Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. COSMO-RS Screening Results
2.2. Experimental Selectivity and Distribution Ratio
2.3. Comparison with Other Solvents
3. Materials and Methods
3.1. Molecular Geometry Optimization
3.2. List of ESs for COSMO-RS Screening
3.3. ES Representation in COSMOtherm-X
3.4. Selectivity, Capacity, and Performance Index
3.5. Liquid–Liquid Equilibria (Lle) Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Weissermel, K.; Arpe, H.J.; Lindley, C.R.; Hawkins, S. Industrial Organic Chemistry; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Rydberg, J. Solvent Extraction Principles and Practice, Revised and Expanded; CRC Press: New York, NY, USA, 2004. [Google Scholar]
- Stichlmair, J.G.; Fair, J.R. Distillation: Principles and Practices; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Lubben, M.J.; Canales, R.I.; Lyu, Y.; Held, C.; Gonzalez-Miquel, M.; Stadtherr, M.A.; Brennecke, J.F. Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling. Ind. Eng. Chem. Res. 2020, 59, 15707–15717. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Ovejero-Perez, A.; Navarro, P.; Larriba, M.; Ayuso, M.; García, J.; Rodríguez, F. Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cyclohexene separation by liquid-liquid extraction. J. Chem. Thermodyn. 2019, 131, 340–346. [Google Scholar] [CrossRef]
- Ayuso, M.; Navarro, P.; Palma, A.M.; Larriba, M.; Delgado-Mellado, N.; García, J.; Rodríguez, F.; Coutinho, J.A.; Carvalho, P.J. Toward modeling the aromatic/aliphatic separation by extractive distillation with tricyanomethanide-based ionic liquids using CPA EoS. Ind. Eng. Chem. Res. 2019, 58, 19681–19692. [Google Scholar] [CrossRef]
- Capela, E.V.; Quental, M.V.; Domingues, P.; Coutinho, J.A.; Freire, M.G. Effective separation of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems. Green Chem. 2017, 19, 1850–1854. [Google Scholar] [CrossRef]
- Hashim, M.; Zulhaziman, M.; Salleh, M.; Ali, E.; Hadj-Kali, M.K. Selective extraction of benzene from benzene–cyclohexane mixture using 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. AIP Conf. Proc. 2019, 2124, 020028. [Google Scholar]
- Zhou, T.; Wang, Z.; Chen, L.; Ye, Y.; Qi, Z.; Freund, H.; Sundmacher, K. Evaluation of the ionic liquids 1-alkyl-3-methylimidazolium hexafluorophosphate as a solvent for the extraction of benzene from cyclohexane: (Liquid+liquid) equilibria. J. Chem. Thermodyn. 2012, 48, 145–149. [Google Scholar] [CrossRef]
- Gómez, E.; Domínguez, I.; Calvar, N.; Domínguez, Á. Separation of benzene from alkanes by solvent extraction with 1-ethylpyridinium ethylsulfate ionic liquid. J. Chem. Thermodyn. 2010, 42, 1234–1239. [Google Scholar] [CrossRef]
- Gómez, E.; Domínguez, I.; Gonzalez, B.; Domínguez, A. Liquid− liquid equilibria of the ternary systems of alkane+aromatic+1-ethylpyridinium ethylsulfate ionic liquid at T = (283.15 and 298.15) K. J. Chem. Eng. Data 2010, 55, 5169–5175. [Google Scholar] [CrossRef]
- Zhao, D.; Liao, Y.; Zhang, Z. Toxicity of ionic liquids. Clean Soil Air Water 2007, 35, 42–48. [Google Scholar] [CrossRef]
- Warrag, S.E.; Peters, C.J.; Kroon, M.C. Deep eutectic solvents for highly efficient separations in oil and gas industries. Curr. Opin. Green Sustain. Chem. 2017, 5, 55–60. [Google Scholar] [CrossRef]
- Bernasconi, R.; Panzeri, G.; Accogli, A.; Liberale, F.; Nobili, L.; Magagnin, L. Electrodeposition from deep eutectic solvents. Intech. Prog. Dev. Lon. Liq. 2017, 235–261. [Google Scholar] [CrossRef] [Green Version]
- Abo-Hamad, A.; Hayyan, M.; AlSaadi, M.A.; Hashim, M.A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015, 273, 551–567. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016, 39, 3505–3520. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, C.L.; Quivelli, A.F.; Manfredi, N.; Capriati, V.; Abbotto, A. Deep Eutectic Solvents in Solar Energy Technologies. Molecules 2022, 27, 709. [Google Scholar] [CrossRef] [PubMed]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Milano, F.; Giotta, L.; Guascito, M.R.; Agostiano, A.; Sblendorio, S.; Valli, L.; Perna, F.M.; Cicco, L.; Trotta, M.; Capriati, V. Functional enzymes in nonaqueous environment: The case of photosynthetic reaction centers in deep eutectic solvents. ACS Sustain. Chem. Eng. 2017, 5, 7768–7776. [Google Scholar] [CrossRef]
- Brett, C.M. Deep eutectic solvents and applications in electrochemical sensing. Curr. Opin. Electrochem. 2018, 10, 143–148. [Google Scholar] [CrossRef]
- Tang, B.; Row, K.H. Recent developments in deep eutectic solvents in chemical sciences. Mon. Chem. Chem. Mon. 2013, 144, 1427–1454. [Google Scholar] [CrossRef]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Kalhor, P.; Ghandi, K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 2019, 24, 4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salleh, Z.; Wazeer, I.; Mulyono, S.; El-blidi, L.; Hashim, M.A.; Hadj-Kali, M.K. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents–COSMO-RS screening and experimental validation. J. Chem. Thermodyn. 2017, 104, 33–44. [Google Scholar] [CrossRef]
- Ma, S.; Li, J.; Li, L.; Shang, X.; Liu, S.; Xue, C.; Sun, L. Liquid–liquid extraction of benzene and cyclohexane using sulfolane-based low transition temperature mixtures as solvents: Experiments and simulation. Energy Fuels 2018, 32, 8006–8015. [Google Scholar] [CrossRef]
- García, S.; Larriba, M.; García, J.; Torrecilla, J.S.; Rodríguez, F. Liquid–liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis (trifluoromethylsulfonyl) imide ionic liquids. Chem. Eng. J. 2012, 180, 210–215. [Google Scholar] [CrossRef]
- Salleh, M.Z.M.; Hadj-Kali, M.; Wazeer, I.; Ali, E.; Hashim, M.A. Extractive separation of benzene and cyclohexane using binary mixtures of ionic liquids. J. Mol. Liq. 2019, 285, 716–726. [Google Scholar] [CrossRef]
- Larriba, M.; de Riva, J.; Navarro, P.; Moreno, D.; Delgado-Mellado, N.; García, J.; Ferro, V.R.; Rodríguez, F.; Palomar, J. COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf2]+[emim][DCA]} ionic liquid mixture. Sep. Purif. Technol. 2018, 190, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Larriba, M.; Navarro, P.; González, E.J.; García, J.; Rodríguez, F. Separation of BTEX from a naphtha feed to ethylene crackers using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Sep. Purif. Technol. 2015, 144, 54–62. [Google Scholar] [CrossRef]
- Larriba, M.; Navarro, P.; García, J.; Rodríguez, F. Liquid–Liquid Extraction of Toluene from n-Alkanes using {[4empy][Tf2N]+[emim][DCA]} Ionic Liquid Mixtures. J. Chem. Eng. Data 2014, 59, 1692–1699. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F. COSMO-RS: A novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib. 2000, 172, 43–72. [Google Scholar] [CrossRef] [Green Version]
- Hizaddin, H.F.; Sarwono, M.; Hashim, M.A.; Alnashef, I.M.; Hadj-Kali, M.K. Coupling the capabilities of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics. J. Chem. Thermodyn. 2015, 84, 67–75. [Google Scholar] [CrossRef]
- Mulyono, S.; Hizaddin, H.F.; Alnashef, I.M.; Hashim, M.A.; Fakeeha, A.H.; Hadj-Kali, M.K. Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide+sulfolane) deep eutectic solvent–experiments and COSMO-RS prediction. RSC Adv. 2014, 4, 17597–17606. [Google Scholar] [CrossRef]
- Hizaddin, H.F.; Ramalingam, A.; Hashim, M.A.; Hadj-Kali, M.K. Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents. J. Chem. Eng. Data 2014, 59, 3470–3487. [Google Scholar] [CrossRef]
- Anantharaj, R.; Banerjee, T. Aromatic sulfur-nitrogen extraction using ionic liquids: Experiments and predictions using an a priori model. AIChE J. 2013, 59, 4806–4815. [Google Scholar] [CrossRef]
- Anantharaj, R.; Banerjee, T. COSMO-RS based predictions for the desulphurization of diesel oil using ionic liquids: Effect of cation and anion combination. Fuel Process. Technol. 2011, 92, 39–52. [Google Scholar] [CrossRef]
- Wilfred, C.D.; Man, Z.; Chan, Z.P. Predicting methods for sulfur removal from model oils using COSMO-RS and partition coefficient. Chem. Eng. Sci. 2013, 102, 373–377. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, Z.; Ye, Y.; Chen, L.; Xu, J.; Qi, Z. Deep separation of benzene from cyclohexane by liquid extraction using ionic liquids as the solvent. Ind. Eng. Chem. Res. 2012, 51, 5559–5564. [Google Scholar] [CrossRef]
- Gonfa, G.; Bustam, M.A.; Murugesan, T.; Man, Z.; Mutalib, M. Thiocyanate based task-specific ionic liquids for separation of benzene and cyclohexane. Chem. Eng. 2013, 32, 1939–1944. [Google Scholar]
- Lyu, Z.; Zhou, T.; Chen, L.; Ye, Y.; Sundmacher, K.; Qi, Z. Simulation based ionic liquid screening for benzene–cyclohexane extractive separation. Chem. Eng. Sci. 2014, 113, 45–53. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; Requejo, P.F.; Kroon, M.C. Aliphatic–aromatic separation using deep eutectic solvents as extracting agents. Ind. Eng. Chem. Res. 2015, 54, 11404–11412. [Google Scholar] [CrossRef]
- Othmer, D.; Tobias, P. Liquid-liquid extraction data-the line correlation. Ind. Eng. Chem. 1942, 34, 693–696. [Google Scholar] [CrossRef]
- Hand, D.B. Dineric distribution. J. Phys. Chem. 1930, 34, 1961–2000. [Google Scholar] [CrossRef]
- Aspi, K.K.; Surana, N.M.; Ethirajulu, K.; Vennila, V. Liquid−Liquid Equilibria for the Cyclohexane+Benzene+Dimethylformamide+Ethylene Glycol System. J. Chem. Eng. Data 1998, 43, 925–927. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Duan, L. Liquid−Liquid Equilibria of Ternary and Quaternary Systems Including Cyclohexane, 1-Heptene, Benzene, Toluene, and Sulfolane at 298.15 K. J. Chem. Eng. Data 2000, 45, 689–692. [Google Scholar] [CrossRef]
- Calvar, N.; Domínguez, I.; Gómez, E.; Domínguez, Á. Separation of binary mixtures aromatic+aliphatic using ionic liquids: Influence of the structure of the ionic liquid, aromatic and aliphatic. Chem. Eng. J. 2011, 175, 213–221. [Google Scholar] [CrossRef]
- González, E.J.; Calvar, N.; González, B.; Domínguez, Á. Liquid Extraction of Benzene from Its Mixtures Using 1-Ethyl-3-methylimidazolium Ethylsulfate as a Solvent. J. Chem. Eng. Data 2010, 55, 4931–4936. [Google Scholar] [CrossRef]
- Sakal, S.A.; Shen, C.; Li, C.-X. (Liquid+liquid) equilibria of {benzene+cyclohexane+two ionic liquids} at different temperature and atmospheric pressure. J. Chem. Thermodyn. 2012, 49, 81–86. [Google Scholar] [CrossRef]
- Muthuraman, G.; Teng, T.T.; Leh, C.P.; Norli, I. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant. J. Hazard. Mater. 2009, 163, 363–369. [Google Scholar] [CrossRef]
- Cheng, W.T.; Feng, S.; Cui, X.Q.; Cheng, F.Q. Solubility of Benzoic Acid in Ethanol, Benzene, Acetic Acid and Ethyl Acetate from 291.69 to 356.27 K. Adv. Mater. Res. 2012, 518–523, 3975–3979. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Wang, J.; Li, Z.; Li, D.; Yang, G.; Cui, Y.; Wang, A.; Li, C. Deep desulfurization of fuels based on an oxidation/extraction process with acidic deep eutectic solvents. Green Chem. 2015, 17, 4552–4559. [Google Scholar] [CrossRef]
- Cardellini, F.; Tiecco, M.; Germani, R.; Cardinali, G.; Corte, L.; Roscini, L.; Spreti, N. Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: Characterization of their properties and their toxicity. RSC Adv. 2014, 4, 55990–56002. [Google Scholar] [CrossRef]
- Taysun, M.B.; Sert, E.; Atalay, F.S. Physical properties of benzyl tri-methyl ammonium chloride based deep eutectic solvents and employment as catalyst. J. Mol. Liq. 2016, 223, 845–852. [Google Scholar] [CrossRef]
- Hayyan, A.; Hashim, M.A.; Hayyan, M.; Mjalli, F.S.; AlNashef, I.M. A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Ind. Crops Prod. 2013, 46, 392–398. [Google Scholar] [CrossRef]
- Hayyan, A.; Ali Hashim, M.; Mjalli, F.S.; Hayyan, M.; AlNashef, I.M. A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chem. Eng. Sci. 2013, 92, 81–88. [Google Scholar] [CrossRef]
- Martins, M.A.P.; Paveglio, G.C.; Munchen, T.S.; Meyer, A.R.; Moreira, D.N.; Rodrigues, L.V.; Frizzo, C.P.; Zanatta, N.; Bonacorso, H.G.; Melo, P.A.; et al. Deep eutectic solvent mediated synthesis of thiomethyltriazolo[1,5-a]pyrimidines. J. Mol. Liq. 2016, 223, 934–938. [Google Scholar] [CrossRef]
- Kamarudin, A.F.; Hizaddin, H.F.; El-Blidi, L.; Ali, E.; Hashim, M.A.; Hadj-Kali, M.K. Performance of p-Toluenesulfonic Acid–Based Deep Eutectic Solvent in Denitrogenation: Computational Screening and Experimental Validation. Molecules 2020, 25, 5093. [Google Scholar] [CrossRef]
- Rodriguez Rodriguez, N.; Machiels, L.; Binnemans, K. p-Toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides. ACS Sustain. Chem. Eng. 2019, 7, 3940–3948. [Google Scholar] [CrossRef]
- Guo, W.; Hou, Y.; Wu, W.; Ren, S.; Tian, S.; Marsh, K.N. Separation of phenol from model oils with quaternary ammonium salts via forming deep eutectic solvents. Green Chem. 2013, 15, 226–229. [Google Scholar] [CrossRef]
- Babaee, S.; Daneshfar, A. Magnetic deep eutectic solvent-based ultrasound-assisted liquid–liquid microextraction for determination of hexanal and heptanal in edible oils followed by gas chromatography–flame ionization detection. Anal. Methods 2018, 10, 4162–4169. [Google Scholar] [CrossRef]
- Pourhossein, M.; Heravizadeh, O.R.; Omidi, F.; Khadem, M.; Jamaleddin, S. Ultrasound-Assisted Emulsified Microextraction Based on Deep Eutectic Solvent for Trace Residue Analysis of Metribuzin in Urine Samples. Methods Objects Chem. Anal. 2021, 16, 153–161. [Google Scholar] [CrossRef]
- Oliveira, F.S.; Pereiro, A.B.; Rebelo, L.P.; Marrucho, I.M. Deep eutectic solvents as extraction media for azeotropic mixtures. Green Chem. 2013, 15, 1326–1330. [Google Scholar] [CrossRef]
- van Osch, D.J.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.; Kroon, M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef] [Green Version]
- Phelps, T.E.; Bhawawet, N.; Jurisson, S.S.; Baker, G.A. Efficient and selective extraction of 99mTcO4− from aqueous media using hydrophobic deep eutectic solvents. ACS Sustain. Chem. Eng. 2018, 6, 13656–13661. [Google Scholar] [CrossRef]
- Schaeffer, N.; Martins, M.A.; Neves, C.M.; Pinho, S.P.; Coutinho, J.A. Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals. Chem. Commun. 2018, 54, 8104–8107. [Google Scholar] [CrossRef] [Green Version]
- Tereshatov, E.; Boltoeva, M.Y.; Folden, C. First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: Indium extraction from hydrochloric and oxalic acids. Green Chem. 2016, 18, 4616–4622. [Google Scholar] [CrossRef]
- Almustafa, G.; Sulaiman, R.; Kumar, M.; Adeyemi, I.; Arafat, H.A.; AlNashef, I. Boron extraction from aqueous medium using novel hydrophobic deep eutectic solvents. Chem. Eng. J. 2020, 395, 125173. [Google Scholar] [CrossRef]
- Zante, G.; Braun, A.; Masmoudi, A.; Barillon, R.; Trebouet, D.; Boltoeva, M. Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents. Miner. Eng. 2020, 156, 106512. [Google Scholar] [CrossRef]
- Liu, X.; Gao, B.; Jiang, Y.; Ai, N.; Deng, D. Solubilities and thermodynamic properties of carbon dioxide in guaiacol-based deep eutectic solvents. J. Chem. Eng. Data 2017, 62, 1448–1455. [Google Scholar] [CrossRef]
- Altamash, T.; Nasser, M.S.; Elhamarnah, Y.; Magzoub, M.; Ullah, R.; Qiblawey, H.; Aparicio, S.; Atilhan, M. Gas solubility and rheological behavior study of betaine and alanine based natural deep eutectic solvents (NADES). J. Mol. Liq. 2018, 256, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Sarmad, S.; Xie, Y.; Mikkola, J.-P.; Ji, X. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: From solubility to viscosity. New J. Chem. 2017, 41, 290–301. [Google Scholar] [CrossRef]
- Li, X.; Hou, M.; Han, B.; Wang, X.; Zou, L. Solubility of CO2 in a choline chloride+ urea eutectic mixture. J. Chem. Eng. Data 2008, 53, 548–550. [Google Scholar] [CrossRef]
- Leron, R.B.; Li, M.-H. Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. Thermochim. Acta 2013, 551, 14–19. [Google Scholar] [CrossRef]
- Jenkin, G.R.; Al-Bassam, A.Z.; Harris, R.C.; Abbott, A.P.; Smith, D.J.; Holwell, D.A.; Chapman, R.J.; Stanley, C.J. The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Miner. Eng. 2016, 87, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.P.; Capper, G.; McKenzie, K.J.; Ryder, K.S. Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J. Electroanal. Chem. 2007, 599, 288–294. [Google Scholar] [CrossRef]
- You, Y.; Gu, C.; Wang, X.; Tu, J. Electrodeposition of Ni–Co alloys from a deep eutectic solvent. Surf. Coat. Technol. 2012, 206, 3632–3638. [Google Scholar] [CrossRef]
- Malaquias, J.C.; Steichen, M.; Thomassey, M.; Dale, P.J. Electrodeposition of Cu–In alloys from a choline chloride based deep eutectic solvent for photovoltaic applications. Electrochim. Acta 2013, 103, 15–22. [Google Scholar] [CrossRef]
- Gómez, E.; Cojocaru, P.; Magagnin, L.; Valles, E. Electrodeposition of Co, Sm and SmCo from a deep eutectic solvent. J. Electroanal. Chem. 2011, 658, 18–24. [Google Scholar] [CrossRef]
- Gu, C.; Tu, J. One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent. Langmuir 2011, 27, 10132–10140. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.H.; Pölzler, M.; Gollas, B. Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol. J. Electrochem. Soc. 2010, 157, D328. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data 2006, 51, 1280–1282. [Google Scholar] [CrossRef]
- Raghuwanshi, V.S.; Ochmann, M.; Hoell, A.; Polzer, F.; Rademann, K. Deep eutectic solvents for the self-assembly of gold nanoparticles: A SAXS, UV–Vis, and TEM investigation. Langmuir 2014, 30, 6038–6046. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, F.; La, J.; Luo, G.; Lai, J.; Liu, C.; Chu, G. Synthesis and characterization of CuCl nanoparticles in deep eutectic solvents. Part. Sci. Technol. 2013, 31, 81–84. [Google Scholar] [CrossRef]
- Adhikari, L.; Larm, N.E.; Baker, G.A. Argentous deep eutectic solvent approach for scaling up the production of colloidal silver nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 11036–11043. [Google Scholar] [CrossRef]
- Hayyan, M.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process. Technol. 2010, 91, 116–120. [Google Scholar] [CrossRef]
- Abbott, A.P.; Cullis, P.M.; Gibson, M.J.; Harris, R.C.; Raven, E. Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem. 2007, 9, 868–872. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A.; Holmes, S. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org. Biomol. Chem. 2011, 9, 1908–1916. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhang, C.; Crittle, T.D. Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J. Mol. Catal. B Enzym. 2013, 85, 243–247. [Google Scholar] [CrossRef]
- Xu, Q.; Qin, L.Y.; Ji, Y.N.; Leung, P.K.; Su, H.N.; Qiao, F.; Yang, W.W.; Shah, A.A.; Li, H.M. A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability. Electrochim. Acta 2019, 293, 426–431. [Google Scholar] [CrossRef]
- Jhong, H.-R.; Wong, D.S.-H.; Wan, C.-C.; Wang, Y.-Y.; Wei, T.-C. A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem. Commun. 2009, 11, 209–211. [Google Scholar] [CrossRef]
- Boldrini, C.L.; Manfredi, N.; Perna, F.M.; Trifiletti, V.; Capriati, V.; Abbotto, A. Dye-sensitized solar cells that use an aqueous choline chloride-based deep eutectic solvent as effective electrolyte solution. Energy Technol. 2017, 5, 345–353. [Google Scholar] [CrossRef]
- Bozzini, B.; Busson, B.; Humbert, C.; Mele, C.; Tadjeddine, A. Electrochemical fabrication of nanoporous gold decorated with manganese oxide nanowires from eutectic urea/choline chloride ionic liquid. Part III—Electrodeposition of Au–Mn: A study based on in situ Sum-Frequency Generation and Raman spectroscopies. Electrochim. Acta 2016, 218, 208–215. [Google Scholar] [CrossRef]
- Lu, Y.-S.; Pan, W.-Y.; Hung, T.-C.; Hsieh, Y.-T. Electrodeposition of silver in a ternary deep eutectic solvent and the electrochemical sensing ability of the Ag-modified electrode for nitrofurazone. Langmuir 2020, 36, 11358–11365. [Google Scholar] [CrossRef]
Raffinate Phase | Extract Phase | DCh | DBen | S | ||||
---|---|---|---|---|---|---|---|---|
xBen | xCh | xBen | xCh | xHBA | xHBD | |||
Benzene (1) + Cyclohexane (2) + BTBACl (3) + Ph (4) (1:2, HBA:HBD molar ratio) | ||||||||
0.079 | 0.921 | 0.125 | 0.350 | 0.175 | 0.349 | 0.381 | 1.588 | 4.17 |
0.163 | 0.837 | 0.223 | 0.332 | 0.148 | 0.297 | 0.396 | 1.370 | 3.46 |
0.243 | 0.757 | 0.316 | 0.320 | 0.121 | 0.243 | 0.423 | 1.301 | 3.08 |
0.322 | 0.678 | 0.401 | 0.299 | 0.100 | 0.200 | 0.441 | 1.245 | 2.82 |
0.413 | 0.587 | 0.473 | 0.275 | 0.084 | 0.168 | 0.468 | 1.144 | 2.44 |
Benzene (1) + Cyclohexane (2) + BTBACl (3) + Cre (4) (1:2, HBA:HBD molar ratio) | ||||||||
0.079 | 0.921 | 0.122 | 0.480 | 0.133 | 0.265 | 0.521 | 1.547 | 2.97 |
0.153 | 0.847 | 0.235 | 0.453 | 0.104 | 0.208 | 0.535 | 1.542 | 2.88 |
0.230 | 0.770 | 0.312 | 0.432 | 0.085 | 0.170 | 0.562 | 1.356 | 2.41 |
0.323 | 0.677 | 0.383 | 0.411 | 0.069 | 0.137 | 0.607 | 1.187 | 1.95 |
Benzene (1) + Cyclohexane (2) + TBPB (3) + PTSA (4) (1:1, HBA:HBD molar artio) | ||||||||
0.089 | 0.911 | 0.106 | 0.204 | 0.345 | 0.345 | 0.518 | 1.191 | 5.31 |
0.179 | 0.821 | 0.202 | 0.190 | 0.304 | 0.304 | 0.381 | 1.130 | 4.89 |
0.267 | 0.733 | 0.293 | 0.195 | 0.256 | 0.256 | 0.296 | 1.095 | 4.10 |
0.359 | 0.641 | 0.368 | 0.175 | 0.229 | 0.229 | 0.469 | 1.023 | 3.74 |
0.461 | 0.539 | 0.409 | 0.157 | 0.217 | 0.217 | 0.391 | 0.888 | 3.06 |
0.553 | 0.447 | 0.512 | 0.159 | 0.165 | 0.165 | 0.312 | 0.926 | 2.61 |
ES | Othmer-Tobias | Hand | ||||
---|---|---|---|---|---|---|
a | b | R2 | c | d | R2 | |
BTBACl:Ph (1:2) | 0.929 | 1.753 | 0.982 | 0.794 | 1.004 | 0.998 |
BTBACl:Cre (1:2) | 0.194 | 1.881 | 0.998 | 0.356 | 0.947 | 0.994 |
TBPB:PTSA (1:1) | 2.363 | 1.749 | 0.974 | 1.810 | 1.124 | 0.988 |
No | HBA | HBD | Ratio | Abbreviation | Ref. |
---|---|---|---|---|---|
1 | Choline chloride | Benzoic acid | 1:1 | ChCl:BZA (1:1) | [52,53,54] |
2 | Choline chloride | Benzamide | 1:2 | ChCl:BZM (1:2) | [55] |
3 | Choline chloride | p-toluenesulfonic acid | 1:2 | ChCl:PTSA (1:2) | [56] |
4 | Tetrabutylammonium chloride | p-toluenesulfonic acid | 1:2 | TBACl:PTSA (1:2) | [56] |
5 | Tetrabutylammonium bromide | p-toluenesulfonic acid | 1:2 | TBABr:PTSA (1:2) | [56] |
6 | Tetraethylammonium chloride | p-toluenesulfonic acid | 1:2 | TEACl:PTSA (1:2) | [56] |
7 | Tetraethylammonium bromide | p-toluenesulfonic acid | 1:2 | TEABr:PTSA (1:2) | [56] |
8 | Choline chloride | p-aminosalicylic acid | 1:2 | ChCl:PAS (1:2) | [56] |
9 | Trimethylglycine | Benzoic acid | 1:1.5 | TMGly:BZA (1:1.5) | [57] |
10 | Trimethylglycine | Salicylic acid | 1:1.5 | TMGly:SA (1:1.5) | [57] |
11 | Trimethylglycine | 4-chlorobenzoic acid | 1:1.5 | TMGly:4-CBZ (1:1.5) | [57] |
12 | Trimethylglycine | 3-chlorobenzoic acid | 1:1.5 | TMGly:3-CBZ (1:1.5) | [57] |
13 | Trimethylglycine | 2-chlorobenzoic acid | 1:1.5 | TMGly:2-CBZ (1:1.5) | [57] |
14 | Trimethylglycine | 2-furoic acid | 1:2 | TMGly:2-FA (1:2) | [57] |
15 | Benzyltrimethylammonium chloride | p-toluenesulfonic acid | 3:7 | BTMACl:PTSA (3:7) | [58] |
16 | Benzyltrimethylammonium chloride | Oxalic acid | 1:1 | BTMACl:OA (1:1) | [58] |
17 | Benzyltrimethylammonium chloride | Citric acid | 1:1 | BTMACl:CA (1:1) | [58] |
18 | N,N-diethylenethanolammonium Cl | p-toluenesulfonic acid | 1:3 | DEEACl:PTSA (1:3) | [59] |
19 | Allyltriphenylphosphonium Br | p-toluenesulfonic acid | 1:3 | ATPPBr:PTSA (1:3) | [60] |
20 | Choline chloride | p-toluenesulfonic acid | 1:2 | ChCl:PTSA (1:2) | [61] |
21 | Benzyltributylammonium chloride | Phenol | 1:2 | BTBACl:Ph (1:2) | * |
22 | Benzyltributylammonium chloride | m-Cresol | 1:2 | BTBACl:Cre (1:2) | * |
23 | Tetrabutylphosphonium bromide | p-toluenesulfonic acid | 1:1 | TBPB:PTSA (1:1) | * |
Chemical | Formula | Purity (wt%) | Supplier | Country |
---|---|---|---|---|
Benzene | C6H6 | 99.5 | Panreac | Spain |
Cyclohexane | C6H12 | 99.5 | Analar | England |
BTBACl | C6H5CH2N(Cl)(CH2CH2CH2CH3)3 | 97 | Aldrich | Netherland |
Phenol | C6H6O | 99.5 | VWR International | Belgium |
m-Cresol | C7H8O | 99 | Scharlau | Spain |
TBPB | (CH3CH2CH2CH2)4P(Br) | 98 | Aldrich | China |
PTSA | C7H8O3S | 98.5 | Sigma-Aldrich | Japan |
Deuterated Chloroform | CDCl3 | 99.8 | Sigma-Aldrich | German |
Acetonitrile | C2H3N | 99.9 | VWR International | England |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadj-Kali, M.K.; Salleh, M.Z.M.; Wazeer, I.; Alhadid, A.; Mulyono, S. Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure. Molecules 2022, 27, 4041. https://doi.org/10.3390/molecules27134041
Hadj-Kali MK, Salleh MZM, Wazeer I, Alhadid A, Mulyono S. Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure. Molecules. 2022; 27(13):4041. https://doi.org/10.3390/molecules27134041
Chicago/Turabian StyleHadj-Kali, Mohamed K., M. Zulhaziman M. Salleh, Irfan Wazeer, Ahmad Alhadid, and Sarwono Mulyono. 2022. "Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure" Molecules 27, no. 13: 4041. https://doi.org/10.3390/molecules27134041
APA StyleHadj-Kali, M. K., Salleh, M. Z. M., Wazeer, I., Alhadid, A., & Mulyono, S. (2022). Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure. Molecules, 27(13), 4041. https://doi.org/10.3390/molecules27134041