito, S.; Okada, T.; Wada, S.; Sago, H. Successful treatment of severe rhesus D-incompatible pregnancy with repeated double-filtration plasmapheresis. J. Clin. Apher. 2015, 30, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, F.; Horie, S.; Tsukihara, S.; Nagata, N.; Nishikawa, K.; Terakawa, N. Successful Management of a P-Incompatible Pregnancy Using Double Filtration Plasmapheresis. Gynecol. Obstet. Investig. 2003, 56, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Kobayashi, T.; Nishino, H.; Hidaka, Y. Double-filtration plasmapheresis for resolution of corticosteroid resistant adult onset still’s disease. Clin. Rheumatol. 2006, 25, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Ramunni, A.; De Robertis, F.; Brescia, P.; Saliani, M.T.; Amoruso, M.; Prontera, M.; Dimonte, E.; Trojano, M.; Coratelli, P. A Case Report of Double Filtration Plasmapheresis in an Acute Episode of Multiple Sclerosis. Ther. Apher. Dial. 2008, 12, 250–254. [Google Scholar] [CrossRef]
- De Masi, R.; Orlando, S.; Accoto, S. Double Filtration Plasmapheresis Treatment of Refractory Multiple Sclerosis Relapsed on Fingolimod: A Case Report. Appl. Sci. 2020, 10, 7404. [Google Scholar] [CrossRef]
- Matsuo, H. Plasmapheresis in acute phase of multiple sclerosis and neuromyelitis optica. Nihon Rinsho. Jpn. J. Clin. Med. 2014, 72, 1999–2002. [Google Scholar]
- Meço, B.C.; Memikoğlu, O.; İlhan, O.; Ayyıldız, E.; Gunt, C.; Ünal, N.; Oral, M.; Tulunay, M. Double filtration plasmapheresis for a case of Crimean-Congo hemorrhagic fever. Transfus. Apher. Sci. 2013, 48, 331–334. [Google Scholar] [CrossRef]
- Chauvel, F.; Reboul, P.; Cariou, S.; Aglae, C.; Renaud, S.; Trusson, R.; Garo, F.; Ahmadpoor, P.; Prelipcean, C.; Pambrun, E.; et al. Use of double filtration plasmapheresis for the treatment of acquired thrombocytopenic thrombotic purpura. Ther. Apher. Dial. 2020, 24, 709–717. [Google Scholar] [CrossRef]
- Yoshida, H.; Ando, A.; Sho, K.; Akioka, M.; Kawai, E.; Arai, E.; Nishimura, T.; Shinde, A.; Masaki, H.; Takahashi, K.; et al. Anti-Aquaporin-4 Antibody-Positive Optic Neuritis Treated with Double-Filtration Plasmapheresis. J. Ocul. Pharmacol. Ther. 2010, 26, 381–385. [Google Scholar] [CrossRef]
- Miyamoto, K.; Kusunoki, S. Intermittent Plasmapheresis Prevents Recurrence in Neuromyelitis Optica. Ther. Apher. Dial. 2009, 13, 505–508. [Google Scholar] [CrossRef]
- Lew, W.H.; Chang, C.-J.; Lin, J.-D.; Cheng, C.-Y.; Chen, Y.-K.; Lee, T.-I. Successful preoperative treatment of a Graves’ disease patient with agranulocytosis and hemophagocytosis using double filtration plasmapheresis. J. Clin. Apher. 2011, 26, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Otsubo, S.; Nitta, K.; Yumura, W.; Nihei, H.; Mori, N. Antiphospholipid Syndrome Treated with Prednisolone, Cyclophosphamide and Double-Filtration Plasmapheresis. Intern. Med. 2002, 41, 725–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, J.-H.; Cheng, C.-K.; Chiu, H.-C. A Case Report of Double-Filtration Plasmapheresis for the Treatment of Age-related Macular Degeneration. Ther. Apher. Dial. 2008, 12, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Suga, K.; Yamashita, H.; Takahashi, Y.; Katagiri, D.; Hinoshita, F.; Kaneko, H. Therapeutic efficacy of combined glucocorticoid, intravenous cyclophosphamide, and double-filtration plasmapheresis for skin sclerosis in diffuse systemic sclerosis. Medicine 2020, 99, e19301. [Google Scholar] [CrossRef]
- Mednikov, R.V.; Rabinovich, V.I.; Kizlo, S.N.; Belyakov, N.A.; Sokolov, A.A. Double Filtration Plasmapheresis in Treatment of Patients With Co-Infection of Hepatitis C and Human Immunodeficiency Virus. Ther. Apher. Dial. 2016, 20, 413–419. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Tagaya, M.; Fujimoto, S.; Hayashida, K.; Yamaguchi, T.; Minematsu, K. Extracorporeal double filtration plasmapheresis in acute atherothrombotic brain infarction caused by major artery occlusive lesion. J. Clin. Apher. 2003, 18, 167–174. [Google Scholar] [CrossRef]
- Ramunni, A.; Brescia, P. Double Filtration Plasmapheresis: An Effective Treatment of Cryoglobulinemia. HCV Infect. Cryoglobulinemia 2012, 337–341. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Chen, W.-H.; Yeh, J.-H. Double Filtration Plasmapheresis in the Treatment of Inflammatory Polyneuropathy. Ther. Apher. 1997, 1, 183–186. [Google Scholar] [CrossRef]
- Kumazawa, K.; Yuasa, N.; Mitsuma, T.; Nagamatsu, M.; Sobue, G. Double filtration plasmapheresis (DFPP) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Rinsho Shinkeigaku Clin. Neurol. 1998, 38, 719–723. [Google Scholar]
- Tagawa, Y.; Yuki, N.; Hirata, K. Ability to remove immunoglobulins and anti-ganglioside antibodies by plasma exchange, double-filtration plasmapheresis and immunoadsorption. J. Neurol. Sci. 1998, 157, 90–95. [Google Scholar] [CrossRef]
- Vatazin, A.V.; Zulkarnaev, A.B. The impact of therapeutic plasma exchange and double filtration plasmapheresis on hemostasis in renal transplant recipients. Ter. Arkhiv 2018, 90, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Sakagami, K.; Miyazaki, M.; Shiozaki, S.; Fujiwara, T.; Haisa, M.; Saitou, S.; Orita, K. Efficacy of large-volume double filtration plasmapheresis as adjunctive therapy for cancers. Jpn. J. Artif. Organs 1990, 19, 933–936. [Google Scholar]
- Straube, R.; Müller, G.; Voit-Bak, K.; Tselmin, S.; Julius, U.; Schatz, U.; Rietzsch, H.; Reichmann, H.; Chrousos, G.P.; Schürmann, A.; et al. Metabolic and Non-Metabolic Peripheral Neuropathy: Is there a Place for Therapeutic Apheresis? Horm. Metab. Res. 2019, 51, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Straube, R.; Voit-Bak, K.; Gor, A.; Steinmeier, T.; Chrousos, G.P.; Boehm, B.O.; Birkenfeld, A.L.; Barbir, M.; Balanzew, W.; Bornstein, S.R. Lipid Profiles in Lyme Borreliosis: A Potential Role for Apheresis? Horm. Metab. Res. 2019, 51, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, S.R.; Voit-Bak, K.; Rosenthal, P.; Tselmin, S.; Julius, U.; Schatz, U.; Boehm, B.O.; Thuret, S.; Kempermann, G.; Reichmann, H.; et al. Extracorporeal apheresis therapy for Alzheimer disease—Targeting lipids, stress, and inflammation. Mol. Psychiatry 2019, 25, 275–282. [Google Scholar] [CrossRef]
- Bornstein, S.R.; Voit-Bak, K.; Donate, T.; Rodionov, R.N.; Gainetdinov, R.R.; Tselmin, S.; Kanczkowski, W.; Müller, G.M.; Achleitner, M.; Wang, J.; et al. Chronic post-COVID-19 syndrome and chronic fatigue syndrome: Is there a role for extracorporeal apheresis? Mol. Psychiatry 2021, 27, 34–37. [Google Scholar] [CrossRef]
- Shi, L.; Buckley, N.J.; Bos, I.; Engelborghs, S.; Sleegers, K.; Frisoni, G.B.; Wallin, A.; Lléo, A.; Popp, J.; Martinez-Lage, P.; et al. Plasma Proteomic Biomarkers Relating to Alzheimer’s Disease: A Meta-Analysis Based on Our Own Studies. Front. Aging Neurosci. 2021, 13. [Google Scholar] [CrossRef]
- Varma, V.R.; Varma, S.; An, Y.; Hohman, T.J.; Seddighi, S.; Casanova, R.; Beri, A.; Dammer, E.B.; Seyfried, N.T.; Pletnikova, O.; et al. Alpha-2 macroglobulin in Alzheimer’s disease: A marker of neuronal injury through the RCAN1 pathway. Mol. Psychiatry 2016, 22, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Takov, K.; Straube, R.; Voit-Bak, K.; Graessler, J.; Julius, U.; Tselmin, S.; Rodionov, R.; Barbir, M.; Walls, M.; et al. Precision Medicine Approach for Cardiometabolic Risk Factors in Therapeutic Apheresis. Horm. Metab. Res. Horm. Und. Stoffwechs. Horm. Et. Metab. 2022, 54, 238–249. [Google Scholar] [CrossRef]
- Patton, K.T.; Thibodeau, G.A. The Human Body in Health & Disease, 7th ed.; Mosby: Maryland Heights, MI, USA, 2018. [Google Scholar]
- Bossingham, M.J.; Carnell, N.S.; Campbell, W.W. Water balance, hydration status, and fat-free mass hydration in younger and older adults. Am. J. Clin. Nutr. 2005, 81, 1342–1350. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, Y.; Joki, N.; Yamazaki, K.; Kawamura, T.; Tai, R.; Oguchi, H.; Yuasa, R.; Sakai, K. Changes in the fluid volume balance between intra- and extracellular water in a sample of Japanese adults aged 15–88 yr old: A cross-sectional study. Am. J. Physiol. Ren. Physiol. 2018, 314, F614–F622. [Google Scholar] [CrossRef] [PubMed]
- Levy, Y.; Onuchic, J.N. Water Mediation in Protein Folding and Molecular Recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, R. Protonated Water Clusters: The Third Dimension. ChemPhysChem 2004, 5, 1495–1497. [Google Scholar] [CrossRef] [PubMed]
- De Silva, N.; Adreance, M.A.; Gordon, M.S. Application of a semi-empirical dispersion correction for modeling water clusters. J. Comput. Chem. 2018, 40, 310–315. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Dynamic Spectroscopy of Aqueous and Biological Systems Describes Peculiarities of Water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Water in the biological and aqueous world scrutinised with invisible light. Spectrosc. Eur. 2010, 22, 6–10. [Google Scholar]
- Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics—From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [Green Version]
- Tsenkova, R.; Kovacs, Z.; Kubota, Y. Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems. Membr. Hydration 2015, 71, 189–211. [Google Scholar] [CrossRef]
- de Kraats, V.; Everine, B.; Munćan, J.; Tsenkova, R.N. Aquaphotomics—Origin, concept, applications and future perspective. Substantia 2021, 3, 13–28. [Google Scholar]
- Seki, T.; Chiang, K.-Y.; Yu, C.-C.; Yu, X.; Okuno, M.; Hunger, J.; Nagata, Y.; Bonn, M. The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems. J. Phys. Chem. Lett. 2020, 11, 8459–8469. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.M.; Chin, W.C.; Khijniak, E.; Khijniak, E., Jr.; Pollack, G.H. Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 2006, 127, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.G.; Hong, J.K.; Sharma, A.; Pollack, G.H.; Bahng, G. Exclusion zone and heterogeneous water structure at ambient temperature. PLoS ONE 2018, 13, e0195057. [Google Scholar] [CrossRef] [PubMed]
- Muncan, J.M.I.; Matovic, V.; Sakota Rosic, J.; Matija, L. The prospects of aquaphotomics in biomedical science and engineering. In Proceedings of the 2nd International Aquaphotomics Symposium, Kobe, Japan, 26–29 November 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholkmann, F.; Tsenkova, R. Changes in Water Properties in Human Tissue after Double Filtration Plasmapheresis—A Case Study. Molecules 2022, 27, 3947. https://doi.org/10.3390/molecules27123947
Scholkmann F, Tsenkova R. Changes in Water Properties in Human Tissue after Double Filtration Plasmapheresis—A Case Study. Molecules. 2022; 27(12):3947. https://doi.org/10.3390/molecules27123947
Chicago/Turabian StyleScholkmann, Felix, and Roumiana Tsenkova. 2022. "Changes in Water Properties in Human Tissue after Double Filtration Plasmapheresis—A Case Study" Molecules 27, no. 12: 3947. https://doi.org/10.3390/molecules27123947
APA StyleScholkmann, F., & Tsenkova, R. (2022). Changes in Water Properties in Human Tissue after Double Filtration Plasmapheresis—A Case Study. Molecules, 27(12), 3947. https://doi.org/10.3390/molecules27123947